CN102434384A - Novel composite material blade of horizontal shaft wind generating set - Google Patents

Novel composite material blade of horizontal shaft wind generating set Download PDF

Info

Publication number
CN102434384A
CN102434384A CN 201110394192 CN201110394192A CN102434384A CN 102434384 A CN102434384 A CN 102434384A CN 201110394192 CN201110394192 CN 201110394192 CN 201110394192 A CN201110394192 A CN 201110394192A CN 102434384 A CN102434384 A CN 102434384A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
blade
structure
pneumatic
bearing
material
Prior art date
Application number
CN 201110394192
Other languages
Chinese (zh)
Inventor
张向增
Original Assignee
张向增
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction, i.e. structural design details
    • F03D1/0675Rotors characterised by their construction, i.e. structural design details of the blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • Y02E10/721Blades or rotors

Abstract

The invention relates to a novel composite material blade of a horizontal shaft wind generating set; a pneumatic function part and a bearing structure part of the blade are designed to be separated from each other respectively, the bearing structure breaks the geometric limit of a pneumatic airfoil shape contour profile and extends out of a pneumatic molded surface, an outer bearing structure and a pneumatic structure part act on together to form a main bearing structure of the blade. A pneumatic airfoil shape can be a combination of a hollow structural section with a constant cross section which is formed by protrusion process. By the design concept, a large blade can be easily realized, and a large sectional type blade can be produced, the power can be ensured, and the flexural rigidity of the blade is increased, the material efficiency is greatly increased and the cost of the blade is reduced.

Description

一种水平轴风力发电机组新型复合材料叶片 One kind of horizontal axis wind turbine blade new composite material

所属技术领域: The art:

[0001] 本发明涉及一种水平轴风力发电机组新型复合材料叶片。 [0001] The present invention relates to novel composite blade for a horizontal axis wind turbine. 叶片的气动功能部分和承载结构部分相互分离设计,承载结构突破了气动翼型轮廓的几何限制而延伸到气动型面外部。 Pneumatic functional moiety and the carrier moiety separated from each other blade design, extends outside the carrier structure to break the aerodynamic profile of the aerodynamic airfoil profile geometry restrictions. 外部承载结构和气动结构部分共同作用,构造出叶片的主承载结构。 External load-bearing structure and co-acting pneumatic moiety, construct a primary load carrying structure of the blade. 这种设计理念形成的叶片,在保障气动功率的前提下,极大地提升了叶片的抗弯刚度并大幅度降低叶片的成本,材料利用效率大幅度提升。 This blade design philosophy formed the premise of the protection of air power, greatly enhancing the bending stiffness of the blade and significantly reduce the cost of the blade, material utilization efficiency improved significantly.

[0002] 本发明属于水平轴风力发电机组复合材料叶片制造领域。 [0002] The present invention belongs to the field of manufacturing composite blades horizontal axis wind turbine. 背景技术: Background technique:

[0003] 现代水平轴风力发电机组复合材料叶片,无论是采用预弯结构还是碳纤维材料增强结构,都极限地优化了叶片而无法再度突破。 Composite blade [0003] Modern horizontal axis wind turbine, using either pre-bent structure or a carbon fiber reinforced structure are optimized to limit the blades can not break through again. 其根本原因就是受制于叶片气动翼型轮廓的几何限制,使得材料的结构性能发挥不出来。 The fundamental reason is subject to the geometrical restrictions aerodynamic blade airfoil profile, such that the structural properties of the material does not come out to play. 具体说叶片在挥舞方向承受最大的气动升力而产生巨大弯矩,但叶片在这个方向的厚度受到翼型几何的限制,从而使得叶片在这个方向的抗弯刚度受到限制,即使采用高模量的碳纤维材料增强,对于大型的叶片来说依然显得刚度不足。 Specifically waving direction of maximum blade to withstand the tremendous bending moment generated aerodynamic lift, but the thickness of the blade in this direction is limited by the geometry of the airfoil, so that the bending stiffness of the blade is limited in this direction, even with a high modulus carbon fiber reinforced materials, for large blades is still inadequate stiffness. 叶片预弯技术只是改变叶片挠曲变形的初始位置,并不能增加叶片自身的抗弯刚度。 Pre-bent blade technique only changes the position of the initial deflection of the blade, the blade itself does not increase the bending stiffness.

[0004] 我们知道,“工”字梁具有最优异的抗弯特性和材料效率。 [0004] We know that the "I" beam has the most excellent bending properties and material efficiency. 从矩形截面悬臂梁的抗弯变形特性分析我们知道,梁的抗弯刚度和梁的高度三次方成比例、和材料模量的一次方成比例。 From the bending deformation characteristics of rectangular section projecting beam we know, is proportional to the cube of the height of the flexural rigidity of the beam and the beam, and the material modulus is proportional to the first power. 所以,增加叶片结构的厚度比选用高模量材料更加有效。 Therefore, increasing the thickness of the blade structure is more effective than the use of high modulus material. 因此,提升叶片抗弯刚度的方法就在于如何保障气动功能的前提下加大叶片的承力结构的厚度。 Therefore, methods to enhance the bending stiffness of the blade lies in increasing the thickness of the load-bearing structure of the blade under the premise of how to protect the pneumatic functions. 答案就是突破叶片气动翼型厚度的限制,让承载结构相对于气动翼型外置。 The answer is to break out aerodynamic airfoil blade thickness, so that load-bearing structure with respect to the external aerodynamic profile.

