Connect public, paid and private patent data with Google Patents Public Datasets

Adhesive super-hydrophobic material and preparation method thereof

Info

Publication number
CN102453465A
CN102453465A CN 201010521305 CN201010521305A CN102453465A CN 102453465 A CN102453465 A CN 102453465A CN 201010521305 CN201010521305 CN 201010521305 CN 201010521305 A CN201010521305 A CN 201010521305A CN 102453465 A CN102453465 A CN 102453465A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
material
super
hydrophobic
method
adhesive
Prior art date
Application number
CN 201010521305
Other languages
Chinese (zh)
Other versions
CN102453465B (en )
Inventor
徐杰
王敏
陈晨
马继平
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to an adhesive super-hydrophobic material and a preparation method thereof. The material refers to silicon dioxide nanoparticles containing organic groups. A surface with dual nanometer roughness is obtained by taking the material as a constructing unit and depositing on a substrate. The surface has super-hydrophobic performance and very high adhesion, a contact angle is 140-170 degrees, and water drops are prevented from falling off under the condition of inclination or reversion. The method has the advantages of easiness for operating, readily-available raw materials, low cost and wide application prospects on conveying, transfer and separation of water.

Description

一种粘附型超疏水材料及其制备方法 An adherent ultra-hydrophobic material and method

技术领域 FIELD

[0001] 本发明涉及到一种超疏水粘附型材料及其制备方法。 [0001] The present invention relates to a superhydrophobic adherent material and preparation method. 背景技术 Background technique

[0002] 超疏水是指表面上水的表观接触角超过150°的一种特殊表面现象。 [0002] Superhydrophobic refers to the apparent contact angle of water on the surface over 150 ° of the surface of a particular phenomenon. 近年来,超疏水表面引起了人们极大的关注,它在自清洁材料、微流体装置、催化、采油、涂饰、防水、和生物材料等许多领域等领域中有着广泛的应用前景。 In recent years, superhydrophobic surface has aroused great concern that in the field of self-cleaning materials, many areas of microfluidic devices, catalysis, production, finishing, water, and biological materials, etc. has a wide range of applications. 最典型的例子就是自然界中的荷叶表面,水滴在叶面上可以自由滚动,能够将附着在叶面上的灰尘等污染物带走,从而使表面保持清洁。 The most typical example is the nature of the surface of the lotus leaf, the leaf surface water droplets can roll freely, can be attached to dust and other contaminants away the foliage, so that the surface is kept clean. 传统超疏水表面的制备一般采用两种方法:一种是在粗糙表面修饰低表面能的物质;另一种是在疏水性表面构建粗糙结构。 Prepared by conventional superhydrophobic surfaces generally use two methods: one is a low surface energy material to modify the roughened surface; the other is constructed on a hydrophobic surface roughness. 关于超疏水粗糙表面的研制方法,主要有相分离法、模板法、溶胶-凝胶法、电纺法、刻蚀法、腐蚀法、自组装、化学气相沉积及其他方法。 On the development of superhydrophobic surface is rough, the main phase separation, template, sol - gel method, electro-spinning method, etching method, etching, self-assembly, chemical vapor deposition and other methods. 根据液体在表面的滚动效果,超疏水表面又可分为斥水型和粘附型超疏水表面。 The effect of the rolling surface of the liquid, can be divided into super-hydrophobic surface and a water-repellent adherent superhydrophobic surfaces. 斥水型超疏水表面与水滴的接触角大于150°,但是对水滴粘附力很小,水滴很容易从表面滚落。 A contact angle of water-repellent superhydrophobic surfaces with a water droplet greater than 150 °, but small water droplets adhesion, water droplets roll off the surface easily. 自然界大量存在这种超疏水表面,比如荷叶,鸟的羽毛和水虫等都是这种低粘附力的斥水型表面。 Such super-hydrophobic surface nature, abound, such as leaves, bird feathers and water are insects such low adhesion surface water-repellent. 由于这种超疏水表面自清洁性能,大量的研究都专注这种表面的合成。 Because of this super-hydrophobic surface self-cleaning properties, a large number of studies have focused on the synthetic surface. 粘附型超疏水表面不但与水滴的接触角大于150°,而且对水滴具有很强的粘附力,将表面倾斜或者倒置, 水滴都不会滚动下来。 Super hydrophobic surface adhesion not only with the water droplet contact angle greater than 150 °, and has a strong adhesion to the water drops and reversing the inclined surfaces, water droplets will not roll down. 这种超疏水表面虽然不能够自清洁,但是此种对液体高的粘附力,有利于在微米级别上对水滴进行操作,在无损失液体转移,微流控制体系和生物传感器等方面表现出很好的应用前景。 Such super-hydrophobic surface, while not capable of self-cleaning, but such a high adhesion to the liquid, to facilitate operation on the water drops micron, liquid transfer without loss, and aspects of the control system microfluidic biosensors exhibit a good prospect. 相对而言,粘附型超疏水表面研究的较少。 In contrast, few studies adherent surface superhydrophobic. 现有的研究都集中在对表面的结构控制上,利用毛细管力对液体进行粘附。 Existing studies have focused on the surface of the control structure, adhesion of liquid by capillary force. 发展一种简便合成超疏水粘附型表面的方法具有重要的意义 The development of a simple synthesis of super-hydrophobic surface adhesion type of method is of great significance

发明内容 SUMMARY

[0003] 本发明提供一种粘附型超疏水材料及其制备方法。 [0003] The present invention provides a super-hydrophobic material, an adhesion type and preparation method.

