CN102410844B - Method and device for correcting non-uniformity of image of high-dynamic star sensor - Google Patents
Method and device for correcting non-uniformity of image of high-dynamic star sensor Download PDFInfo
- Publication number
- CN102410844B CN102410844B CN2011102312729A CN201110231272A CN102410844B CN 102410844 B CN102410844 B CN 102410844B CN 2011102312729 A CN2011102312729 A CN 2011102312729A CN 201110231272 A CN201110231272 A CN 201110231272A CN 102410844 B CN102410844 B CN 102410844B
- Authority
- CN
- China
- Prior art keywords
- gain
- correction
- response
- image
- integration time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 88
- 238000012937 correction Methods 0.000 claims abstract description 551
- 230000010354 integration Effects 0.000 claims abstract description 279
- 230000009466 transformation Effects 0.000 claims abstract description 125
- 238000003384 imaging method Methods 0.000 claims abstract description 60
- 238000012545 processing Methods 0.000 claims description 46
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 241001270131 Agaricus moelleri Species 0.000 claims 6
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 abstract description 59
- 238000005259 measurement Methods 0.000 abstract description 9
- 238000001514 detection method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
- Image Processing (AREA)
Abstract
本发明公开了一种高动态星敏感器图像非均匀校正方法,方法包括:确定待校正星图与两个定标图像的增益、和/或积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正、和/或积分时间条件变换及积分时间响应非均匀性校正;采用校正后的定标图像对所述待校正星图进行非均匀性校正。本发明同时公开了一种高动态星敏感器图像非均匀校正装置,采用本发明的方法及装置,能有效地抑制星图的非均匀性,从而有效地提高星敏感器的测量精度。
The invention discloses a non-uniform correction method for a high dynamic star sensor image. The method includes: after determining that the star map to be corrected is different from the gain and/or integration time of two calibration images, according to the imaging model of ICCD, the Perform gain condition transformation and gain response nonuniformity correction on the two calibration images, and/or integration time condition transformation and integration time response nonuniformity correction; use the corrected calibration image to perform nonuniformity correction on the star map to be corrected Uniformity correction. The invention also discloses a device for correcting image non-uniformity of a high-dynamic star sensor. By adopting the method and device of the invention, the non-uniformity of the star image can be effectively suppressed, thereby effectively improving the measurement accuracy of the star sensor.
Description
技术领域 technical field
本发明涉及航天器姿态测量技术,特别是指一种高动态星敏感器图像非均匀校正方法及装置。The invention relates to spacecraft attitude measurement technology, in particular to a method and device for correcting image non-uniformity of a high-dynamic star sensor.
背景技术 Background technique
星敏感器(Star Sensor)是当今航天飞行器中广泛采用的一种高精度、高可靠性的姿态测量部件。高动态载体的运行对星敏感器的动态性能提出了非常高的要求,因此,如何提高星敏感器动态性能成为当前新的研究热点。The star sensor is a high-precision, high-reliability attitude measurement component widely used in today's aerospace vehicles. The operation of high-dynamic carriers puts forward very high requirements on the dynamic performance of star sensors. Therefore, how to improve the dynamic performance of star sensors has become a new research hotspot.
在高动态的条件下,星点能量的分散会使星敏感器的探测灵敏度急剧下降,视场内观测星的个数明显减少,无法确保正常的姿态输出。因此,为了提高星敏感器的探测灵敏度,出现了以像增强型电荷耦合元件(ICCD)、电子倍增电荷耦合元件(EMCCD)、电子轰击电荷耦合元件(EBCCD)等微光探测器件为图像传感器的高动态星敏感器。由于各种图像传感器的像素倍增系数、量子效率、以及有效感光面积等的差异,ICCD、EMCCD、EBCCD的非均匀性对成像质量有较大影响。星敏感器作为高精度的姿态测量部件,其星点质心计算精度需要达到亚像素级,而ICCD、EMCCD、EBCCD等微光探测器件的非均匀性会对星点质心计算精度造成较大的影响,从而影响星敏感器姿态测量的精度。因此,对星敏感器图像进行非均匀校正,是提高高动态星敏感器可靠性及测量精度的关键环节。Under high dynamic conditions, the dispersion of star point energy will cause the detection sensitivity of the star sensor to drop sharply, and the number of observed stars in the field of view will be significantly reduced, and the normal attitude output cannot be guaranteed. Therefore, in order to improve the detection sensitivity of the star sensor, there have been low-light detection devices such as enhanced charge-coupled devices (ICCD), electron multiplier charge-coupled devices (EMCCD), and electron bombardment charge-coupled devices (EBCCD) as image sensors. High dynamic star sensor. Due to the differences in pixel multiplication factor, quantum efficiency, and effective photosensitive area of various image sensors, the non-uniformity of ICCD, EMCCD, and EBCCD has a greater impact on imaging quality. As a high-precision attitude measurement component, the star sensor needs to achieve the sub-pixel calculation accuracy of the star point centroid, and the non-uniformity of ICCD, EMCCD, EBCCD and other low-light detection devices will have a greater impact on the star point centroid calculation accuracy. , thus affecting the accuracy of star sensor attitude measurement. Therefore, the non-uniform correction of the star sensor image is the key link to improve the reliability and measurement accuracy of the high dynamic star sensor.
非均匀校正方法主要分为基于参考辐射源校正方法及基于场景统计校正方法两类。其中,基于参考辐射源校正方法较为成熟。目前,应用于工程实际的参考辐射源校正方法主要包括:R.W.Helfrich等人提出的两点温度定标法及美国海军研究实验室(Naval Research Laboratory)的A.F.Miltion等人提出的多点温度定标法。其中,两点温度定标法的优点是算法简单,但其动态范围较窄,在ICCD、EMCCD、EBCCD等微光探测器件输出响应非线性严重的情况下,存在较大的校正误差;多点温度定标法具有较高的校正精度,但随着定标点的增多,校正计算量明显增加。为弥补上述不足,提出了基于探测器非线性响应模型的改进的两点温度定标法,该方法具有较宽的动态范围及较理想的校正精度,并且算法简单。Non-uniformity correction methods are mainly divided into two types: correction methods based on reference radiation sources and correction methods based on scene statistics. Among them, the calibration method based on the reference radiation source is relatively mature. At present, the reference radiation source calibration methods used in engineering practice mainly include: the two-point temperature calibration method proposed by R.W.Helfrich et al. and the multi-point temperature calibration method proposed by A.F.Miltion et al. Law. Among them, the advantage of the two-point temperature calibration method is that the algorithm is simple, but its dynamic range is narrow, and there is a large correction error when the output response of low-light detection devices such as ICCD, EMCCD, and EBCCD is seriously nonlinear; The temperature calibration method has high correction accuracy, but with the increase of calibration points, the calculation amount of correction increases obviously. In order to make up for the above shortcomings, an improved two-point temperature calibration method based on the nonlinear response model of the detector is proposed. This method has a wide dynamic range and a relatively ideal calibration accuracy, and the algorithm is simple.
