CN102374692B - Power-plant waste-heat recovering device - Google Patents
Power-plant waste-heat recovering device Download PDFInfo
- Publication number
- CN102374692B CN102374692B CN201110291106.8A CN201110291106A CN102374692B CN 102374692 B CN102374692 B CN 102374692B CN 201110291106 A CN201110291106 A CN 201110291106A CN 102374692 B CN102374692 B CN 102374692B
- Authority
- CN
- China
- Prior art keywords
- water
- pipeline
- heat
- heat pump
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002918 waste heat Substances 0.000 title claims abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 128
- 239000000498 cooling water Substances 0.000 claims abstract description 84
- 239000002351 wastewater Substances 0.000 claims abstract description 21
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000006392 deoxygenation reaction Methods 0.000 claims abstract description 5
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 claims description 59
- 238000001179 sorption measurement Methods 0.000 claims 5
- 238000011084 recovery Methods 0.000 abstract description 10
- 230000005494 condensation Effects 0.000 abstract description 9
- 238000009833 condensation Methods 0.000 abstract description 9
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 238000004064 recycling Methods 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 1
- 229910052760 oxygen Inorganic materials 0.000 abstract 1
- 239000001301 oxygen Substances 0.000 abstract 1
- 238000010521 absorption reaction Methods 0.000 description 29
- 238000001816 cooling Methods 0.000 description 11
- 239000013589 supplement Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000012267 brine Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
- Y02B30/625—Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
- Y02P80/15—On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
本发明涉及一种热回收装置,公开了一种发电厂废热回收装置,包括蒸汽管路(4)、高温废水管路(6)、冷却水循环管路(1)、除盐水管路(5),所述的除盐水管路(5)连接除盐水箱(54),经过与水水换热器(9)后通过除盐水回水管路回到除盐水箱(54)。所述的除盐水回水管路上设有除盐水回水管路控制阀(52),水水换热器(9)与除盐水回水管路控制阀(52)之间设有除氧管路,除氧管路与除氧器(53)连接。本发明通过采用热泵技术回收电厂冷凝热、废水余热,具有热能回收利用率高,节能环保的优点。
The invention relates to a heat recovery device, and discloses a waste heat recovery device for a power plant, comprising a steam pipeline (4), a high-temperature waste water pipeline (6), a cooling water circulation pipeline (1), and a desalinated water pipeline (5) , the desalinated water pipeline (5) is connected to the desalted water tank (54), and returns to the desalted water tank (54) through the desalted water return pipeline after passing through the water-to-water heat exchanger (9). The desalted water return pipeline is provided with a desalted water return pipeline control valve (52), and a deoxygenation pipeline is provided between the water-water heat exchanger (9) and the desalted water return pipeline control valve (52). Oxygen pipeline is connected with deaerator (53). The invention adopts the heat pump technology to recycle the condensation heat of the power plant and waste water waste heat, and has the advantages of high heat energy recycling rate, energy saving and environmental protection.
Description
技术领域technical field
本发明涉及一种热回收装置,尤其涉及一种发电厂废热回收装置。The invention relates to a heat recovery device, in particular to a waste heat recovery device of a power plant.
背景技术Background technique
火力发电厂冷凝热通过凉水塔或空冷岛排入大气形成巨大的热能损失,是火力发电厂能源使用效率低下的主要原因,不仅造成能量和水或电的浪费,同时也严重地污染了大气。火力发电厂冷凝热排空,是我国乃至世界普遍存在的问题,是浪费,也是无奈。然而,随着热泵技术的发展,特别是大型高温水源热泵的问世,使得发电机组废热回收将成为可能。Condensation heat in thermal power plants is discharged into the atmosphere through cooling towers or air-cooled islands, resulting in huge heat loss, which is the main reason for the low efficiency of energy use in thermal power plants. It not only causes waste of energy and water or electricity, but also seriously pollutes the atmosphere. The evacuation of condensation heat in thermal power plants is a common problem in our country and even in the world. It is a waste and helpless. However, with the development of heat pump technology, especially the advent of large-scale high-temperature water source heat pumps, it will become possible to recover waste heat from generator sets.
发明内容Contents of the invention
本发明针对现有技术中冷凝热、蒸汽热难以利用与回收,提供了一种采用热泵技术回收电厂冷凝热、废水余热的发电厂废热回收装置。Aiming at the difficult utilization and recovery of condensation heat and steam heat in the prior art, the invention provides a power plant waste heat recovery device which adopts heat pump technology to recover power plant condensation heat and waste water waste heat.