[0005] 风力发电机组使用的叶片,在叶片的叶尖处有最大来流速度,可以达到65m/s的水平,相当于1/5音速。 [0005] The use of wind turbine blades, maximum flow velocity at the tip of the blade, can reach the level of 65m / s, equivalent to 1/5 of the speed of sound. 这在空气动力学中属于低速气动范围,这就使得叶片承载结构相对于气动翼型外置成为可能。 This belongs to the low-speed range in aerodynamic aerodynamics, which makes the structure of the blade carrier with respect to possible external aerodynamic profile.

发明内容: SUMMARY:

[0006] 本发明的目的是实现一种轻质的、廉价的、可靠的水平轴风力发电机组大型叶片的设计制造技术。 [0006] The object of the present invention is to achieve a lightweight, inexpensive, and reliable blade large horizontal axis wind turbine design and manufacturing technology.

[0007] 所谓大直径叶轮和大型叶片,可以理解为直径在80m以上、叶片长度40m以上的叶轮。 [0007] The so-called large diameter of the impeller blades and large, to be understood that a diameter of more than 80m, 40m or more impeller blade length.

[0008] 本发明的思路就是突破叶片气动翼型厚度的限制,让承载结构外置。 [0008] The idea of ​​the present invention is to break through the limitations of the thickness of the blade aerodynamic profile, so that the external load-bearing structure.

[0009] 类似一般梁的弯曲变形原理,叶片纵向弯曲变形时,位于弯曲形心轴一侧的材料承受压缩应力,而另一侧的材料承受拉伸应力。 Bending deformation theory [0009] beams of similar general, when the buckling deformation of the blade, located on one side of the material subjected to curved mandrel compression stress, while the other side of the material subjected to tensile stress. 对于不同材料和结构形状,承受压缩和拉伸的能力不同。 For structural shapes and different materials, different abilities to withstand compression and tension. 本专利设计为气动翼型侧承受压缩应力,而外置的纵向梁承受拉伸应力,在提升抗弯刚度的同时,充分利用翼型几何尺寸来提升叶片的弯曲稳定性。 This patent is designed to withstand compressive stress aerodynamic profile side, while the external longitudinal beam subjected to tensile stress, while enhancing the flexural rigidity of the full use of the airfoil geometry to enhance the stability of the curved blade. 对于气动翼型部分, 自然可以采用拉挤工艺制造定截面的型材来组合气动翼型。 For aerodynamic airfoil portion, it can naturally be employed for producing a given cross-sectional profile of the pultrusion process combined aerodynamic profile. 理论上从叶根到叶尖需要叶片翼型的弦长不同,本发明的方案是采用分段组合近似处理方法,即由拉挤工艺成型的、不同弦长和厚度的恒定横截面叶片片段组合而成整个叶片的气动翼型。 From root to tip theoretically require different blade airfoil chord, the present invention is the use of a combination of piecewise approximation method, i.e., by a pultrusion molding, constant cross-section chord length and different thickness combinations of blade segments from the aerodynamic profile of the entire blade. 对于外置的纵向梁部分,纵向梁承受拉伸应力,单向纤维增强树脂复合材料是最理想的选择,由于不存在屈曲稳定性问题,截面尺寸可以很小,为减小风阻和风扰动,提升叶片总体气动效率,纵向梁的几何形状也需要有气动特性,采用轴对称型面的扁平形状为宜。 For external longitudinal beam portion, subjected to tensile stress in the longitudinal beams, a unidirectional fiber-reinforced resin composite material is the best choice, since the buckling problems with stability, cross-sectional dimensions can be small, to reduce wind resistance and wind disturbances, to enhance overall aerodynamic efficiency of the blade, the geometry of the longitudinal beams also need to have the aerodynamic characteristics, axisymmetric shape using a flat profile is appropriate. 而且,纵向梁采用碳纤维复合材料更为合适。 Further, the longitudinal beams of the carbon fiber composite material is more suitable.

[0010] 当然,位于外置纵向梁和气动翼型之间的连结结构也要有气动特性,减小风阻和风扰动。 [0010] Of course, the external longitudinal coupling structure located between the beam and the aerodynamic characteristics also have aerodynamic profile, reducing drag and wind disturbance. 可以是三明治泡沫夹心结构。 It can be a sandwich foam sandwich structure.

[0011] 每支叶片必须能够实现独立变桨控制,这是现代水平轴风机必须具备的能力。 [0011] Each blade must be able to independently control the pitch, which is the ability of modern wind turbine must have a horizontal axis. 本发明所述的叶片的变桨轴,和气动翼型形成的气动中心轴线基本重合,这样,叶片回转变桨时,能够完全实现叶片不同位置的气动攻角调节。 The pitch axis of the blade according to the present invention, the aerodynamic profile and the aerodynamic center axis substantially coincides formed, so that, while the blade pitch transition back to fully implement a different aerodynamic angle of attack of blade adjustment positions.

[0012] 下面结合附图阐述本发明的具体实施例。 [0012] The following figures set forth particular embodiments of the present invention binds.