然而,在高动态星敏感器的实际应用过程中,需要调整微光探测器件增益及积分时间两个参数,以控制成像质量,因此,经常会出现星敏感器工作时的增益及积分时间条件与定标图像的增益及积分时间条件不同的情况,而现有的非均匀性校正方法均未对定标图像与待校正图像拍摄条件不同的情况进行补偿,如此,严重限制了校正的效果及星敏感器的测量精度。However, in the practical application of high dynamic star sensors, it is necessary to adjust the two parameters of low-light detection device gain and integration time to control the imaging quality. The gain and integration time conditions of the calibration image are different, and the existing non-uniformity correction methods do not compensate for the different shooting conditions of the calibration image and the image to be corrected. The measurement accuracy of the sensor.
发明内容 Contents of the invention
有鉴于此,本发明的主要目的在于提供一种高动态星敏感器图像非均匀校正方法及装置,能有效地抑制星图的非均匀性,从而提高星敏感器的测量精度。In view of this, the main purpose of the present invention is to provide a high dynamic star sensor image non-uniformity correction method and device, which can effectively suppress the non-uniformity of the star image, thereby improving the measurement accuracy of the star sensor.
为达到上述目的,本发明的技术方案是这样实现的:In order to achieve the above object, technical solution of the present invention is achieved in that way:
本发明提供了一种高动态星敏感器图像非均匀校正方法,该方法包括:The invention provides a method for correcting image non-uniformity of a high dynamic star sensor, the method comprising:
确定待校正星图与两个定标图像的增益、和/或积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正、和/或积分时间变换及积分时间响应非均匀性校正;After determining that the star map to be corrected is different from the gain and/or integration time of the two calibration images, according to the ICCD imaging model, the gain condition transformation and gain response non-uniformity correction are performed on the two calibration images, and/or Or integration time transformation and integration time response non-uniformity correction;
采用校正后的定标图像对所述待校正星图进行非均匀性校正;Using the corrected calibration image to perform non-uniformity correction on the star map to be corrected;
所述ICCD的成像模型,为:s=f(Φ)·exp(c·g+d)·(a·t+b);其中,S表示ICCD响应,Φ表示星敏感器接收的辐照度,t表示ICCD的曝光时间,g表示ICCD的增益,a、b、c、d为常数。The imaging model of the ICCD is: s=f(Φ) exp(c g+d) (a t+b); wherein, S represents the ICCD response, and Φ represents the irradiance received by the star sensor , t represents the exposure time of ICCD, g represents the gain of ICCD, and a, b, c, d are constants.
上述方案中,当确定待校正星图与两个定标图像的增益不同后,所述对所述两个定标图像进行增益条件变换及增益响应非均匀性校正,为:In the above scheme, after it is determined that the star map to be corrected is different from the gains of the two calibration images, the gain condition transformation and gain response non-uniformity correction are performed on the two calibration images, as follows:
获取增益响应非均匀校正定标图像;Obtain a calibration image for gain response non-uniformity correction;
依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,并采用线性化处理后的数据,计算每个所述增益响应非均匀校正定标图像的线性化处理的均值;According to the imaging model of ICCD, linearize the gray level of each pixel of each of the gain response non-uniform correction calibration images, and use the linearized data to calculate each of the gain response non-uniform correction The mean value of the linearization process of the calibration image;
从上到下逐行扫描线性化处理后的图像,采用所有所述增益响应非均匀校正定标图像的线性化处理的均值,计算增益响应非均匀性校正系数;Scan the linearized image from top to bottom line by line, and calculate the gain response non-uniformity correction coefficient by using the mean value of the linearized processing of all the gain response non-uniform correction calibration images;
从上到下逐行扫描每个所述定标图像,之后根据公式:
上述方案中,当确定待校正星图与两个定标图像的积分时间不同后,所述对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正,为:In the above scheme, when it is determined that the integration time of the star map to be corrected is different from that of the two calibration images, the conversion of the integration time conditions and the non-uniformity correction of the integration time response are performed on the two calibration images, as follows:
获取积分时间响应非均匀校正定标图像;Obtain an integrated time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,依据ICCD的成像模型,计算每个所述积分时间响应非均匀校正定标图像的灰度的均值;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, according to the imaging model of ICCD, calculating the mean value of the gray level of each said integral time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,采用所有所述积分时间响应非均匀校正定标图像的灰度的均值,计算积分时间响应非均匀性校正系数;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, using the mean value of the gray levels of all the integral time response non-uniform correction calibration images to calculate the integral time response non-uniformity correction coefficient;
从上到下逐行扫描每个对所述定标图像进行增益响应非均匀性校正后的图像,之后根据公式:
上述方案中,当确定待校正星图与两个定标图像的增益及积分时间不同后,且依次对两个定标图像进行增益条件变换及增益响应响应非均匀性校正、积分时间条件变换及积分时间响应非均匀性校正时,所述对所述两个定标图像进行增益条件变换及增益响应非均匀性校正,为:In the above scheme, when it is determined that the star map to be corrected is different from the gain and integration time of the two calibration images, the gain condition transformation and gain response non-uniformity correction, integration time condition transformation and During integral time response non-uniformity correction, the described two calibration images are carried out gain condition transformation and gain response non-uniformity correction, as:
获取增益响应非均匀校正定标图像;Obtain a calibration image for gain response non-uniformity correction;
依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,并采用线性化处理后的数据,计算每个所述增益响应非均匀校正定标图像的线性化处理的均值;According to the imaging model of ICCD, linearize the gray level of each pixel of each of the gain response non-uniform correction calibration images, and use the linearized data to calculate each of the gain response non-uniform correction The mean value of the linearization process of the calibration image;
从上到下逐行扫描线性化处理后的图像,采用所有所述增益响应非均匀校正定标图像的线性化处理的均值,计算增益响应非均匀性校正系数;Scan the linearized image from top to bottom line by line, and calculate the gain response non-uniformity correction coefficient by using the mean value of the linearized processing of all the gain response non-uniform correction calibration images;
从上到下逐行扫描每个所述定标图像,之后根据公式:
相应的,所述对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正,为:Correspondingly, the transformation of the integration time condition and the non-uniformity correction of the integration time response for the two calibration images are:
获取积分时间响应非均匀校正定标图像;Obtain an integrated time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,依据ICCD的成像模型,计算每个所述积分时间响应非均匀校正定标图像的灰度的均值;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, according to the imaging model of ICCD, calculating the mean value of the gray level of each said integral time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,采用所有所述积分时间响应非均匀校正定标图像的灰度的均值,计算积分时间响应非均匀性校正系数;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, using the mean value of the gray levels of all the integral time response non-uniform correction calibration images to calculate the integral time response non-uniformity correction coefficient;
从上到下逐行扫描每个对所述定标图像进行增益条件变换及增益响应非均匀性校正后的图像,之后根据公式:
上述方案中,所述当确定待校正星图与两个定标图像的增益及积分时间不同后,且依次对两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正、增益条件发变换及增益响应非均匀性校正时,所述对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正,为:In the above scheme, after it is determined that the star map to be corrected is different from the gain and integration time of the two calibration images, the two calibration images are sequentially transformed from the integration time condition and the integration time response non-uniformity correction, gain condition During transformation and gain response non-uniformity correction, the described two calibration images are carried out integration time conditional transformation and integration time response non-uniformity correction, as:
获取积分时间响应非均匀校正定标图像;Obtain an integrated time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,依据ICCD的成像模型,计算每个所述积分时间响应非均匀校正定标图像的灰度的均值;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, according to the imaging model of ICCD, calculating the mean value of the gray level of each said integral time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,采用所有所述积分时间响应非均匀校正定标图像的灰度的均值,计算积分时间响应非均匀性校正系数;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, using the mean value of the gray levels of all the integral time response non-uniform correction calibration images to calculate the integral time response non-uniformity correction coefficient;
从上到下逐行扫描每个所述定标图像,之后根据公式:
相应的,所述对所述两个定标图像进行增益条件变换及增益响应非均匀性校正,为:Correspondingly, performing gain condition transformation and gain response non-uniformity correction on the two calibration images is:
获取增益响应非均匀校正定标图像;Obtain a calibration image for gain response non-uniformity correction;
依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,并采用线性化处理后的数据,计算每个所述增益响应非均匀校正定标图像的线性化处理的均值;According to the imaging model of ICCD, linearize the gray level of each pixel of each of the gain response non-uniform correction calibration images, and use the linearized data to calculate each of the gain response non-uniform correction The mean value of the linearization process of the calibration image;
从上到下逐行扫描线性化处理后的图像,采用所有所述增益响应非均匀校正定标图像的线性化处理的均值,计算增益响应非均匀性校正系数;Scan the linearized image from top to bottom line by line, and calculate the gain response non-uniformity correction coefficient by using the mean value of the linearized processing of all the gain response non-uniform correction calibration images;
从上到下逐行扫描每个对所述定标图像进行积分时间条件变换及积分时间响应非均匀性校正后的图像,之后根据公式:
上述方案中,所述获取增益响应非均匀校正定标图像,为:In the above scheme, the acquired gain response non-uniform correction calibration image is:
利用积分球作为均匀光源,获取增益为gm及gn条件下ICCD输出的两个图像,作为增益响应非均匀校正定标图像Using the integrating sphere as a uniform light source, two images output by the ICCD under the conditions of gain g m and g n are obtained as gain response non-uniform correction calibration images
上述方案中,所述获取积分时间响应非均匀校正定标图像,为:In the above scheme, the acquisition of the integrated time response non-uniform correction calibration image is:
利用积分球作为均匀光源,获取积分时间为te及tf条件下ICCD输出图像作为积分时间响应非均匀校正定标图像。Using the integrating sphere as a uniform light source, the ICCD output images under the conditions of integration time t e and t f are acquired as the integration time response non-uniform correction calibration image.