[0004] 该材料是一种含有有机基团的二氧化硅纳米颗粒,通过控制表面的化学成分来调控粘附力大小。 [0004] The material containing silica nanoparticles is an organic group, to regulate the size of the adhesion surfaces by controlling the chemical composition. 以该材料作为构建单元,在基体上进行沉积得到具有二维纳米粗糙度的表面。 In the material as a construction unit, in the deposition on the substrate to give a surface having a two-dimensional roughness. 基体可以是玻璃片,硅片,金属或金属氧化物。 The substrate may be glass, silicon, metal or metal oxide.

[0005] 传统超疏水表面的制备一般采用两种方法:一种是在粗糙表面修饰低表面能的物质;另一种是在疏水性表面构建粗糙结构。 Superhydrophobic surfaces prepared by conventional [0005] generally use two methods: one is a low surface energy material to modify the roughened surface; the other is constructed on a hydrophobic surface roughness. 与上不同,本发明采用低表面能有机物修饰的二氧化硅纳米颗粒为构建单元在基体上沉积,得到具有二重纳米粗糙度的表面。 And different, the present invention employs a low surface energy organic-modified silica nanoparticles are constructed on the base unit in the deposition, to obtain a surface roughness having a double nanometers. 低表面能物质和粗糙度在沉积过程中一步实现。 Roughness and low surface energy material during the deposition step to achieve. 操作更为简单,方便。 The operation more simple and convenient. 传统的粗糙结构只有一重粗糙度,或者一重微米级别粗糙度和一重纳米级别粗糙度。 Only a rough structure of a conventional heavy roughness, or a heavy weight of a micron-order roughness and the nanometer-scale roughness. 本发明制备的表面具有二重纳米粗糙结构。 The present invention has prepared surface roughness double nanometers. 二氧化硅纳米颗粒本体组装成一重纳米粗糙度,本发明合成的有机修饰的二氧化硅表面本身非常粗糙,形成第二重纳米粗糙结构,两重粗糙结构都在纳米级别。 Silica nanoparticles assemble into a body weight scale roughness, the present invention is the synthesis of organic-modified silica surface itself is roughened to form a second heavy nano-roughness, double roughness in the nanoscale.

[0006] 与通过控制表面结构来调变粘附力不同,本发明通过控制化学成分来调控粘附力大小,可以获得超疏水粘附型材料,接触角在140-170°之间,而且具有很强的粘附力,水滴 [0006] and to adjust by controlling the surface structure of different variants of the adhesion, the adhesion of the present invention to modulate the chemical composition by controlling the magnitude can be obtained superhydrophobic adherent material, the contact angle between 140-170 °, and having strong adhesion, water droplets

3在倾斜或者倒置的情况下不回滑落下来。 3 does not slide back down the inclined or inverted.

[0007] 沉淀剂是水溶性的,而硅烷是油溶性的,为了合成粒径均一,高分散的含有有机基团的二氧化硅纳米颗粒,必须使沉淀剂与硅烷充分且均勻接触,本发明采用表面活性剂和助表面活性剂将氨水溶液高分散在油相之中,使得硅烷与沉淀剂充分且均勻接触,均勻沉淀。 [0007] The precipitating agent is water soluble, but are oil soluble silane, for the synthesis of uniform particle size, highly disperse silica nanoparticles containing organic group, the precipitating agent must be sufficiently and uniformly contacted with the silane, the present invention using the surfactant and co-surfactant in the aqueous ammonia solution is highly dispersed in the oil phase, so that the silane with the precipitating agent sufficient and uniform contact, homogeneous precipitation. 通过简单沉积和老化处理可以在基体上形成一个超疏水表面。 A super-hydrophobic surface may be formed on a substrate by simple deposition and aging treatment.

[0008] 所述粘附型超疏水表面制备步骤,可按如下步骤操作: [0008] The adherent superhydrophobic surface preparation step, may follow the steps below:

[0009] a)无机沉淀剂在油相中的分散及其均勻沉淀:表面活性剂,有机相,助表面活性剂和氨水按照一定比例配置成溶液A。 [0009] a) precipitating an inorganic dispersing agent and uniformly precipitated in the oil phase: surfactant, an organic phase, co-surfactant and an aqueous ammonia solution is arranged according to a certain proportion A. 一定量的正硅酸乙酯或者正硅酸甲酯为硅源,配成溶液B。 Amount of TEOS or methyl orthosilicate as silicon source, match the solution B. 室温下,往A微乳液中加入溶液B,搅拌6〜48h。 At room temperature, the microemulsion was added to the solution A B, stirred 6~48h.