附图说明: BRIEF DESCRIPTION OF:

[0013] 图1是一个叶片的总体结构示意图; [0013] FIG. 1 is an overall schematic view of the blade structure;

[0014] 图2是一个叶片中部截面剖视图; [0014] FIG. 2 is a cross-sectional view of a central section of the blade;

[0015] 图1中,1-气动翼型、2-外置纵向梁、3-立撑板、4-斜拉筋、5-叶尖、6-叶根连接段、FL-分布升力、PXl-变桨轴线; In [0015] FIG. 1, the aerodynamic profile 1-, 2- external longitudinal beams, vertical gusset 3-, 4- diagonal bar, tip 5-, 6- root connection section, FL-lift distribution, PXl - pitch axis;

[0016] 图2中,1-气动翼型、2-外置纵向梁、3-立撑板、7-前缘、8_后缘、9_腹板、Xl-翼型弦线、X2-外置纵向梁弦线、X3-抗弯截面形心轴线、PS-气动压力面、SS-气动吸力面、 Lc-净空距离、T-翼型厚度。 In [0016] FIG. 2, the airfoil aerodynamic 1-, 2- external longitudinal beams, vertical gusset 3-, 7- leading edge, trailing edge 8_, 9_ web, XL- the airfoil chord line, X2- external longitudinal beams string, X3- bending cross section centroid axis, PS- pneumatic pressure surface, SS- pneumatic suction surface, Lc- clearance distance, T- airfoil thickness.

[0017] 在图1中,叶片主体承载结构由气动翼型1部分和外置纵向梁2两部分构成。 [0017] In FIG. 1, the blade body 2 is composed of two load-bearing structure of the airfoil section aerodynamic part 1 and external longitudinal beams. 二者之间靠连结结构结合在一起,成为一个能够有效抵抗叶片弯曲变形的承载结构。 By the coupling between the two structures together, be able to effectively counter a bending deformation of the blade support structure. 连结结构可以是由立撑板3和斜拉筋4构成的网格结构。 Coupling structure may be formed of a mesh structure 3 and the plate 4 is supported by diagonal bar stand.

[0018] 从图1可以看出,外置纵向梁2突破了气动翼型1的几何轮廓的限制,放置在气动翼型1的外面。 [0018] As can be seen from Figure 1, two external longitudinal beams break through the limitation of the geometric profile of the aerodynamic profile 1, placed outside of an aerodynamic profile. 气动分布升力FL沿叶片纵向分布在气动翼型1的外表面。 FL aerodynamic lift distribution along the blade longitudinal distribution of the outer surface of an aerodynamic profile.

[0019] 当然,叶片结构尚且必须有叶尖5和叶根连接段6附属部分。 [0019] Of course, the blade structure have yet to be connected to the tip 5 and a root section 6 appendage. 叶根连接段6完成连接轮毂功能,并能够承载叶根巨大的弯矩载荷。 Root connecting section 6 function to complete the connection hub, the blade root and is capable of carrying a great moment load.

[0020] 叶片的变桨轴线和气动翼型形成的气动中心轴线基本重合,在气动翼型1为预弯型叶片时二者主要是在叶根段重合。 [0020] The aerodynamic center axis of the blade pitch axis and formed substantially coincides with aerodynamic profile, both mainly in the root segment coincides with the aerodynamic profile 1 when the pre-curved blades.

[0021] 沿一支叶片纵向长度上,气动翼型1至少含有一段恒定横截面的叶片片段,由多段叶片片段组成的叶片,每段叶片片段都具有特定弦长的恒定的横截面,对于每段恒定横截面的叶片片段,从叶片的叶根向叶尖方向,每个微分横截面绕变桨中心轴连续扭转一定角度,这个角度的大小视气动攻角设计确定。 [0021] along the longitudinal length of a blade, comprising at least one section of the aerodynamic profile of constant cross section blade segments, the blade segments by a plurality of blade segments, each segment has a blade chord length specified constant cross-section, for each section of constant cross section blade segments, the direction of the tip, the differential cross section of each pitch around the central axis from the root of the blade is continuously twisted a certain angle, depending on the size of the aerodynamic angle of attack designed to determine the angle. 图1示意出由三段定截面气动翼型组成的叶片形式。 Figure 1 schematically by the three segments form a blade aerodynamic profile consisting of constant cross section. 在图1的右侧示意出在ABC三处不同位置采用了不同弦长的恒定的横截面气动翼型,其规律是从叶根到叶尖弦长减小、叶片厚度也减小。 1 is a schematic showing the right side of FIG using different chord length constant cross-section aerodynamic profile at three different positions ABC, which rule is from root to tip chord reduced blade thickness is also reduced. 这是考虑叶片结构稳定性的需要。 This is the need to consider the structural stability of the blade.

[0022] 当然,叶片的气动翼型1这部分完全可以是弦长和厚度连续变化的形式,即按照叶素理论计算获得的不同半径位置处不同叶片弦长的叶片几何外型,仍然符合从叶根到叶尖弦长减小的规律。 [0022] Of course, a part of this aerodynamic profile of the blade chord length and can be in the form of continuously varying thickness, different blade chord at different radial positions that is obtained by calculation according to the geometric shape leaf blade element theory, still fulfill the root to tip chord law reduced. 气动翼型1要符合特定的气动扭角。 1 to meet the specific aerodynamic profile aerodynamic twist angle. [0023] 气动翼型1采用恒定横截面分段组合技术方案可以使用由拉挤成型工艺制造的叶片型材来组合,实现自动化连续生产,而弦长和厚度连续变化的叶片则需要用分瓣的模具间歇式制造。 [0023] The aerodynamic profile with a constant cross-section of a segment may be used in combination aspect of blade profile is manufactured by a pultrusion process combined, automated continuous production, while continuously varying thickness and chord length of the blade needed to split mold batch production. 前者具有更高的可靠性和更低的制造成本,技术经济性优势明显。 The former manufacturing costs with higher reliability and lower, obvious technical and economic advantages.