上述方案中,该方法进一步包括:In the above-mentioned scheme, the method further includes:
依据成像器件的光电响应模型,建立ICCD的成像模型。According to the photoelectric response model of the imaging device, the imaging model of ICCD is established.
本发明还提供了一种高动态星敏感器图像非均匀校正装置,该装置包括:增益及积分时间校正模块及非均匀性校正模块;其中,The present invention also provides a high dynamic star sensor image non-uniformity correction device, which includes: a gain and integration time correction module and a non-uniformity correction module; wherein,
增益及积分时间校正模块,确定待校正星图与两个定标图像的增益、和/或积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正、和/或积分时间条件变换及积分时间响应非均匀性校正,并将校正后的图像发送给非均匀性校正模块;Gain and integration time correction module, after determining that the star map to be corrected is different from the gain and/or integration time of the two calibration images, according to the imaging model of ICCD, the gain condition conversion and gain response are performed on the two calibration images Non-uniformity correction, and/or integration time condition transformation and integration time response non-uniformity correction, and send the corrected image to the non-uniformity correction module;
非均匀性校正模块,用于收到增益及积分时间校正模块发送的校正后的图像后,采用校正后的定标图像对所述待校正星图进行非均匀性校正;The non-uniformity correction module is used to correct the non-uniformity of the star map to be corrected by using the corrected calibration image after receiving the corrected image sent by the gain and integration time correction module;
所述ICCD的成像模型,为:S=f(Φ)·exp(c·g+d)·(a·t+b);其中,S表示ICCD响应,Φ表示星敏感器接收的辐照度,t表示ICCD的曝光时间,g表示ICCD的增益,a、b、c、d为常数。The imaging model of the ICCD is: S=f(Φ) exp(c g+d) (a t+b); wherein, S represents the ICCD response, and Φ represents the irradiance received by the star sensor , t represents the exposure time of ICCD, g represents the gain of ICCD, and a, b, c, d are constants.
上述方案中,该装置进一步包括:设置模块,用于成像器件的光电响应模型,建立ICCD的成像模型。In the above solution, the device further includes: a setting module, which is used for the photoelectric response model of the imaging device, and establishes the imaging model of the ICCD.
本发明提供的高动态星敏感器图像非均匀校正方法及装置,确定待校正星图与两个定标图像的增益、和/或积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正、和/或积分时间条件变换及积分时间响应非均匀性校正;采用校正后的定标图像对所述待校正星图进行非均匀性校正,如此,能有效地抑制星图的非均匀性,从而有效地提高星敏感器的测量精度。In the high dynamic star sensor image non-uniformity correction method and device provided by the present invention, after determining that the star map to be corrected is different from the gain and/or integration time of the two calibration images, according to the imaging model of ICCD, the two Perform gain condition transformation and gain response non-uniformity correction on the calibration image, and/or integration time condition transformation and integration time response non-uniformity correction; use the corrected calibration image to perform non-uniformity correction on the star map to be corrected , so that the non-uniformity of the star map can be effectively suppressed, thereby effectively improving the measurement accuracy of the star sensor.
另外,本发明提供的高动态星敏感器图像非均匀校正方法及装置,适用于待校正星图的任意增益及任意积分时间条件,因此,还能有效地提高星图非均匀性校正中对增益及积分时间条件适应性。In addition, the high dynamic star sensor image non-uniformity correction method and device provided by the present invention are suitable for any gain and any integration time condition of the star map to be corrected, therefore, it can also effectively improve the gain in the non-uniformity correction of the star map And integration time condition adaptability.
附图说明 Description of drawings
图1为本发明高动态星敏感器图像非均匀校正方法流程示意图;Fig. 1 is a schematic flow chart of a method for correcting image non-uniformity of a high dynamic star sensor in the present invention;
图2为实施例一高动态星敏感器图像非均匀校正方法流程示意图;Fig. 2 is a schematic flow chart of a method for correcting image non-uniformity of a high dynamic star sensor in Embodiment 1;
图3为实施例二高动态星敏感器图像非均匀校正方法流程示意图;Fig. 3 is a schematic flow chart of a method for correcting image non-uniformity of a high dynamic star sensor in Embodiment 2;
图4为实施例二对两个定标图像进行增益响应非均匀性校正的方法流程示意图;FIG. 4 is a schematic flow diagram of a method for correcting gain response non-uniformity of two calibration images in Embodiment 2;
图5为实施例二对两个定标图像进行积分时间响应非均匀性校正的方法流程示意图;FIG. 5 is a schematic flow diagram of a method for performing integration time response non-uniformity correction on two calibration images in Embodiment 2;
图6为实施例二采用校正后的定标图像对待校正星图进行非均匀性校正的方法流程示意图;Fig. 6 is a schematic flow chart of the method for performing non-uniformity correction on the star map to be corrected by using the corrected calibration image in the second embodiment;
图7为本发明高动态星敏感器图像非均匀校正装置结构示意图。Fig. 7 is a schematic structural diagram of a device for correcting image non-uniformity of a high dynamic star sensor according to the present invention.