为了解决上述技术问题,本发明通过下述技术方案得以解决:In order to solve the above technical problems, the present invention is solved through the following technical solutions:
发电厂废热回收装置,包括蒸汽管路、高温废水管路、冷却水循环管路、除盐水管路,所述的蒸汽管路连接汽机与凝汽器;高温废水管路连接溴化锂制冷机与吸收热泵;冷却水循环管路从冷却循环水池开始,经过凝汽器(13)、吸收热泵、溴化锂制冷机后回到冷却循环水池;所述的除盐水管路连接除盐水箱,除盐水管路中的水流经水水换热器后通过除盐水回水管路回到除盐水箱。除盐水管路中的热能通过水水换热器获得。A waste heat recovery device in a power plant, including a steam pipeline, a high-temperature waste water pipeline, a cooling water circulation pipeline, and a desalinated water pipeline. The steam pipeline is connected to a steam turbine and a condenser; the high-temperature waste water pipeline is connected to a lithium bromide refrigerator and an absorption heat pump The cooling water circulation pipeline starts from the cooling circulation pool, and returns to the cooling circulation water pool after the condenser (13), absorption heat pump and lithium bromide refrigerator; the desalinated water pipeline is connected to the desalted water tank, and the The water flows through the water-to-water heat exchanger and returns to the desalinated water tank through the desalted water return pipeline. The heat energy in the desalted water pipeline is obtained through the water-to-water heat exchanger.
作为优选,所述的蒸汽管路连接汽机与凝汽器;高温废水管路连接溴化锂制冷机与吸收热泵;冷却水循环管路从冷却循环水池开始,经过凝汽器、吸收热泵、溴化锂制冷机制冷后回到冷却循环水池。Preferably, the steam pipeline is connected to the steam turbine and the condenser; the high-temperature waste water pipeline is connected to the lithium bromide refrigerator and the absorption heat pump; Then return to the cooling circulating pool.
作为优选,所述的冷却水循环管路还经过离心热泵,离心热泵设置在吸收热泵与溴化锂制冷机之间。通过设置离心热泵,可以将经过吸收热泵的冷却水的热能进行进一步的热能交换,通过内循环管路将冷却水循环管路中的热能传递给除盐水管路,提高了热能的利用率。Preferably, the cooling water circulation pipeline also passes through a centrifugal heat pump, and the centrifugal heat pump is arranged between the absorption heat pump and the lithium bromide refrigerator. By setting the centrifugal heat pump, the heat energy of the cooling water passing through the absorption heat pump can be further exchanged for heat energy, and the heat energy in the cooling water circulation pipeline is transferred to the desalinated water pipeline through the internal circulation pipeline, which improves the utilization rate of heat energy.
作为优选,所述的冷却水循环管路上还设有冷却水回水管路,冷却水回水管路经过水水换热器,除盐水管路也经过水水换热器;冷却水回水管路的进水口设置在离心热泵与溴化锂制冷机之间,冷却水回水管路的回水口设置在凝汽器与吸收热泵之间。通过设置冷却水回水管路,可以选择打开冷却水回水管路补水阀,将在离心热泵进行热交换后的冷却水重新输送回吸收热泵进行热交换。同时,冷却水回水管路还经过除盐水管路,并将一部分的热能直接传递给除盐水管路。As a preference, the cooling water circulation pipeline is also provided with a cooling water return pipeline, the cooling water return pipeline passes through the water-to-water heat exchanger, and the demineralized water pipeline also passes through the water-to-water heat exchanger; the inlet of the cooling water return pipeline The water port is arranged between the centrifugal heat pump and the lithium bromide refrigerator, and the water return port of the cooling water return pipeline is arranged between the condenser and the absorption heat pump. By setting the cooling water return pipeline, you can choose to open the replenishment valve of the cooling water return pipeline, and re-transmit the cooling water after the heat exchange in the centrifugal heat pump back to the absorption heat pump for heat exchange. At the same time, the cooling water return pipeline also passes through the desalinated water pipeline, and directly transfers part of the heat energy to the desalted water pipeline.
作为优选,还包括内循环管路,内循环管路经过离心热泵、吸收热泵、溴化锂制冷机以及水水换热器。内循环管路通过冷却水循环管路上的吸收热泵、高温废水管路中的溴化锂制冷机以及冷却水回水管路上的离心热泵进行热交换获取热能,然后通过水水换热器将获得的热能以热交换的方式传递给除盐水管路。Preferably, it also includes an internal circulation pipeline, and the internal circulation pipeline passes through a centrifugal heat pump, an absorption heat pump, a lithium bromide refrigerator and a water-to-water heat exchanger. The internal circulation pipeline obtains heat energy through heat exchange through the absorption heat pump on the cooling water circulation pipeline, the lithium bromide refrigerator in the high-temperature waste water pipeline, and the centrifugal heat pump on the cooling water return pipeline, and then converts the obtained heat energy into heat through a water-to-water heat exchanger. The way of exchange is passed to the desalinated water pipeline.
作为优选,所述的冷却水回水管路上设有冷却水回水管路循环泵与冷却水回水管路补水阀,冷却水回水管路补水阀设置在进入溴化锂制冷机之前的冷却水回水管路上。通过打开冷却水回水管路补水阀可以对经过吸收热泵的冷却水进行二次回收利用,提高了热能的利用效率。Preferably, the cooling water return pipeline is provided with a cooling water return pipeline circulation pump and a cooling water return pipeline replenishment valve, and the cooling water return pipeline replenishment valve is arranged on the cooling water return pipeline before entering the lithium bromide refrigerator. By opening the replenishment valve of the cooling water return pipeline, the cooling water passing through the absorption heat pump can be recycled twice, which improves the utilization efficiency of heat energy.