[0010] 所得最终混合溶液的质量比为1〜10表面活性剂:0. 5〜6氨水:5〜15有机相:0〜6助表面活性剂:1硅烷:0. 05〜1. 5有机硅烷。 [0010] The final mass ratio of the mixed solution of the resulting surfactant is 1~10: ammonia 0 5 to 6: The organic phase 5~15: 0~6 cosurfactant: Silane 1: 5 0 Organic 05~1 silane. 氨水浓度为1〜30Wt%。 Ammonia concentration 1~30Wt%.

[0011] 加入1-10倍硅源质量的丙酮破乳,离心得到固体,加入5-50倍硅源质量的乙醇回流5〜30min,离心,重复2〜5次洗涤,分散在乙醇中,得二氧化硅乙醇分散液二氧化硅质量浓度为1〜20wt% ; [0011] The silicon source is added to 10-fold mass breaking acetone, centrifuged to obtain a solid, the silicon source is added 5 to 50 times by mass of ethanol was refluxed 5~30min, centrifugation, repeatedly washed 2 ~ 5 times, dispersed in ethanol to give ethanol dispersion liquid of silica silica concentration of 1~20wt%;

[0012] b)超疏水表面的形成:基体先用洗涤剂超声清洗,再用水、丙酮反复清洗2〜6 次,将二氧化硅乙醇分散液在基体表面上沉积,20〜200°C下老化1〜48h,得到超疏水表面。 [0012] b) forming a superhydrophobic surface of the: first substrate ultrasonic cleaning with a detergent and then with water, repeatedly washed with acetone 2 ~ 6 times, the silica dispersion in ethanol was aged at the deposition surface of the base body, 20~200 ° C 1~48h, superhydrophobic surface.

[0013] 所述表面活性剂为阴离子表面活性剂中的C8-20直链烷基苯磺酸钠或α -烯基磺酸钠,或为非离子表面活性剂中的C8-20长链的有机伯胺、Np系列或吐温系列表面活性剂, 或为阳离子表面活性剂中的十六烷基三甲基溴化胺。 [0013] The surfactant is an anionic surfactant is C8-20 linear alkylbenzene sulfonate, or α - olefin sulfonate, or a C8-20 long chain non-ionic surfactant in organic primary amine, or a series of Np Tween series of surfactants, or cationic surfactant is cetyl trimethyl ammonium bromide. 所述有机相为环己烷、正己烷或者甲苯;助表面活性剂为正丁醇、正戊醇、正己醇或正辛醇。 The organic phase is cyclohexane, n-hexane or toluene; co-surfactant is n-butanol, n-pentanol, n-hexanol or n-octanol. 有机基团为甲基、乙基、丙基、乙烯基、苯基、十二烷基、十八烷基、三氟丙基、全氟葵基和五氟苯基一种或者几种。 The organic groups are methyl, ethyl, propyl, vinyl, phenyl, dodecyl, octadecyl, trifluoropropyl, perfluoro decyl, and one or several pentafluorophenyl. 基体为玻璃片,硅片,金属或金属氧化物。 Substrate is glass, silicon, metal or metal oxide.

[0014] 本发明制备的有机修饰的二氧化硅纳米颗粒,大小可控,粒径在20〜1000nm(见图1)。 Silica nanoparticles [0014] The present invention is made of organically modified, controlled size, particle size 20~1000nm (see FIG. 1). 所制备的表面具有粗糙结构(见图幻。所制备的超疏水粘附型表面接触角为140〜 170°,水滴在90°或180°倾斜不会滚动下来(见图3)。 Adhesive based superhydrophobic surface having a surface roughness of the prepared (see phantom. The contact angle was prepared 140~ 170 °, 90 ° or water droplets will not roll down the inclined 180 ° (see FIG. 3).

附图说明 BRIEF DESCRIPTION

[0015] 图1实例1中合成的二氧化硅颗粒A的透射电镜照片。 [0015] TEM photographs in FIG 1 Example 1 Synthesis of silica particles A.

[0016] 图2实例7中采用二氧化硅A制备的超疏水表面扫描电镜照片。 [0016] FIG 2 Example 7 using superhydrophobic surface scanning electron micrograph of a silica prepared A.

[0017] 图3实例7中采用二氧化硅A制备的超疏水表面水滴接触角图片。 [0017] FIG 3 Example 7 using superhydrophobic surfaces produced silica A water droplet contact angle of the image.