[0024] 关于立撑板3和斜拉筋4也有较多的技术讲究。 [0024] For the upright support plate 3 and the diagonal bar 4 has more technical stress. 立撑板3也应该有合适的气动外形,最大限度减小空气阻力和减少对气流的扰动。 Upright support plate 3 should have a proper aerodynamic shape to minimize air resistance and to reduce the disturbance to the air flow. 立撑板3可以采用泡沫夹心的三明治结构。 3 vertical gusset sandwich foam sandwich can be employed. 从叶根到叶尖,立撑板3的高度减小,厚度减小。 From root to tip, the height of upright support plate 3 is reduced, thickness reduction. 而斜拉筋4则完全是单向纤维增强树脂复合材料。 The diagonal bar 4 is completely unidirectional fiber-reinforced resin composite material. 因为叶片气动翼型上产生的分布升力FL载荷是分布在叶片的整个长度上,所以不同位置的斜拉筋4可以根据分布载荷的大小来分配合适的横截面积。 FL load distribution because the lift generated on the blades aerodynamic profile is distributed over the entire length of the blade, so that different positions of the oblique tie bars 4 may be allocated according to the size of the cross-sectional area suitable distribution of the load.

[0025] 因为叶尖的气流速度最高,为降低阻力和噪声,外置纵向梁2不一定在叶尖位置开始生成,例如,可以在距离叶尖1/5叶片长度的位置开始、直到叶根部位结束。 [0025] Since the maximum tip velocity gas stream, to reduce resistance and noise, not necessarily external longitudinal beam 2 starts to generate the tip position, for example, start at a position 1/5 of the blade length from the tip until the blade root the site is completed.

[0026] 外置纵向梁2和斜拉筋4可以一体成型制造。 [0026] External longitudinal beams 2 and the diagonal bar 4 may be formed integrally manufactured. 有一种实施方案就是,每个斜拉筋4的连续纤维从气动翼型的表面起始、跨越立撑板3后一直延伸到叶片的根部。 One embodiment is that continuous fibers each diagonal bar 4 starting from the surface of the aerodynamic airfoil, across the vertical gusset extends up to the blade root 3. 这样,所有斜拉筋4延伸纤维束集合成外置纵向梁2。 Thus, all diagonal bar extending fiber bundles 4 Synthesis external longitudinal beam 2. 其结果就是,外置纵向梁2从叶尖到叶根是逐步截面增加的。 As a result, the external longitudinal beam 2 from the tip to the blade root cross-section is gradually increased. 假设叶片长度45m,每:¾ 一个立撑板3和斜拉筋4,每个纤维复合材料斜拉筋4的横截面积为5平方厘米,可承受50吨以上的拉力,那么,外置纵向梁2从叶尖到叶根每递进:3m的位置其截面积增加5平方厘米,依次是5平方厘米、10平方厘米、15平方厘 Suppose the blade length 45m, each: ¾ upright support plate 3 and a diagonal bar 4, each diagonal bar cross sectional area of ​​the fiber composite material 4 of 5 cm2, can withstand tensile force of 50 tons, then the external longitudinal each beam 2 from the tip to the blade root progressive: 3m position increased cross-sectional area 5 cm2, followed by 5 cm2, 10 cm2, 15 square centimeter

米..........75平方厘米。 M .......... 75 cm2. 外置纵向梁2叶尖位置截面相当于50mmX 10mm,叶根位置截面 2 tip position of the longitudinal beams corresponding to the external cross-sectional 50mmX 10mm, the position of the blade root cross-section

相当于300mmX 25mm。 Equivalent 300mmX 25mm.