具体实施方式 Detailed ways
下面结合附图及具体实施例对本发明再作进一步详细的说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明高动态星敏感器图像非均匀校正方法,如图1所示,包括以下步骤:The method for correcting the image non-uniformity of the high dynamic star sensor of the present invention, as shown in Figure 1, comprises the following steps:
步骤101:确定待校正星图与两个定标图像的增益、和/或积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正、和/或积分时间条件变换及积分时间响应非均匀性校正;Step 101: After determining that the star map to be corrected is different from the gain and/or integration time of the two calibration images, according to the ICCD imaging model, perform gain condition transformation and gain response non-uniformity correction on the two calibration images , and/or integration time condition transformation and integration time response non-uniformity correction;
具体地,当确定待校正星图与两个定标图像的增益不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正;当确定待校正星图与两个定标图像的积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正;当确定待校正星图与两个定标图像的增益及积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正、积分时间条件变换及积分时间响应非均匀性校正。Specifically, when it is determined that the star map to be corrected is different from the gain of the two calibration images, according to the ICCD imaging model, the gain condition transformation and gain response non-uniformity correction are performed on the two calibration images; After the star map and the integration time of the two calibration images are different, according to the imaging model of ICCD, the integration time condition transformation and the integration time response non-uniformity correction are carried out to the two calibration images; when it is determined that the star map to be corrected is different from the two After the gain and integration time of the two calibration images are different, according to the imaging model of ICCD, the gain condition transformation and gain response non-uniformity correction, integration time condition transformation and integration time response non-uniformity correction are performed on the two calibration images. .
在本步骤之前,该方法还可以进一步包括:Before this step, the method may further include:
依据成像器件的光电响应模型,建立ICCD的成像模型;所述ICCD的成像模型,为:S=f(Φ)·exp(c·g+d)·(a·t+b);其中,S表示ICCD响应,Φ表示星敏感器接收的辐照度,t表示ICCD的曝光时间,g表示ICCD的增益,a、b、c、d为常数。在实际应用时,在建立ICCD的成像模型时,除了要依据成像器件的光电响应模型外,还需要结合实际实验;其中,建立ICCD的具体处理过程为本领域技术人员的惯用技术手段。According to the photoelectric response model of imaging device, set up the imaging model of ICCD; The imaging model of described ICCD is: S=f(Φ) exp(c g+d) (a t+b); Wherein, S Represents ICCD response, Φ represents the irradiance received by the star sensor, t represents the exposure time of ICCD, g represents the gain of ICCD, and a, b, c, d are constants. In actual application, when establishing the imaging model of ICCD, in addition to relying on the photoelectric response model of the imaging device, it also needs to be combined with actual experiments; among them, the specific process of establishing ICCD is a conventional technical means for those skilled in the art.
当确定待校正星图与两个定标图像的增益不同后,所述对所述两个定标图像进行增益条件变换及增益响应非均匀性校正,具体为:After it is determined that the star map to be corrected is different from the gains of the two calibration images, the gain condition transformation and gain response non-uniformity correction are performed on the two calibration images, specifically:
获取增益响应非均匀校正定标图像;Obtain a calibration image for gain response non-uniformity correction;
依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,并采用线性化处理后的数据,计算每个所述增益响应非均匀校正定标图像的线性化处理的均值;According to the imaging model of ICCD, linearize the gray level of each pixel of each of the gain response non-uniform correction calibration images, and use the linearized data to calculate each of the gain response non-uniform correction The mean value of the linearization process of the calibration image;
从上到下逐行扫描线性化处理后的图像,采用所有所述增益响应非均匀校正定标图像的线性化处理的均值,计算增益响应非均匀性校正系数;Scan the linearized image from top to bottom line by line, and calculate the gain response non-uniformity correction coefficient by using the mean value of the linearized processing of all the gain response non-uniform correction calibration images;
从上到下逐行扫描每个所述定标图像,之后根据公式:
这里,所述定标图像是指对待校正星图进行非均匀校正性校正时所采用的定标图像。Here, the calibration image refers to the calibration image used when performing non-uniform corrective correction on the star map to be corrected.
其中,所述获取增益响应非均匀校正定标图像,具体为:Wherein, the acquisition of the gain response non-uniform correction calibration image is specifically:
利用积分球作为均匀光源,获取增益为gm及gn条件下ICCD输出的两个图像,作为增益响应非均匀校正定标图像;这里,m、n可以任意选取。Using the integrating sphere as a uniform light source, two images output by the ICCD under the conditions of gain g m and g n are obtained as gain response non-uniform correction calibration images; here, m and n can be selected arbitrarily.
所述依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,具体为:According to the imaging model of ICCD, the gray level of each pixel of each gain response non-uniform correction calibration image is linearized, specifically:
从上至下逐行扫描每个所述增益响应非均匀校正定标图像;scanning each of the gain response non-uniform correction calibration images line by line from top to bottom;
对每个所述增益响应非均匀校正定标图像的每个像素的灰度取对数;Taking the logarithm of the gray scale of each pixel of each of the gain response non-uniform correction calibration images;
其中,对每个所述增益响应非均匀校正定标图像的每个像素的灰度取对数后,则表明对每个所述增益响应非均匀校正定标图像进行线性化处理完成;取对数后,对于增益为gm的增益响应非均匀校正定标图像,则有对于增益为gn的增益响应非均匀校正定标图像,则有
当确定待校正星图与两个定标图像的积分时间不同后,所述对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正,具体为:When it is determined that the star map to be corrected is different from the integration time of the two calibration images, the integration time condition transformation and integration time response non-uniformity correction are performed on the two calibration images, specifically:
获取积分时间响应非均匀校正定标图像;Obtain an integrated time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,依据ICCD的成像模型,计算每个所述积分时间响应非均匀校正定标图像的灰度的均值;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, according to the imaging model of ICCD, calculating the mean value of the gray level of each said integral time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,采用所有所述积分时间响应非均匀校正定标图像的灰度的均值,计算积分时间响应非均匀性校正系数;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, using the mean value of the gray levels of all the integral time response non-uniform correction calibration images to calculate the integral time response non-uniformity correction coefficient;
从上到下逐行扫描每个对所述定标图像进行增益响应非均匀性校正后的图像,之后根据公式:
所述获取积分时间响应非均匀校正定标图像,具体为:The acquisition of the integrated time response non-uniform correction calibration image is specifically:
利用积分球作为均匀光源,获取积分时间为te及tf条件下ICCD输出图像作为积分时间响应非均匀校正定标图像;这里,e、f可以任意选取。Using the integrating sphere as a uniform light source, the ICCD output image under the condition of integration time t e and t f is obtained as the integration time response non-uniform correction calibration image; here, e and f can be selected arbitrarily.