具体实施方式 detailed description

[0018] 表面活性剂,有机相,助表面活性剂和氨水按照一定比例配置成溶液A。 [0018] a surfactant, an organic phase, co-surfactant and aqueous ammonia solution arranged according to a certain proportion A. 一定量的正硅酸乙酯或正硅酸甲酯和有机硅烷配成溶液B。 Amount of TEOS or methyl orthosilicate and an organosilane prepare a solution B.

[0019] 室温下,往A微乳液中滴入溶液B,搅拌6〜48h。 [0019] at room temperature was added dropwise a solution of the microemulsion A B, stirred 6~48h. 所得最终混合溶液的质量比为1〜10表面活性剂:0. 5〜6氨水:5〜15有机相:0〜6助表面活性剂:1硅烷:0.05〜1.5有机硅烷。 The final mass ratio of the mixed solution of the resulting surfactant is 1~10: ammonia 0 5 to 6: The organic phase 5~15: 0~6 cosurfactant: Silane 1: 0.05~1.5 organosilane. 加入1-10倍硅源质量的丙酮破乳,离心得到固体,加入5-50 倍硅源质量的乙醇回流5〜30min,离心,重复2〜5次洗涤,分散在乙醇中,得二氧化硅乙醇分散液,二氧化硅质量浓度为1〜20wt% ;基体先用洗涤剂超声清洗,再反复用水,丙酮清洗2〜6次,将二氧化硅乙醇分散液在基体表面上沉积,20〜200°C下保持1〜48h,得到超疏水表面。 Was added to 10 times by mass of the silicon source breaking acetone, centrifuged to obtain a solid, the silicon source is added 5 to 50 times by mass of ethanol was refluxed 5~30min, centrifugation, repeatedly washed 2 ~ 5 times, dispersed in ethanol to give the silica ethanol dispersion, the silica concentration of 1~20wt%; matrix first ultrasonic cleaning with a detergent, then repeatedly washed with water, washed with acetone 2 ~ 6 times, the ethanol dispersion of the silica deposition surface of the base body, 20~200 the holding 1~48h ° C, to give a superhydrophobic surface.

[0020] 下面通过实施例对本发明提供的方法进行详述,但不以任何形式限制本发明。 [0020] The following detailed description of the method of the present invention be provided by way of example, without limiting the invention in any way. [0021 ] 实施例1 二氧化硅A (Ph-SiO2)的制备 Preparation 1 Silica A (Ph-SiO2) of Example [0021]

[0022] 取8. Og Np-12、15. Og环己烷、3. Og正辛醇和5. Og IOwt %,得溶液A ; 1. Og正硅酸乙酯0. 5g苯基基三甲氧基硅烷为溶液C ;在搅拌下将溶液B加入溶液D中,老化他;然后, 加入8g丙酮,搅拌30min,离心得到固体; [0022] Take 8. Og Np-12,15 Og cyclohexane, 3 Og n-octanol and 5. Og IOwt%, to obtain a solution A;.. 1. Og 0. 5g TEOS-trimethoxy phenyl C is a silane solution; solution B under stirring was added a solution of D in aging him; then, 8g of acetone was added, stirred for 30min, centrifuged to obtain a solid;

[0023] 向此固体中加入30g乙醇,加热搅拌lOmin,离心;重复此步骤5次,直至表面活性剂去除干净;所得固体分散在IOg乙醇中。 [0023] To this solid was added 30g of ethanol was heated with stirring lOmin, centrifuged; this procedure was repeated five times, until the surfactants were cleanly removed; IOg resulting solid was dispersed in ethanol. 如图1所示,可以看出有机修饰的二氧化硅纳米颗粒,粒径均勻,粒径在lOOnm,表面非常粗糙。 As shown in FIG. 1, it can be seen organically modified silica nanoparticles, uniform particle size, particle diameter lOOnm, very rough surface.

[0024] 实施例2 二氧化硅BL的制备 Example 2 Preparation of silica-BL [0024] Embodiment

[0025] 材料BL的制备方法同材料A,不同之处在于有机硅烷的种类和加入量上,具体采用的有机硅烷的种类和加入量见表1,所得到的材料列于表1。 Preparation Method [0025] Materials BL same material A, except that the kind and added amount of the organic silane, the kind and amount of the specific organic silane employed in Table 1, the resultant materials are listed in Table 1.

[0026] 表1材料BH制备中采用的有机硅烷的种类和加入量 [0026] The type and amount in Table 1 Materials used in BH organosilane

Figure CN102453465AD00051

[0028] 实施例3 二氧化硅I (Me-SiO2)的制备 [0028] Preparation Example 3 Silica I (Me-SiO2) of

[0029] 取2. Og十二烷基苯磺酸钠、10. Og正己烷、l.Og正丁醇和4. Og 15wt%氨水混合得微乳液A ;1. Og正硅酸甲酯和0. 5g甲基三甲氧基硅烷为溶液B。 [0029] 2. Og take sodium dodecylbenzenesulfonate, 10 Og hexane, l.Og n-butanol and aqueous ammonia mixture 4. Og 15wt% obtained microemulsion A;.. 1 Og 0 and n-methyl silicate . 5g of methyltrimethoxysilane solution B. 在搅拌下将溶液B滴入溶液D中,老化15h ;然后加入IOg丙酮,搅拌30min,离心得到固体; Under stirring solution B was added dropwise to a solution of D in aging 15H; IOg acetone was then added, stirred for 30min, centrifuged to obtain a solid;