[0027] 图2示意出叶片中部某位置的一个截面的剖视图,利用该图来分析该截面的抗弯曲特性,图中给出抗弯截面形心轴线X3,在X3轴左侧,外置纵向梁2承受拉伸应力,在X3轴右侧,气动翼型1承受压缩应力。 [0027] Fig 2 a schematic cross-sectional view illustrating a cross section of a location in the middle of the blade, by using the figure of the cross-sectional analysis of anti-bending properties, bending figure shows a cross-sectional centroid axis X3, X3 in the left-hand shaft, the external longitudinal beam 2 subjected to tensile stress, the X3 axis in the right side, the aerodynamic profile 1 is subjected to compressive stress. 由于气动翼型1是中空的结构,外包络线有较大的几何面积,因此,抵御纵向压缩稳定性能力较强;而外置纵向梁2承载拉伸应力,所以,截面积可以较小,可以是实心的结构,比如上述范例的变截面实心结构。 Due to the aerodynamic profile is a hollow structure, the outer envelope has a larger geometric area, therefore, a strong stability against longitudinal compression capacity; the external longitudinal beam 2 carries the tensile stress, therefore, can be smaller cross-sectional area , it may be a solid structure, a solid structure such variable cross-section for the above example. 考虑到材料的结构效率,气动翼型1外侧的气动吸力面SS的壁厚远大于内侧的气动压力面PS的壁厚。 Considering the efficiency of the structure of the material, the thickness of pneumatic suction surface SS 1 is much greater than the wall thickness of the outer side of the aerodynamic profile of the aerodynamic pressure surface PS inside. 考虑到叶片摆振方向的弯曲刚度要求,在该摆振方向,承力结构无法突破气动翼型的限制,该发明的理念不适用在摆振方向,所以,在气动翼型1的前缘7和后缘8都分配有足量的纵向纤维增强。 Taking into account the requirements of blade bending stiffness direction shimmy, shimmy in the direction of the load-bearing structure can not break through the restrictions of the aerodynamic profile, the concept of the invention does not apply shimmy direction, so that the leading edge of the aerodynamic profile 1 7 8 and the trailing edge is assigned a sufficient amount of longitudinal fiber-reinforced. 为了提升屈曲稳定性,叶片气动翼型1内部有腹板9连结气动翼型1的气动吸力面SS和气动压力面PS。 In order to enhance the stability of buckling, blade aerodynamic airfoil web 9 connecting an internal pneumatic aerodynamic airfoil suction surface SS and a pneumatic pressure of the PS surface. 数字举例来形容和理解这个概念,例如叶片某一处截面,弦长为1.6m的气动翼型1,外侧气动吸力面SS壁厚3mm,内侧气动压力面PS壁厚1. 5mm,前缘7内侧补强增加截面积10平方厘米,后缘8内侧补强增加截面积20平方厘米,腹板9厚度2mm。 Examples figures to describe and understand the concept, for example, at a certain section of the blade, the chord length of 1.6m aerodynamic profile 1, the outer surface of the pneumatic suction SS thickness 3mm, the wall thickness of the inner pneumatic pressure surface PS 1. 5mm, the leading edge 7 increasing the cross sectional area of ​​the inner reinforcement 10 cm2, the trailing edge 8 increasing cross sectional area of ​​the inner reinforcement 20 cm2, a thickness of the webs 9 2mm. 当然,在叶片的气动吸力面SS、气动压力面PS和腹板9上,肯定需要合理布局和设计有纵向加强筋,加强筋可以是泡沫夹心结构。 Of course, the pneumatic suction surface SS of the blade, aerodynamic pressure surface PS and a web 9 will certainly require rational distribution and design of the longitudinal ribs, rib structure may be a foam sandwich.

[0028] 对于本发明涉及的叶片,如果想采用碳纤维材料来提升整个叶片的抗弯刚度,那么,也仅仅是外置纵向梁2使用碳纤维增强树脂复合材料。 [0028] The present invention relates to the blade, if you want to use the carbon fiber material to enhance the flexural rigidity of the entire blade, then, is only an external longitudinal beams 2 using the carbon fiber reinforced resin composite material. 碳纤维虽然模量比玻璃纤维高出4倍以上,但是断裂伸长率很低,叶片变形的柔度有限,如果想采用高强S型玻璃纤维来提升整个叶片的柔度,那么,也仅仅是外置纵向梁2使用高强S型玻璃纤维增强树脂复合材料。 Although the modulus of the carbon fibers of glass fibers than four times higher, but the elongation at break is low, the limited flexibility of the deformation of the vane, if S wants high-strength glass fiber to improve flexibility of the entire blade, then, it is only the outer opposing longitudinal beams 2 using S-type high-strength glass fiber reinforced resin composite material.

[0029] 图2中,围绕弦线Xl的气动翼型1必然满足气动特性要求。 In [0029] FIG. 2, the string around the aerodynamic profile 1 Xl necessarily meet the requirements of aerodynamic characteristics. 而围绕弦线X2的外置纵向梁2也要具备气动型面,最大限度减小空气阻力和减少对气流的扰动。 X2 string around the longitudinal beam 2 is also provided with an external aerodynamic profile, minimizing air resistance and reduce the disturbance of the airflow. 外置纵向梁(2)可以是具有对称气动型面结构的、从叶根到叶尖横截面积减小的薄板。 External longitudinal beams (2) may be reduced from the root to tip cross-sectional area has a symmetrical aerodynamic profile sheet structure. 而且,外置纵向梁2和气动翼型1之间的净空距离Lc最好要大于气动翼型1的翼型厚度T,这样才能有效减少对气流的扰动。 Moreover, external air distance between the longitudinal beams 2 and the aerodynamic profile 1 Lc is preferably larger than the aerodynamic profile of the airfoil thickness T 1, ie, so as to effectively reduce the disturbance of the airflow. 外置纵向梁2和气动翼型1之间的净空距离越小,叶片抗弯刚度越小, 气动效率越差。 And the clearance distance between the external longitudinal beam the aerodynamic profile 1, the smaller the bending rigidity of the blade, aerodynamic efficiency worse.

[0030] 叶片的升力特性变差甚至失速,通常是由于气动吸力面SS侧的气流出现分离的原因。 [0030] deteriorated even lift properties of the blade stall, the reason is usually because the separated gas stream SS side air suction surface occurs. 由于外置纵向梁2位于气动翼型1的气动压力面PS侧而不是气动吸力面SS侧,而且保持了净空距离Lc,外置纵向梁2的存在虽然会引起局部气流扰动,但对叶片气动升力的影响有限。 Since the longitudinal beams 2 located external aerodynamic profile of the aerodynamic pressure surface PS 1 aerodynamic suction side than the side surface SS, while maintaining a distance Lc of clearance, the presence of external longitudinal beam 2, although it will cause local flow disturbances, but aerodynamic blade limited impact lift.