当确定待校正星图与两个定标图像的增益及积分时间不同后,且依次对两个定标图像进行增益时间变换及增益响应响应非均匀性校正、积分时间条件变换及积分时间响应非均匀性校正时,所述对所述两个定标图像进行增益条件变换及增益响应非均匀性校正,具体为:When it is determined that the star map to be corrected is different from the gain and integration time of the two calibration images, the gain time transformation and gain response non-uniformity correction, integration time condition transformation and integration time response non-uniformity correction are performed on the two calibration images in sequence. During uniformity correction, the gain condition transformation and gain response non-uniformity correction are performed on the two calibration images, specifically:
获取增益响应非均匀校正定标图像;Obtain a calibration image for gain response non-uniformity correction;
依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,并采用线性化处理后的数据,计算每个所述增益响应非均匀校正定标图像的线性化处理的均值;According to the imaging model of ICCD, linearize the gray level of each pixel of each of the gain response non-uniform correction calibration images, and use the linearized data to calculate each of the gain response non-uniform correction The mean value of the linearization process of the calibration image;
从上到下逐行扫描线性化处理后的图像,采用所有所述增益响应非均匀校正定标图像的线性化处理的均值,计算增益响应非均匀性校正系数;Scan the linearized image from top to bottom line by line, and calculate the gain response non-uniformity correction coefficient by using the mean value of the linearized processing of all the gain response non-uniform correction calibration images;
从上到下逐行扫描每个所述定标图像,之后根据公式:
这里,所述定标图像是指对待校正星图进行非均匀校正性校正时所采用的定标图像。Here, the calibration image refers to the calibration image used when performing non-uniform corrective correction on the star map to be corrected.
相应的,所述对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正,具体为:Correspondingly, performing integration time condition transformation and integration time response non-uniformity correction on the two calibration images is specifically:
获取积分时间响应非均匀校正定标图像;Obtain an integrated time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,依据ICCD的成像模型,计算每个所述积分时间响应非均匀校正定标图像的灰度的均值;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, according to the imaging model of ICCD, calculating the mean value of the gray level of each said integral time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,采用所有所述积分时间响应非均匀校正定标图像的灰度的均值,计算积分时间响应非均匀性校正系数;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, using the mean value of the gray levels of all the integral time response non-uniform correction calibration images to calculate the integral time response non-uniformity correction coefficient;
从上到下逐行扫描每个对所述定标图像进行增益条件变换及增益响应非均匀性校正后的图像,之后根据公式:
其中,所述获取增益响应非均匀校正定标图像,具体为:Wherein, the acquisition of the gain response non-uniform correction calibration image is specifically:
利用积分球作为均匀光源,获取增益为gm及gn条件下ICCD输出的两个图像,作为增益响应非均匀校正定标图像;这里,m、n可以任意选取。Using the integrating sphere as a uniform light source, two images output by the ICCD under the conditions of gain g m and g n are obtained as gain response non-uniform correction calibration images; here, m and n can be selected arbitrarily.
所述依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,具体为:According to the imaging model of ICCD, the gray level of each pixel of each gain response non-uniform correction calibration image is linearized, specifically:
从上至下逐行扫描每个所述增益响应非均匀校正定标图像;scanning each of the gain response non-uniform correction calibration images line by line from top to bottom;
对每个所述增益响应非均匀校正定标图像的每个像素的灰度取对数;Taking the logarithm of the gray scale of each pixel of each of the gain response non-uniform correction calibration images;
其中,对每个所述增益响应非均匀校正定标图像的每个像素的灰度取对数后,则表明对每个所述增益响应非均匀校正定标图像进行线性化处理完成;取对数后,对于增益为gm的增益响应非均匀校正定标图像,则有对于增益为gn的增益响应非均匀校正定标图像,则有
所述获取积分时间响应非均匀校正定标图像,具体为:The acquisition of the integrated time response non-uniform correction calibration image is specifically:
利用积分球作为均匀光源,获取积分时间为te及tf条件下ICCD输出图像作为积分时间响应非均匀校正定标图像;这里,e、f可以任意选取。Using the integrating sphere as a uniform light source, the ICCD output image under the condition of integration time t e and t f is obtained as the integration time response non-uniform correction calibration image; here, e and f can be selected arbitrarily.
当确定待校正星图与两个定标图像的增益及积分时间不同后,且依次对两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正、增益条件变换及增益响应非均匀性校正时,所述对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正,具体为:When it is determined that the star map to be corrected and the gain and integration time of the two calibration images are different, and the two calibration images are sequentially transformed from the integration time condition and the non-uniformity correction of the integration time response, the gain condition transformation and the gain response non-uniformity During linearity correction, the described two calibration images are carried out integration time condition transformation and integration time response non-uniformity correction, specifically:
获取积分时间响应非均匀校正定标图像;Obtain an integrated time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,依据ICCD的成像模型,计算每个所述积分时间响应非均匀校正定标图像的灰度的均值;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, according to the imaging model of ICCD, calculating the mean value of the gray level of each said integral time response non-uniform correction calibration image;
从上到下逐行扫描积分时间响应非均匀校正定标图像,采用所有所述积分时间响应非均匀校正定标图像的灰度的均值,计算积分时间响应非均匀性校正系数;Scanning the integral time response non-uniform correction calibration image line by line from top to bottom, using the mean value of the gray levels of all the integral time response non-uniform correction calibration images to calculate the integral time response non-uniformity correction coefficient;
从上到下逐行扫描每个所述定标图像,之后根据公式:
相应的,所述对所述两个定标图像进行增益条件变换及增益响应非均匀性校正,具体为:Correspondingly, performing gain condition transformation and gain response non-uniformity correction on the two calibration images is specifically:
获取增益响应非均匀校正定标图像;Obtain a calibration image for gain response non-uniformity correction;
依据ICCD的成像模型,对每个所述增益响应非均匀校正定标图像的每个像素的灰度进行线性化处理,并采用线性化处理后的数据,计算每个所述增益响应非均匀校正定标图像的线性化处理的均值;According to the imaging model of ICCD, linearize the gray level of each pixel of each of the gain response non-uniform correction calibration images, and use the linearized data to calculate each of the gain response non-uniform correction The mean value of the linearization process of the calibration image;
从上到下逐行扫描线性化处理后的图像,采用所有所述增益响应非均匀校正定标图像的线性化处理的均值,计算增益响应非均匀性校正系数;Scan the linearized image from top to bottom line by line, and calculate the gain response non-uniformity correction coefficient by using the mean value of the linearized processing of all the gain response non-uniform correction calibration images;
从上到下逐行扫描每个对所述定标图像进行积分时间条件变换及积分时间响应非均匀性校正后的图像,之后根据公式:
这里,需要说明的是:在实际应用过程中,对两个定标图像进行增益条件变换及增益响应非均匀性校正、积分时间条件变换及积分时间响应非均匀性校正时,可以先进行增益条件变换及增益响应非均匀性校正,之后对增益条件变换及增益响应非均匀性校正后的图像再进行积分时间条件变换及积分时间响应非均匀性校正,或者,可以先进行积分时间条件变换及积分时间响应非均匀性校正,之后对积分时间条件变换及积分时间响应非均匀性校正后的图像再进行增益响应非均匀性校正。Here, it needs to be explained that in the actual application process, when performing gain condition transformation and gain response non-uniformity correction, integration time condition transformation and integration time response non-uniformity correction on two calibration images, the gain condition Transform and gain response non-uniformity correction, and then perform integration time condition transformation and integration time response non-uniformity correction on the image after gain condition transformation and gain response non-uniformity correction, or, you can first perform integration time condition transformation and integration Time response non-uniformity correction, and then perform gain response non-uniformity correction on the image after integration time condition transformation and integration time response non-uniformity correction.