[0030] 向此固体中加入30g乙醇,加热搅拌lOmin,离心;重复此步骤4次,直至表面活性剂去除干净。 [0030] To this solid was added 30g of ethanol was heated with stirring lOmin, centrifuged; this procedure was repeated four times, until the surfactants were cleanly removed. 所得固体分散在IOg乙醇中。 The resulting solid was dispersed in ethanol IOg.

[0031 ] 实施例4 二氧化硅JR的制备[0032] 材料JR的制备方法同材料I,不同之处在于有机硅烷的种类和加入量,具体采用的有机硅烷和加入量种类见表2,所得到的材料列于表2。 Example 4 Preparation of silica JR [0032] [0031] The manufacturing method of the same material of materials JR I, except that the kind and added amount of the organic silane, organic silane type and amount shown in Table 2 the specific use, as the resulting materials are listed in table 2.

[0033] 表2材料JR制备中采用的有机硅烷的种类和加入量 [0033] Preparation of the kind and addition amount of the second material used in the tables JR organosilane

Figure CN102453465AD00061

[0035] 实施例5 二氧化硅S (Do-SiO2)的制备 Example 5 Preparation of Silica S (Do-SiO2) of [0035] Embodiment

[0036] 取5. Og十六烷基三甲基溴化胺、12. Og甲苯、2. Og正戊醇和4. 5g 5wt%氨水混合得微乳液液A ;1. Og正硅酸甲酯和0. Ig十二烷基三甲氧基硅烷为溶液B ;在搅拌下将溶液C滴入溶液A中,老化Mh ;然后,加入IOg丙酮,搅拌30min,离心得到固体; [0036] 5. Og taken cetyl trimethyl ammonium bromide, 12 Og toluene, 2 Og n-pentanol and 4. 5g 5wt% aqueous ammonia to obtain a mixed microemulsion liquid A;... 1 Og of methyl orthosilicate and 0. Ig dodecyl trimethoxy silane as a solution B; C under stirring solution was added dropwise to the solution A, aging Mh; then, IOg acetone was added, stirred for 30min, centrifuged to obtain a solid;

[0037] 向此固体中加入30g乙醇,加热搅拌lOmin,离心;重复此步骤3次,直至表面活性剂去除干净。 [0037] To this solid was added 30g of ethanol was heated with stirring lOmin, centrifuged; this procedure was repeated three times, until the surfactants were cleanly removed. 所得固体分散在IOg乙醇中。 The resulting solid was dispersed in ethanol IOg.

[0038] 实施例6 二氧化硅UZ的制备 Example 6 Preparation of silica UZ [0038] Embodiment

[0039] 材料TZ的制备方法同材料S,不同之处在于有机硅烷的种类和加入量,具体采用的有机硅烷和加入量种类见表3,所得到的材料列于表3。 Preparation Method [0039] Materials TZ same material S, except that the kind and added amount of the organosilane, the organosilane species and the specific amount used in Table 3, the resulting material are shown in Table 3.

[0040] 表3 二氧化硅TZ制备中采用的有机硅烷的种类和加入量 [0040] Preparation of 3 kind and addition amount of silica used in table TZ organosilane

[0041] [0041]

Figure CN102453465AD00071

[0042] 实施例7超疏水表面的制备 Superhydrophobic surface Example 7 [0042] Embodiment

[0043] 玻璃片先用洗涤剂超声清洗,再反复用水清洗3次,丙酮清洗4次,干燥。 [0043] The first glass sheet ultrasonic cleaning with a detergent, then washed with water repeatedly three times, four times washed with acetone, and dried. 将制备好的AZ 二氧化硅乙醇分散液在基体表面上进行沉积,150°温度下,老化Mh。 The prepared dispersion was ethanol AZ silica deposited on the surface of the substrate, at a temperature of 150 ° aging Mh.

[0044] 如图2和3所示,可以看出,所制备的表面具有粗糙结构。 [0044] As shown in FIG. 2 and FIG. 3, it can be seen, having produced the surface roughness. 此表面具有超疏水性质, 水滴接触角大于150°,且具有很强的粘附性能,水滴在倒置的情况下不会掉下来。 This super-hydrophobic surface properties, water contact angle greater than 150 °, and has a strong adhesion properties, in the case of inverted water droplets will not come off.