[0031] 通过实施例分析知道,传统叶片在承受气动力产生弯曲时,总是气动吸力面SS侧承受压缩应力而气动压力面PS侧承受拉伸应力,弯曲截面的高度为翼型厚度T。 [0031] Analysis by the known embodiment, when subjected to conventional blade aerodynamic bending, pneumatic suction surface SS is always subjected to compressive stress side of the pneumatic pressure surface side of the PS subjected to tensile stress, bending cross section thickness T. The height of the airfoil 而本发明所述叶片,大体上是气动翼型1的整个截面承受压缩应力而外置纵向梁2承受拉伸应力,弯曲截面的高度为Lc+T。 And the blade of the present invention, substantially the entire cross section of the aerodynamic profile 1 is subjected to an external compressive stress to tensile stress in the longitudinal beams 2, the curved section height Lc + T. 粗略测算,如果Lc+T = 2T,那么抗弯刚度会提升23倍。 Rough estimates, if Lc + T = 2T, then the bending stiffness will increase 23-fold. 换句话说, 如果保持抗弯刚度不变,那么抗弯截面可以减小到原来的1/8 ;如果保持材料用量不变使抗弯刚度提升23倍,意味着叶片可以至少延长一倍,轻易做到大型叶片的制造。 In other words, if the bending stiffness remains constant, the bending section may be reduced to 1/8 of the original; if remains constant so that the amount of material to enhance the flexural rigidity 23 times, means that the blades can be extended at least double, easily do the manufacture of large blades. 可见,材料和成本的节约就体现在这里。 Be seen, the material and cost savings is reflected here.

[0032] 本发明涉及的叶片,显然,在气动翼型1的分段连接处完全可以自然断开,采用法兰螺栓结构连接组合。 [0032] The present invention relates to the blade, obviously, can naturally disconnected segments connected at the aerodynamic profile 1, the use of a combination of structural connection flange bolts. 这样,整个叶片可以分段成型和远距离运输,在风机安装现场再组装连接在一起,减小叶片运输的长度、难度和成本。 Thus, the entire blade may be segmented and molded telematic, the installation site and then assembled together in the turbine, reducing the length, difficulty, and cost of transport of blades.

[0033] 本发明采用让叶片承载结构相对于气动翼型外置的技术构思,虽然在气动效率方面有所损失,但是可以轻易地延长叶片,实现大直径的叶轮和显著增加扫风面积,保证了捕风功率,实现了一种低成本、高可靠、轻巧型大尺寸水平轴风力发电机组叶片。 [0033] The present invention adopts the structure so that the blade carrier with respect to the technical concept of external aerodynamic profile, although some loss in terms of aerodynamic efficiency, but the blade can be easily extended to achieve a large diameter impeller and a significant increase in swept area, to ensure catch the wind power, to achieve a low cost, high reliability, lightweight large horizontal axis wind turbine blade.

Claims (8)

  1. 1. 一种水平轴风力发电机组新型复合材料叶片,具有独立的气动翼型和承载结构,其特征在于:叶片有一个位于气动翼型(1)外部的、提升叶片纵向抗弯刚度的外置纵向梁⑵。 A new composite blade horizontal axis wind turbine, aerodynamic profile and having a separate carrying structure, wherein: the blade aerodynamic profile there is located a (1) external longitudinal bending stiffness of the vane external longitudinal beams ⑵.
  2. 2.根据权利要求1所述的复合材料叶片,其特征在于:外置纵向梁(2)位于气动翼型(1)的气动压力面(PS)侧。 The composite blade according to claim 1, wherein: longitudinal external beams (2) located at the aerodynamic profile (1) pneumatic pressure surface (PS) side.
  3. 3.根据权利要求1所述的复合材料叶片,其特征在于:沿叶片纵向长度上,气动翼型(1)至少含有一段恒定横截面的叶片片段,由多段叶片片段组成的叶片,每段叶片片段都具有特定弦长的恒定的横截面,对于每段恒定横截面的叶片片段,从叶片的叶根向叶尖方向, 每个微分横截面绕变桨中心轴连续扭转一定角度。 3. The composite blade according to claim 1, wherein: along a longitudinal length of the blade, the aerodynamic profile (1) comprising at least a section of constant cross section blade segments, the blade segments by a plurality of blade segments, each blade fragment has a constant cross-section of a particular chord length, for each piece of constant cross section of blade segments, the direction of the tip, the differential cross section of each pitch around the central axis from the root of the blade angle is continuously twisted.
  4. 4.根据权利要求1所述的复合材料叶片,其特征在于:叶片气动翼型(1)由按照叶素理论计算获得的不同半径位置有不同弦长和厚度的几何形状,从叶根到叶尖叶片气动翼型(1)的弦长和厚度连续递减变化。 4. The composite blade according to claim 1, wherein: the blade aerodynamic profile (1) obtained by the calculation according blade element theory different geometries have different radial positions and thicknesses of the chord length, from the root to the leaf sharp blade aerodynamic profile (1) is continuously decreasing chord length and thickness variations.
  5. 5.根据权利要求1所述的复合材料叶片,其特征在于:外置纵向梁(¾是具有对称气动型面结构的、从叶根到叶尖横截面积逐步减小的薄板。 The composite blade according to claim 1, wherein: longitudinal external beams (¾ is from root to tip of the cross-sectional area gradually reduced aerodynamic profile sheet having a symmetrical structure.
  6. 6.根据权利要求1或5所述的复合材料叶片,其特征在于:抵御弯曲变形的外置纵向梁O)为碳纤维增强树脂复合材料。 6. A blade according to claim 1 or composite material according to claim 5, wherein: the bending deformation against external longitudinal beams O) reinforced resin composite material is a carbon fiber.
  7. 7.根据权利要求1所述的复合材料叶片,其特征在于:叶片的变桨轴线和气动翼型(1) 形成的气动中心轴线基本重合,在气动翼型(1)为预弯型叶片时二者主要是在叶根段重I=IO Pneumatic central axis of the blade pitch axis and the aerodynamic profile (1) is formed substantially coincident, the aerodynamic profile (1) is pre-curved blades: The composite blade according to claim 1, characterized in that both the main emphasis is in the root segment I = IO
  8. 8.根据权利要求1所述的复合材料叶片,其特征在于:在气动翼型(1)的分段连接处自然断开,采用法兰螺栓结构连接组合。 8. The composite blade according to claim 1, wherein: NATURAL disconnected aerodynamic profile (1) is connected to the segment, using a combination of structural connection flange bolts.
CN 201110394192 2011-11-11 2011-11-22 Novel composite material blade of horizontal shaft wind generating set CN102434384A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201120446769.8 2011-11-11
CN201120446769 2011-11-11
CN 201110394192 CN102434384A (en) 2011-11-11 2011-11-22 Novel composite material blade of horizontal shaft wind generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110394192 CN102434384A (en) 2011-11-11 2011-11-22 Novel composite material blade of horizontal shaft wind generating set