步骤102:采用校正后的定标图像对所述待校正星图进行非均匀性校正;Step 102: Using the corrected calibration image to perform non-uniformity correction on the star map to be corrected;
具体地,从上到下逐行扫描每个校正后的定标图像;Specifically, each corrected calibration image is scanned line by line from top to bottom;
对每个校正后的定标图像的每个像素的灰度进行线性化处理,并采用线性化处理后的数据,计算每个校正后的定标图像的线性化处理的均值;performing linearization processing on the grayscale of each pixel of each corrected calibration image, and using the data after linearization processing to calculate the mean value of the linearization processing of each calibration image after correction;
从上到下逐行扫描线性化处理后的图像,采用所有校正后的定标图像的线性化处理的均值,计算星图非均匀性校正系数;Scan the linearized image from top to bottom line by line, and calculate the star map non-uniformity correction coefficient by using the mean value of the linearized processing of all corrected calibration images;
从上到下逐行扫描所述待校正星图,并对所述待校正星图的每个像素的灰度进行线性化处理;Scanning the star map to be corrected line by line from top to bottom, and performing linearization processing on the gray scale of each pixel of the star map to be corrected;
之后根据公式:S校正(i,j)=255/{exp[r(i,j)·S线性(i,j)+s(i,j)]+1},对所述待校正星图的每个像素进行非均匀性校正;其中,所述星图非均匀性校正系数包括:r(i,j)及s(i,j),r(i,j)表示表示所述待校正星图的第(i,j)像素的校正增益,s(i,j)表示所述待校正星图的第(i,j)像素的校正偏置,S线性(i,j)表示所述待校正星图的第(i,j)像素的灰度的线性化处理后的数据,
这里,需要说明的是:当确定待校正星图与两个定标图像的增益不同后,
采用校正后的定标图像对待校正星图进行非均匀性校正的更具体的处理过程可采用现有技术。The more specific process of performing non-uniformity correction on the star map to be corrected by using the corrected calibration image can adopt the existing technology.
所述校正后的定标图像是指:进行增益响应非均匀性校正、和/或积分时间响应非均匀性校正后的定标图像。The corrected calibration image refers to: a calibration image after gain response non-uniformity correction and/or integral time response non-uniformity correction.
下面结合实施例对本发明再作进一步详细的描述。The present invention will be further described in detail below in conjunction with the examples.
实施例一Embodiment one
本实施例高动态星敏感器图像非均匀校正方法,如图2所示,包括以下步骤:The non-uniform correction method for the high dynamic star sensor image of this embodiment, as shown in Figure 2, includes the following steps:
步骤201:输入待校正星图及两个定标图像,之后执行步骤202;Step 201: Input the star map to be corrected and two calibration images, and then perform
这里,假设待校正星图的增益为g1,两个定标图像的增益为g2,待校正星图的积分时间为t1,两个定标图像的积分时间为t2。Here, it is assumed that the gain of the star map to be corrected is g1, the gain of the two calibration images is g2, the integration time of the star map to be corrected is t1, and the integration time of the two calibration images is t2.
步骤202:判断g1是否等于g2,如果是,则执行步骤204,否则,执行步骤203。Step 202: Determine whether g1 is equal to g2, if yes, execute
步骤203:对所述两个定标图像进行增益条件变换及增益响应非均匀性校正,之后执行步骤204。Step 203: Perform gain condition transformation and gain response non-uniformity correction on the two calibration images, and then perform
步骤204:判断t1是否等于t2,如果是,则执行步骤206,否则,执行步骤205。Step 204: Judging whether t1 is equal to t2, if yes, execute
步骤205:对所述两个定标图像进行积分时间条件变换及积分时间响应非均匀性校正,之后执行步骤206。Step 205: Perform integration time condition transformation and integration time response non-uniformity correction on the two calibration images, and then perform
步骤206:对待校正星图进行非均匀性校正,之后结束当前处理流程。Step 206: Perform non-uniformity correction on the star map to be corrected, and then end the current processing flow.
实施例二Embodiment two
在本实施例中,确定待校正星图与两个定标图像的增益及积分时间均不同,且采用依次对对两个定标图像进行增益条件变换及增益响应响应非均匀性校正、积分时间条件变换及积分时间响应非均匀性校正的处理方式,设置待校正星图的增益为g1,两个定标图像的增益为g2,待校正星图的积分时间为t1,两个定标图像的积分时间为t2。In this embodiment, it is determined that the star map to be corrected is different from the gain and integration time of the two calibration images, and the gain condition transformation and gain response non-uniformity correction and integration time are sequentially performed on the two calibration images. The processing method of condition transformation and integration time response non-uniformity correction, set the gain of the star map to be corrected as g1, the gain of the two calibration images as g2, the integration time of the star map to be corrected as t1, and the gain of the two calibration images The integration time is t2.
本实施例高动态星敏感器图像非均匀校正方法,如图3所示,包括以下步骤:The non-uniform correction method for the high dynamic star sensor image of this embodiment, as shown in Figure 3, includes the following steps:
步骤301:输入待校正星图及两个定标图像,之后执行步骤302。Step 301: Input the star map to be corrected and two calibration images, and then perform
步骤302:确定待校正星图与两个定标图像的增益及积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正及积分时间响应非均匀性校正;Step 302: After determining that the star map to be corrected is different from the gain and integration time of the two calibration images, according to the ICCD imaging model, perform gain condition transformation, gain response non-uniformity correction and integration time on the two calibration images Response non-uniformity correction;
所述对所述两个定标图像进行增益条件变换及增益响应非均匀性校正的具体处理过程,如图4所示,包括以下步骤:The specific process of performing gain condition transformation and gain response non-uniformity correction on the two calibration images, as shown in Figure 4, includes the following steps:
步骤302a:获取增益响应非均匀校正定标图像;
具体地,利用积分球作为均匀光源,获取增益为gm及gn条件下ICCD输出的两个图像,作为增益响应非均匀校正定标图像;这里,m、n可以任意选取。Specifically, using the integrating sphere as a uniform light source, two images output by the ICCD under the conditions of gain g m and g n are obtained as gain response non-uniform correction calibration images; here, m and n can be selected arbitrarily.
步骤302b:从上至下逐行扫描每个所述增益响应非均匀校正定标图像,之后执行步骤302c。
步骤302c:对每个所述增益响应非均匀校正定标图像的每个像素的灰度取对数;
这里,取对数后,则有具体地,对于增益为gm的增益响应非均匀校正定标图像,则有对于增益为gn的增益响应非均匀校正定标图像,则有 Here, after taking the logarithm, we have Specifically, for the gain-response non-uniform correction calibration image with gain g m , then there is For the gain response non-uniform correction calibration image with gain g n , then we have
步骤302d:判断两个增益响应非均匀校正定标图像的所有像素是否均处理完,如果是,则执行步骤302e,否则,执行步骤302b。
步骤302e:采用线性化处理后的数据,计算每个所述增益响应非均匀校正定标图像的线性化处理的均值;
具体地,采用公式:计算增益为gm的增益响应非均匀校正定标图像的灰度的线性化处理的均值,采用公式:计算增益为gm的增益响应非均匀校正定标图像的灰度的线性化处理的均值。Specifically, using the formula: Calculation gain is the average value of the linearization processing of the gray level of the gain response non-uniform correction calibration image of g m , adopts the formula: Calculate the mean value of the linearization process of the gray level of the gain response non-uniform correction calibration image with the gain g m .