[0045] 本发明提供的方法制备的超疏水材料可以粘附到不同的基体上,形成一个超疏水表面,具有超疏水高粘附性能,该方法操作简单,原料易得,成本低,在无损失液体转移,液体携带生物材料,微流控制体系,生物微量液体转移,分离材料和生物传感器等方面具有广泛的应用前景。 [0045] The super-hydrophobic material prepared by the process provided by the present invention can be adhered to a different substrate, forming a superhydrophobic surface having a super-hydrophobic properties of high adhesion, the method is simple, readily available raw materials, low cost, without loss of liquid transfer, the liquid carrying biological material, microfluidic controls systems, micro-biological liquid transfer, in separating materials and biosensors has wide application prospects.

Claims (7)

1. 一种粘附型超疏水材料,其特征在于:该材料是一种含有有机基团的二氧化硅纳米颗粒;该材料附着于基体表面,通过控制化学成分来调变粘附力。 A super hydrophobic adhesive material, characterized in that: the material containing silica nanoparticles is an organic group; the material adheres to the surface of the substrate, to adjust by controlling the chemical composition of the adhesive force becomes.
2.按照权利要求1所述粘附型超疏水材料,其特征在于:以所述的材料作为构建单元,在基体上进行沉积得到具有二重纳米粗糙度的表面;该材料表面具有超疏水性能,接触角在140〜170°之间,而且具有很强的粘附力,水滴在倾斜或者倒置的情况下不会滑落下来。 2. The adhesive according to claim 1 super hydrophobic material, characterized in that: in said material as a construction unit, in the deposition on a substrate having a surface roughness of the obtained double nanometers; superhydrophobic surface of the material properties , the contact angle between 140~170 °, and has a strong adhesive force, water droplets in the case of inclined or inverted without slipping down.
3.按照权利要求1或2所述粘附型超疏水材料,其特征在于:基体是玻璃片、硅片、金属或金属氧化物。 3. according to claim 1 or 2 superhydrophobic adherent material, characterized in that: the substrate is glass, silicon, metal or metal oxide.
4.按照权利要求1所述粘附型超疏水材料,其特征在于:所述含有有机基团的二氧化硅纳米颗粒,有机基团为甲基、乙基、丙基、乙烯基、苯基、十二烷基、十八烷基、三氟丙基、全氟葵基和五氟苯基等有机基团中的一种或者多种,质量含量为0. 1〜60% ;有机修饰的二氧化硅颗粒表面粗糙,粒径为20〜lOOOnm。 4. The adhesive of claim 1 super hydrophobic material, characterized in that: said silica nanoparticles containing organic group, the organic group is methyl, ethyl, propyl, vinyl, phenyl , dodecyl, octadecyl, trifluoropropyl, perfluoro decyl and pentafluorophenyl group in an organic group or a plurality of mass content of 0.5% 1~60; organically modified roughening the surface of silica particles, a particle size of 20~lOOOnm.
5. 一种权利要求1所述粘附型超疏水材料的制备方法,其特征在于:a)无机沉淀剂在油相中分散及其均勻沉淀:将表面活性剂、有机相、助表面活性剂和沉淀剂氨水按照比例配置成微乳液A ;正硅酸乙酯或者正硅酸甲酯和有机硅烷为硅源,配成溶液B ;室温下,往A微乳液中滴入溶液B,搅拌6〜48h ;加入1-10倍硅源质量的丙酮破乳,离心得到固体,加入5-50倍硅源质量的乙醇回流5〜30min,离心,重复2〜5次洗涤,分散在乙醇中,得二氧化硅乙醇分散液,二氧化硅质量浓度为1〜20wt% ;所得最终混合溶液的质量比为1〜10表面活性剂:0.5〜6氨水:5〜15有机相:0〜6助表面活性剂:1正硅酸乙酯或者正硅酸甲酯:0. 05〜1. 5有机硅烷;氨水浓度为1〜30wt% ;b)超疏水表面的形成:基体先用洗涤剂超声清洗,再用水清洗2〜6次、丙酮清洗2〜 6次,将二氧化硅乙醇分散液在基 The method for preparing a superhydrophobic adherent material as claimed in claim A, characterized in that: a) an inorganic precipitating agent in the oil phase and uniformly dispersed precipitation: surfactant, the organic phase, the co-surfactant aqueous ammonia and precipitant configured to scale A microemulsion; orthosilicate or methyl orthosilicate and an organosilane as the silicon source, prepare a solution B; at room temperature was added dropwise a solution of the microemulsion A B, stirred 6 ~48h; was added to 10 times by mass of the silicon source breaking acetone, centrifuged to obtain a solid, the silicon source is added 5 to 50 times by mass of ethanol was refluxed 5~30min, centrifugation, repeatedly washed 2 ~ 5 times, dispersed in ethanol to give ethanol dispersion of silica, the silica concentration of 1~20wt%; final mass ratio of the mixed solution of the resulting surfactant is 1~10: 0.5~6 ammonia: organic phase 5~15: 0~6 co-surfactants solvent: n-1 orthosilicate or methyl silicate: 0 05~1 5 organosilane; ammonia concentration 1~30wt%; b) forming a superhydrophobic surface: detergent base first ultrasound, and then 2 ~ 6 times washed with water, washed with acetone 2 ~ 6 times, the silica dispersion in ethanol yl 体表面上沉积,20〜200°C下保持1〜48h,得到超疏水表面。 Depositing on the surface, holding 1~48h at 20~200 ° C, to give a superhydrophobic surface.
6.按照权利要求5所述的制备方法,其特征在于:所述表面活性剂为阴离子表面活性剂中的C8-20直链烷基苯磺酸钠或α -烯基磺酸钠,或为非离子表面活性剂中的C8-20长链的有机伯胺、Np系列或吐温系列表面活性剂,或为阳离子表面活性剂中的十六烷基三甲基溴化胺;所述有机相为环己烷、正己烷或甲苯;助表面活性剂为正丁醇、正戊醇、正己醇或正辛醇。 6. The production method according to claim 5, wherein: the surfactant is an anionic surfactant is C8-20 linear alkylbenzene sulfonate, or α - olefin sulfonate, or from organic primary amine C8-20 long chain nonionic surfactant is, Np series or Tween series of surfactants, or cationic surfactant is cetyl trimethyl ammonium bromide; the organic phase cyclohexane, n-hexane or toluene; co-surfactant is n-butanol, n-pentanol, n-hexanol or n-octanol.
7.按照权利要求5所述的制备方法,所述有机硅烷为甲基三甲氧基硅烷、乙基三甲氧基硅烷、丙基三甲氧基硅烷、乙烯基三甲氧基硅烷、氯丙基三甲氧基硅烷、苯基三甲氧基硅烷、十二烷基三甲氧基硅烷、十八烷基基三甲氧基硅烷、三氟丙基三甲氧基硅烷、五氟苯基三甲氧基硅烷及其相对应的乙氧基硅烷中的一种或二种以上。 7. The production method according to claim 5, wherein the organic silane is methyl trimethoxysilane, ethyl trimethoxysilane, propyl trimethoxysilane, vinyl trimethoxysilane, chloropropyl-trimethoxy silane, phenyl trimethoxy silane, dodecyl trimethoxy silane, octadecyl the alkyl trimethoxysilane, trifluoropropyl trimethoxysilane, pentafluorophenyl trimethoxysilane its corresponding the silane of one or two or more kinds.
CN 201010521305 2010-10-27 2010-10-27 Adhesive super-hydrophobic material and preparation method thereof CN102453465B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010521305 CN102453465B (en) 2010-10-27 2010-10-27 Adhesive super-hydrophobic material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010521305 CN102453465B (en) 2010-10-27 2010-10-27 Adhesive super-hydrophobic material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102453465A true true CN102453465A (en) 2012-05-16
CN102453465B CN102453465B (en) 2014-09-03