Publications (1)

Publication Number Publication Date
CN102434384A true true CN102434384A (en) 2012-05-02

Family

ID=45982667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110394192 CN102434384A (en) 2011-11-11 2011-11-22 Novel composite material blade of horizontal shaft wind generating set

Country Status (2)

Country Link
CN (1) CN102434384A (en)
WO (1) WO2013067916A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004156A1 (en) * 2011-07-04 2013-01-10 Zhang Xiangzeng Blade with constant cross section, forming method thereof, and horizontal axis wind turbine impeller comprised of the same
WO2013067916A1 (en) * 2011-11-11 2013-05-16 Zhang Xiangzeng New blade of composite material for horizontal-axis wind power generator
CN103470445A (en) * 2013-10-09 2013-12-25 南京风电科技有限公司 Device for increasing rigidity of blades of wind turbine generator
CN103726710A (en) * 2013-12-31 2014-04-16 国家电网公司 Lattice type derrick of electric transmission line
CN105649868A (en) * 2016-01-22 2016-06-08 清华大学 Large wind power blade face outside enhancing device based on winged knife pull rod structure
WO2017076096A1 (en) * 2015-11-03 2017-05-11 周方 Reinforced blade for wind-driven generator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85202949U (en) * 1986-07-19 1986-05-07 张志明 Linear high speed segmentation horizontal axis wind-mill generator blade
JPS61167175A (en) * 1985-01-18 1986-07-28 Mitsubishi Heavy Ind Ltd Propeller for windmill
CA2425447A1 (en) * 2003-04-17 2004-10-17 Michel J. L. Auclair Wind turbine blade unit
WO2009146810A2 (en) * 2008-06-03 2009-12-10 Siegfried Mickeler Rotor blade for a wind power plant and wind power plant
CN102046965A (en) * 2008-04-02 2011-05-04 Lm玻璃纤维制品有限公司 A wind turbine blade with an auxiliary airfoil
US20110142681A1 (en) * 2010-07-21 2011-06-16 General Electric Company Rotor blade assembly
US20110142676A1 (en) * 2010-11-16 2011-06-16 General Electric Company Rotor blade assembly having an auxiliary blade
CN102105679A (en) * 2008-05-27 2011-06-22 文德泰克索沙文公司 Blade for a rotor of a wind or water turbine
WO2011134985A1 (en) * 2010-04-27 2011-11-03 Lm Glasfiber A/S Wind turbine blade provided with a slat assembly
CN102235297A (en) * 2010-04-28 2011-11-09 通用电气公司 Wind turbine with integrated design and controlling method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652565B (en) * 2007-03-14 2011-12-14 维达尔·霍尔莫伊 The wind turbine rotor
CN101418774B (en) * 2007-10-22 2011-05-25 黄金伦 Weight reduced three-blade wind wheel
CN201284721Y (en) * 2008-10-27 2009-08-05 阳江市新力工业有限公司 Thin-slab wind energy blade with rammed stiffening ribs
CN201358881Y (en) * 2009-02-19 2009-12-09 韩建景;李永泉;欧业墅;韩 洁;林韧锋;卢俊华 Horizontal shaft aero-generator wind wheel
US7854594B2 (en) * 2009-04-28 2010-12-21 General Electric Company Segmented wind turbine blade
CN201420645Y (en) * 2009-06-03 2010-03-10 中船重工(重庆)海装风电设备有限公司 Sectionalized vane of wind driven generator
CN101906251B (en) * 2009-06-04 2013-06-12 上海杰事杰新材料(集团)股份有限公司 Composite material for wind power generator blade and preparation method thereof
KR101092384B1 (en) * 2009-06-25 2011-12-12 이달은 Rotor blade for a wind power plant
CN101943106A (en) * 2009-07-05 2011-01-12 宿迁雅臣工程尼龙有限公司 High-molecular composite blade for 500KW-below three-blade wind turbine
WO2011053177A1 (en) * 2009-10-28 2011-05-05 Dan Andreescu Procedure and constructive solution for twin blades used in large diameter wind turbines
CN201593478U (en) * 2009-12-28 2010-09-29 浙江恒通机械有限公司 Blade of butt joint type wind turbine
CN201865836U (en) * 2010-12-06 2011-06-15 济南轨道交通装备有限责任公司 Sectioned-assembly type fan blade
CN102305174B (en) * 2011-07-04 2014-07-16 张向增 Blade with constant cross section, forming method and horizontal axis wind turbine impeller comprising same
CN102434384A (en) * 2011-11-11 2012-05-02 张向增 Novel composite material blade of horizontal shaft wind generating set