步骤302f:判断两个增益响应非均匀校正定标图像是否均处理完,如果是,则执行步骤302g,否则,执行步骤302e。
步骤302g:从上到下逐行扫描线性化处理后的图像,之后执行步骤301h。
步骤302h:采用公式:
步骤302i:判断所有像素是否均处理完,如果是,则执行步骤301j,否则执行步骤302g。
步骤302j:从上到下逐行扫描每个所述定标图像,之后根据公式:
步骤302k:判断两个定标图像的所有像素是否均处理完,如果是,则执行步骤302l,否则,执行步骤302j。
步骤302l:对进行增益条件变换及增益响应非均匀性校正后的定标图像进行积分时间应非均匀性校正。Step 302l: Correct the non-uniformity of the integration time for the calibration image after gain condition transformation and gain response non-uniformity correction.
所述对定标图像进行积分时间条件变换及积分时间响应非均匀性校正的具体处理过程,如图5所示,包括以下步骤:The specific process of carrying out integration time condition transformation and integration time response non-uniformity correction to the calibration image, as shown in Figure 5, includes the following steps:
步骤302A:获取积分时间响应非均匀校正定标图像;
具体地,利用积分球作为均匀光源,获取积分时间为te及tf条件下ICCD输出图像作为积分时间响应非均匀校正定标图像;这里,e、f可以任意选取。Specifically, using the integrating sphere as a uniform light source, the ICCD output image under the conditions of integration time t e and t f is obtained as the integration time response non-uniform correction calibration image; here, e and f can be selected arbitrarily.
步骤302B:从上到下逐行扫描积分时间响应非均匀校正定标图像,之后执行步骤302C。Step 302B: Integrate the time-response non-uniform correction calibration image from top to bottom progressively, and then perform
步骤302C:判断两个积分时间响应非均匀校正定标图像的所有像素是否均处理完,如果是,则执行步骤302D,否则,执行步骤302B。
步骤302D:计算每个所述积分时间响应非均匀校正定标图像的灰度的均值;
具体地,采用公式:计算积分时间为te的积分时间响应非均匀校正定标图像的灰度的均值,采用公式:计算积分时间为tf的积分时间响应非均匀校正定标图像的灰度的均值。Specifically, using the formula: Calculate the mean value of the gray level of the integral time response non-uniform correction calibration image whose integral time is t e , adopt the formula: Calculate the mean value of the gray level of the non-uniform correction calibration image with the integration time t f in response to the integration time.
步骤302E:判断两个积分时间响应非均匀校正定标图像是否均处理完,如果是,则执行步骤302F,否则,执行步骤302D。
步骤302F:从上到下逐行扫描积分时间响应非均匀校正定标图像,之后执行步骤301G。
步骤302G:采用公式:
步骤302H:判断所有像素是否均处理完,如果是,则执行步骤302I,否则执行步骤302F。
步骤302I:从上到下逐行扫描每个对所述定标图像进行增益条件变换及增益响应非均匀性校正后的图像,之后根据公式:
步骤302J:判断两个定标图像的所有像素是否均处理完,如果是,则执行步骤303,否则,执行步骤302I;
这里,本步骤中的定标图像,是指进行增益条件变换及增益响应非均匀性校正后的定标图像。Here, the calibration image in this step refers to the calibration image after gain condition transformation and gain response non-uniformity correction.
步骤303:采用校正后的定标图像对待校正星图进行非均匀性校正,之后结束当前处理流程;Step 303: Use the corrected calibration image to correct the non-uniformity of the star map to be corrected, and then end the current processing flow;
本步骤的具体实现,如图6所示,包括以下步骤:The specific implementation of this step, as shown in Figure 6, includes the following steps:
步骤303a:从上到下逐行扫描每个校正后的定标图像,之后执行步骤303b。
步骤303b:对每个校正后的定标图像的每个像素的灰度进行线性化处理;
具体地,采用公式:对校正后的两个定标图像中的一个定标图像的每个像素的灰度进行线性化处理;采用公式:对校正后的两个定标图像中的另一个定标图像的每个像素的灰度进行线性化处理。Specifically, using the formula: Linearize the gray level of each pixel of one of the two corrected calibration images; using the formula: A linearization process is performed on the gray level of each pixel of the other of the two corrected calibration images.
步骤303c:判断两个校正后的定标图像的所有像素是否均处理完,如果是,则执行步骤303d,否则,执行步骤303a。
步骤303d:采用线性化处理后的数据,计算每个校正后的定标图像的线性化处理的均值;
具体地,采用公式:计算校正后的两个定标图像中的一个定标图像的线性化处理的均值,采用公式:计算校正后的两个定标图像中的另一个定标图像的线性化处理的均值。Specifically, using the formula: Computes the linearized mean of one of the two corrected calibration images using the formula: Computes the linearized mean of the other of the two corrected calibration images.
步骤303e:判断两个校正后的定标图像是否均处理完,如果是,则执行步骤303f,否则,执行步骤303d。
步骤303f:从上到下逐行扫描线性化处理后的图像,之后执行步骤303g。
步骤303g:采用公式:
303h:判断所有像素均是否处理完,如果是,则执行步骤303i,否则执行步骤303f。303h: Determine whether all pixels have been processed, if yes, execute
步骤303i:从上到下逐行扫描待校正星图,之后执行步骤303j。
步骤303k:对所述待校正星图的每个像素的灰度进行线性化处理;
具体地,采用公式:S线性(i,j)=ln[255/S星图(i,j)-1],对所述待校正星图的每个像素的灰度进行线性化处理。Specifically, the formula: S linear (i, j)=ln[255/S star map (i, j)-1] is used to linearize the grayscale of each pixel of the star map to be corrected.
步骤303k:根据公式:S校正(i,j)=255/{exp[r(i,j)·S线性(i,j)+s(i,j)]+1},对所述待校正星图的每个像素进行非均匀性校正,之后执行步骤3031。
步骤3031:判断所述待校正星图的所有像素是否均处理完,如果是,则结束当前处理流程,否则,执行步骤303i。Step 3031: Determine whether all the pixels of the star map to be corrected have been processed, if yes, end the current processing flow, otherwise, execute
实施例三Embodiment three
在本实施例中,ICCD图像传感器的高动态星敏感器采集星图时采集星图时采用的增益为105,积分时间为4ms,拍摄定标图像时采用的增益为75,积分时间为6ms,即:待校正星图的增益为105,积分时间为4ms,定标图像的增益为75,积分时间为6ms。In this embodiment, when the high dynamic star sensor of the ICCD image sensor collects the star map, the gain used when collecting the star map is 105, and the integration time is 4ms. The gain used when shooting the calibration image is 75, and the integration time is 6ms. That is: the gain of the star map to be corrected is 105, the integration time is 4ms, the gain of the calibration image is 75, and the integration time is 6ms.
利用基于探测器非线性响应模型的改进的两点温度定标校正法及本发明提供的高动态星敏感器图像非均匀校正方法,进行星图非均匀性校正,表1给出了两种方法的校正结果。Utilize the improved two-point temperature calibration correction method based on the detector nonlinear response model and the high dynamic star sensor image non-uniformity correction method provided by the present invention to perform star map non-uniformity correction. Table 1 provides two methods the calibration result.
表1Table 1
从表1中可以看出,与基于探测器非线性响应模型的改进的两点温度定标校正的方法相比,采用本发明提供的高动态星敏感器图像非均匀校正方法,进行星图校正后,星图的非均匀性得到有效抑制,并且,有效地提高了星敏感器的精度。As can be seen from Table 1, compared with the improved two-point temperature calibration correction method based on the nonlinear response model of the detector, the star map correction is performed by using the high dynamic star sensor image non-uniformity correction method provided by the present invention Finally, the non-uniformity of the star map is effectively suppressed, and the accuracy of the star sensor is effectively improved.