Family

ID=46037171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010521305 CN102453465B (en) 2010-10-27 2010-10-27 Adhesive super-hydrophobic material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102453465B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232835A (en) * 2013-05-14 2013-08-07 黑龙江大学 Method for preparing silica fiber and silica microsphere composite super-hydrophobic material
CN103803556A (en) * 2012-11-05 2014-05-21 中国科学院大连化学物理研究所 Organic modified hydrophobic nano silica hollow ball and preparation method thereof
CN104947169A (en) * 2015-06-19 2015-09-30 浙江大学 Preparation method of super-hydrophobic silicon dioxide film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017229A (en) * 1998-06-30 2000-01-18 Showa Alum Corp Substrate film for photocatalytic film, formation thereof and article comprising base material having photocatalytic film formed using substrate film for photocatalytic film
CN1392097A (en) * 2002-05-28 2003-01-22 湖南大学 Silicon amide shell nano particle material and its preparing process
US6743467B1 (en) * 1999-08-20 2004-06-01 Unisearch Limited Hydrophobic material
CN101113012A (en) * 2006-07-28 2008-01-30 北京化工大学 Highly-adherent super-hydrophobic double-functional intercalation configuration type hydrotalcite film and method for preparing same
CN101143989A (en) * 2006-09-15 2008-03-19 中国科学院大连化学物理研究所 Hydrophobic coating and application thereof
WO2010002859A2 (en) * 2008-06-30 2010-01-07 Stc.Unm A superhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine
CN101629066A (en) * 2009-07-28 2010-01-20 上海理工大学 Nanometer composite hydrophobic hard transparent film and preparation method thereof
WO2010018744A1 (en) * 2008-08-11 2010-02-18 財団法人川村理化学研究所 Ultrahydrophobic powder, structure with ultrahydrophobic surface, and processes for producing these
WO2010033288A2 (en) * 2008-06-30 2010-03-25 Stc.Unm Durable polymer-aerogel based superhydrophobic coatings: a composite material
CN101817980A (en) * 2010-04-22 2010-09-01 复旦大学 Sol-gel preparation method of silica-based superhydrophobic thin films