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167175A (en) * 1985-01-18 1986-07-28 Mitsubishi Heavy Ind Ltd Propeller for windmill
CN85202949U (en) * 1986-07-19 1986-05-07 张志明 Linear high speed segmentation horizontal axis wind-mill generator blade
CA2425447A1 (en) * 2003-04-17 2004-10-17 Michel J. L. Auclair Wind turbine blade unit
CN102046965A (en) * 2008-04-02 2011-05-04 Lm玻璃纤维制品有限公司 A wind turbine blade with an auxiliary airfoil
CN102105679A (en) * 2008-05-27 2011-06-22 文德泰克索沙文公司 Blade for a rotor of a wind or water turbine
WO2009146810A2 (en) * 2008-06-03 2009-12-10 Siegfried Mickeler Rotor blade for a wind power plant and wind power plant
WO2011134985A1 (en) * 2010-04-27 2011-11-03 Lm Glasfiber A/S Wind turbine blade provided with a slat assembly
CN102235297A (en) * 2010-04-28 2011-11-09 通用电气公司 Wind turbine with integrated design and controlling method
US20110142681A1 (en) * 2010-07-21 2011-06-16 General Electric Company Rotor blade assembly
US20110142676A1 (en) * 2010-11-16 2011-06-16 General Electric Company Rotor blade assembly having an auxiliary blade

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004156A1 (en) * 2011-07-04 2013-01-10 Zhang Xiangzeng Blade with constant cross section, forming method thereof, and horizontal axis wind turbine impeller comprised of the same
WO2013067916A1 (en) * 2011-11-11 2013-05-16 Zhang Xiangzeng New blade of composite material for horizontal-axis wind power generator
CN103470445A (en) * 2013-10-09 2013-12-25 南京风电科技有限公司 Device for increasing rigidity of blades of wind turbine generator
CN103726710A (en) * 2013-12-31 2014-04-16 国家电网公司 Lattice type derrick of electric transmission line
WO2015101272A1 (en) * 2013-12-31 2015-07-09 国家电网公司 Power transmission line lattice holding pole
WO2017076096A1 (en) * 2015-11-03 2017-05-11 周方 Reinforced blade for wind-driven generator
CN105649868A (en) * 2016-01-22 2016-06-08 清华大学 Large wind power blade face outside enhancing device based on winged knife pull rod structure

Also Published As

Publication number Publication date Type
WO2013067916A1 (en) 2013-05-16 application

Similar Documents

Publication Publication Date Title
US6830436B2 (en) Wind turbine provided with nacelle
US20110142666A1 (en) Noise reducer for rotor blade in wind turbine
WO2003078833A1 (en) Wind turbine blade with carbon fibre tip
US20100135815A1 (en) Spar cap for wind turbine blades
WO2003078832A1 (en) Transition zone in wind turbine blade
EP2107235A1 (en) A wind turbine blade with an auxiliary airfoil
US20090324416A1 (en) Wind turbine blades with multiple curvatures
US20100296941A1 (en) Optimization of premium fiber material usage in wind turbine spars
WO2003093672A1 (en) Rotor blade for wind energy turbines
US20100135818A1 (en) Systems and methods of assembling a rotor blade for use in a wind turbine
US8142164B2 (en) Rotor blade for use with a wind turbine and method for assembling rotor blade
US20120195764A1 (en) Wind turbine blade with plurality of longitudinally extending flow guiding device parts
WO2012007058A1 (en) Wind turbine blade with narrow shoulder and relatively thick airfoil profiles
JP2006207475A (en) Straight blade type windmill and straight blade for windmill
US20110052408A1 (en) Swept blades utilizing asymmetric double biased fabrics
CN203559612U (en) Composite material power transmission tower
Zuteck Adaptive blade concept assessment: curved planform induced twist investigation
US20100143142A1 (en) Sparcap system for wind turbine rotor blade and method of fabricating wind turbine rotor blade
CN102141001A (en) Wind machine blade and method for designing same
GB2462307A (en) Extension portion for wind turbine blade
CN201420645Y (en) Sectionalized vane of wind driven generator
US20140140856A1 (en) Wind turbine blade comprising vortex generators
US20120134815A1 (en) Blade extension for rotor blade in wind turbine
US20120134837A1 (en) Noise reducer for rotor blade in wind turbine
US20120141282A1 (en) Wind-turbine rotor blade

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C20 Patent right or utility model deemed to be abandoned or is abandoned