为实现上述方法,本发明还提供了一种高动态星敏感器图像非均匀校正装置,如图7所示,该装置包括:增益及积分时间校正模块71及非均匀性校正模块72;其中,In order to realize the above method, the present invention also provides a high dynamic star sensor image non-uniformity correction device, as shown in Figure 7, the device includes: a gain and integration
增益及积分时间校正模块71,确定待校正星图与两个定标图像的增益、和/或积分时间不同后,依据ICCD的成像模型,对所述两个定标图像进行增益条件变换及增益响应非均匀性校正、和/或积分时间条件变换及积分时间响应非均匀性校正,并将校正后的图像发送给非均匀性校正模块72;Gain and integration
非均匀性校正模块72,用于收到增益及积分时间校正模块71发送的校正后的图像后,采用校正后的定标图像对所述待校正星图进行非均匀性校正;The
所述ICCD的成像模型,为:S=f(Φ)·exp(c·g+d)·(a·t+b);其中,S表示ICCD响应,Φ表示星敏感器接收的辐照度,t表示ICCD的曝光时间,g表示ICCD的增益,a、b、c、d为常数。。The imaging model of the ICCD is: S=f(Φ) exp(c g+d) (a t+b); wherein, S represents the ICCD response, and Φ represents the irradiance received by the star sensor , t represents the exposure time of ICCD, g represents the gain of ICCD, and a, b, c, d are constants. .
其中,该装置还可以进一步包括:设置模块,用于成像器件的光电响应模型,建立ICCD的成像模型。Wherein, the device may further include: a setting module, which is used for the photoelectric response model of the imaging device, and establishes the imaging model of the ICCD.
这里,本发明所述装置的增益及积分时间校正模块及非均匀性校正模块的具体处理过程已在上文中详述,不再赘述。Here, the specific processing procedures of the gain and integration time correction module and the non-uniformity correction module of the device of the present invention have been described in detail above, and will not be repeated here.
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102312729A CN102410844B (en) | 2011-08-12 | 2011-08-12 | Method and device for correcting non-uniformity of image of high-dynamic star sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011102312729A CN102410844B (en) | 2011-08-12 | 2011-08-12 | Method and device for correcting non-uniformity of image of high-dynamic star sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102410844A CN102410844A (en) | 2012-04-11 |
CN102410844B true CN102410844B (en) | 2013-12-11 |
Family
ID=45913056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011102312729A Expired - Fee Related CN102410844B (en) | 2011-08-12 | 2011-08-12 | Method and device for correcting non-uniformity of image of high-dynamic star sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102410844B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104764454B (en) * | 2015-03-30 | 2017-07-28 | 北京控制工程研究所 | A kind of high dynamic star sensor based on EMCCD |
CN105509879B (en) * | 2015-12-05 | 2019-01-29 | 中国航空工业集团公司洛阳电光设备研究所 | A kind of non-uniform correction method of ultraviolet detector |
CN106840387B (en) * | 2016-12-09 | 2019-03-05 | 中国科学院国家天文台 | A kind of Objective extraction and flat field correction method of the biggish imaging system of gain difference |
CN111693068A (en) * | 2020-06-12 | 2020-09-22 | 上海航天控制技术研究所 | Calibration system, method, computer equipment and storage medium for correction parameters |
CN111735448A (en) * | 2020-06-23 | 2020-10-02 | 上海航天控制技术研究所 | Star map joint non-uniform correction method, equipment and storage medium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61272612A (en) * | 1985-05-29 | 1986-12-02 | Hitachi Ltd | Star identification system of star sensor |
FR2759474B1 (en) * | 1997-02-13 | 1999-04-30 | Centre Nat Etd Spatiales | METHOD FOR RECOGNIZING IN A PRE-ESTABLISHED CATALOG OF STARS DETECTED BY A STELLAR SENSOR |
CN100357705C (en) * | 2004-12-28 | 2007-12-26 | 北京航空航天大学 | Method for recognising star map based on LPT transforms |
CN100344937C (en) * | 2005-06-17 | 2007-10-24 | 北京航空航天大学 | Quick matching and recognition method for star tracking apparatus |
CN100348460C (en) * | 2005-10-12 | 2007-11-14 | 北京航空航天大学 | Star sensor calibrating method based on star field |
CN101363733A (en) * | 2008-09-17 | 2009-02-11 | 北京航空航天大学 | A super high precision star sensor |
CN101592490B (en) * | 2009-07-06 | 2010-12-01 | 北京航空航天大学 | A self-adaptive control array star sensor |
CN101852616B (en) * | 2010-04-30 | 2012-07-11 | 北京航空航天大学 | A method and device for realizing astral target extraction under high dynamic conditions |
-
2011
- 2011-08-12 CN CN2011102312729A patent/CN102410844B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102410844A (en) | 2012-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102410844B (en) | Method and device for correcting non-uniformity of image of high-dynamic star sensor | |
CN107255521A (en) | A kind of Infrared Image Non-uniformity Correction method and system | |
CN105136308B (en) | A kind of infrared focal plane array becomes the self-adapting correction method under the time of integration | |
CN105841815B (en) | A kind of imaging spectrometer CCD spectrum picture correcting method for dark current | |
CN103528694B (en) | A kind of method of temperature of infrared heat image instrument measuring target object | |
CN104677501B (en) | The method and apparatus of un-cooled infrared focal plane array Nonuniformity Correction | |
CN102300057B (en) | Method for correcting response inconsistency of linear array CCD (Charge Coupled Device) image elements | |
CN110855915B (en) | CCD camera response non-uniformity correction method and device for dark current compensation | |
CN101853501B (en) | Smear effect processing method of CCD (Charge-Coupled Device) sensor | |
CN103528690A (en) | Nonuniform correction method for thermal infrared imager | |
CN110009688A (en) | A kind of infrared remote sensing image relative radiometric calibration method, system and remote sensing platform | |
CN106871925A (en) | A kind of remote sensing satellite relative radiometric calibration processing method of in-orbit comprehensive dynamic adjustment | |
CN109741267A (en) | Infrared image non-uniformity correction method based on trilateral filtering and neural network | |
CN105430385A (en) | Method and device for dead pixel detection and correction of image sensor | |
CN103226819A (en) | Segmental counting-based relative radiation correction method | |
CN106017695A (en) | Adaptive infrared non-uniformity calibration method based on motion state estimation | |
CN102521797A (en) | Scene non-uniform correction method for scanning type infrared imaging system | |
CN106644078A (en) | Terahertz image non-uniformity correction method | |
CN102752504B (en) | Relative radiation correction method for wide-view-field linear array CCD (Charge Coupled Device) camera | |
CN106855435A (en) | Heterogeneity real-time correction method on long wave linear array infrared camera star | |
CN103491318A (en) | Image correction method and system of infrared focal plane detector | |
CN105092043B (en) | A kind of asymmetric correction method of the change time of integration based on scene | |
CN107238442A (en) | Without the detector thermometric method for regulating temperature of temperature stabilizer | |
CN106525247A (en) | Real-time infrared ray imaging method and device based on variable integration time | |
CN106851141B (en) | A kind of asymmetric correction method of remote sensing images |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131211 |