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017229A (en) * 1998-06-30 2000-01-18 Showa Alum Corp Substrate film for photocatalytic film, formation thereof and article comprising base material having photocatalytic film formed using substrate film for photocatalytic film
US6743467B1 (en) * 1999-08-20 2004-06-01 Unisearch Limited Hydrophobic material
CN1392097A (en) * 2002-05-28 2003-01-22 湖南大学 Silicon amide shell nano particle material and its preparing process
CN101113012A (en) * 2006-07-28 2008-01-30 北京化工大学 Highly-adherent super-hydrophobic double-functional intercalation configuration type hydrotalcite film and method for preparing same
CN101143989A (en) * 2006-09-15 2008-03-19 中国科学院大连化学物理研究所 Hydrophobic coating and application thereof
WO2010002859A2 (en) * 2008-06-30 2010-01-07 Stc.Unm A superhydrophobic aerogel that does not require per-fluoro compounds or contain any fluorine
WO2010033288A2 (en) * 2008-06-30 2010-03-25 Stc.Unm Durable polymer-aerogel based superhydrophobic coatings: a composite material
WO2010018744A1 (en) * 2008-08-11 2010-02-18 財団法人川村理化学研究所 Ultrahydrophobic powder, structure with ultrahydrophobic surface, and processes for producing these
CN101629066A (en) * 2009-07-28 2010-01-20 上海理工大学 Nanometer composite hydrophobic hard transparent film and preparation method thereof
CN101817980A (en) * 2010-04-22 2010-09-01 复旦大学 Sol-gel preparation method of silica-based superhydrophobic thin films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杨泰生: "乳液法制备超疏水二氧化硅薄膜的研究", 《山东轻工业学院硕士学位论文》, 30 April 2010 (2010-04-30), pages 26 - 33 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103803556A (en) * 2012-11-05 2014-05-21 中国科学院大连化学物理研究所 Organic modified hydrophobic nano silica hollow ball and preparation method thereof
CN103803556B (en) * 2012-11-05 2016-03-23 中国科学院大连化学物理研究所 An organic hydrophobic nano-modified silica hollow spheres and their preparation
CN103232835A (en) * 2013-05-14 2013-08-07 黑龙江大学 Method for preparing silica fiber and silica microsphere composite super-hydrophobic material
CN104947169A (en) * 2015-06-19 2015-09-30 浙江大学 Preparation method of super-hydrophobic silicon dioxide film
CN104947169B (en) * 2015-06-19 2017-05-17 浙江大学 A method for preparing a superhydrophobic silica film

Also Published As

Publication number Publication date Type
CN102453465B (en) 2014-09-03 grant

Similar Documents

Publication Publication Date Title
Kuijk et al. Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio
Liu et al. Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres
Caruso et al. Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres
Tricoli et al. Anti-fogging nanofibrous SiO2 and nanostructured SiO2− TiO2 films made by rapid flame deposition and in situ annealing
Manca et al. Durable superhydrophobic and antireflective surfaces by trimethylsilanized silica nanoparticles-based sol− gel processing
Hartlen et al. Facile preparation of highly monodisperse small silica spheres (15 to> 200 nm) suitable for colloidal templating and formation of ordered arrays
Wang et al. Room temperature synthesis of hollow CdMoO4 microspheres by a surfactant-free aqueous solution route
Chen et al. Fabrication of All‐Water‐Based Self‐Repairing Superhydrophobic Coatings Based on UV‐Responsive Microcapsules
Kim et al. Biomimetic formation of silica thin films by surface-initiated polymerization of 2-(dimethylamino) ethyl methacrylate and silicic acid
Fujiwara et al. Silica hollow spheres with nano-macroholes like diatomaceous earth
Gao et al. Block-copolymer-controlled growth of CaCO3 microrings
Xu et al. Organic− inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability
Synytska et al. Water-repellent textile via decorating fibers with amphiphilic janus particles
Xu et al. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles
CN102343239A (en) Oxidized graphene or graphene/inorganic particle core/shell material and preparation method thereof
Du et al. Facile fabrication of raspberry-like composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings
Lee et al. Formation of highly ordered nanostructures by drying micrometer colloidal droplets
CN101559951A (en) Method for preparing nanoscale silica hollow microspheres
Li et al. In situ assembly of raspberry-and mulberry-like silica nanospheres toward antireflective and antifogging coatings
CN102863823A (en) Preparation method of modified nano silicon dioxide
Meng et al. Preparation of highly monodisperse hybrid silica nanospheres using a one-step emulsion reaction in aqueous solution
Lin et al. Highly transparent superhydrophobic organic–inorganic nanocoating from the aggregation of silica nanoparticles
CN102653652A (en) Nano composite fluorocarbon coating and preparation method thereof
Joung et al. Electrophoretic deposition of unstable colloidal suspensions for superhydrophobic surfaces
Du et al. A self-templated etching route to surface-rough silica nanoparticles for superhydrophobic coatings

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model