作为优选,所述的蒸汽管路经过汽机,将汽机产生的蒸汽输送至凝汽器,蒸汽经过凝汽器将热能传递给冷却水循环管路中的冷却水后凝水排出。Preferably, the steam pipeline passes through the steam turbine, and the steam generated by the steam turbine is sent to the condenser, and the steam passes through the condenser to transfer heat energy to the cooling water in the cooling water circulation pipeline, and then the condensed water is discharged.
作为优选,所述的内循环管路上设有内循环管路补水阀。随着内循环管路内的水在不断的吸收释放热能会有一定的蒸发损耗,因此,通内循环管路补水阀可以对内循环管路内的水进行一定的补充,从而保证内循环管路的正常运作。Preferably, the internal circulation pipeline is provided with an internal circulation pipeline water replenishment valve. As the water in the internal circulation pipeline continuously absorbs and releases heat energy, there will be a certain evaporation loss. Therefore, the water supply valve through the internal circulation pipeline can supplement the water in the internal circulation pipeline to a certain extent, so as to ensure that the internal circulation pipeline normal operation of the road.
本发明通过采用热泵技术回收电厂冷凝热、废水余热,具有热能回收利用率高,节能环保的优点。The invention adopts the heat pump technology to recycle the condensation heat of the power plant and waste water waste heat, and has the advantages of high heat energy recycling rate, energy saving and environmental protection.
附图说明Description of drawings
图1为本发明实施例1的结构示意图。Fig. 1 is a schematic structural diagram of Embodiment 1 of the present invention.
其中1-冷却水循环管路、2-冷却水回水管路、3-内循环管路、4-蒸汽管路、5-除盐水管路、6-高温废水管路、7-吸收热泵、8-溴化锂制冷机、9-水水换热器、10-离心热泵、11-冷却循环泵、12-冷却循环水池、13-凝汽器、15-、21-冷却水回水管路循环泵、22-冷却水回水管路补水阀、31-内循环管路循环泵、32-内循环管路补水阀、41-汽机、51-除盐水管路循环泵、52-除盐水回水管路控制阀、53-除氧器、54-除盐水箱、61-废水池。Among them, 1-cooling water circulation pipeline, 2-cooling water return pipeline, 3-internal circulation pipeline, 4-steam pipeline, 5-demineralized water pipeline, 6-high temperature waste water pipeline, 7-absorption heat pump, 8- Lithium bromide refrigerator, 9-water heat exchanger, 10-centrifugal heat pump, 11-cooling circulation pump, 12-cooling circulation pool, 13-condenser, 15-, 21-cooling water return pipeline circulation pump, 22- Cooling water return pipeline replenishment valve, 31-inner circulation pipeline circulation pump, 32-internal circulation pipeline water supplement valve, 41-turbine, 51-demineralized water pipeline circulation pump, 52-demineralized water return pipeline control valve, 53 - deaerator, 54 - desalinated water tank, 61 - waste water tank.
具体实施方式Detailed ways
下面结合附图1与具体实施方式对本发明作进一步详细描述:Below in conjunction with accompanying drawing 1 and specific embodiment the present invention is described in further detail:
实施例1Example 1
发电厂废热回收装置,如图1所示,包括蒸汽管路4、高温废水管路6、冷却水循环管路1、除盐水管路5,所述的蒸汽管路4连接汽机41与凝汽器13;高温废水管路6连接溴化锂制冷机8与吸收热泵7;冷却水循环管路1从冷却循环水池12开始,经过凝汽器13、吸收热泵7、溴化锂制冷机8后回到冷却循环水池12。汽机41产生的蒸汽输送至凝汽器13,蒸汽经过凝汽器13将热能传递给冷却水循环管路1中的冷却水,带有热能的冷却水经过吸收热泵7并在吸收热泵7内与内循环管路3进行热交换,内循环管路3通过水水换热器9将热能传递给除盐水管路5。高温废水管路6通过在溴化锂制冷机8与吸收热泵7的热交换,将热能传递给冷却水循环管路1以及冷却水回水管路2,其中冷却水回水管路2又通过水水换热器9将热能传递给除盐水管路5。冷却水循环管路1以及高温废水管路6都经过溴化锂制冷机8,其管路中的热能可以作为溴化锂制冷机8的热动力源,进行制冷。高温废水管路6依次经过溴化锂制冷机8、吸收热泵7并释放热能。其中,冷却水循环管路1为j1、冷却水回水管路2为j2、内循环管路3为j3、蒸汽管路4为j4、除盐水管路5为j5、高温废水管路6为j6。The waste heat recovery device of a power plant, as shown in Figure 1, includes a
冷却水循环管路1还经过离心热泵10,离心热泵10设置在吸收热泵7与溴化锂制冷机8之间。通过设置离心热泵10,可以将经过吸收热泵7的冷却水的热能进行进一步的热能交换,通过内循环管路3将冷却水循环管路1中的热能传递给除盐水管路5,提高了热能的利用率。冷却水循环管路1上设有冷却循环泵11,冷却循环泵11设置在冷却循环水池12与凝汽器13之间。冷却水循环管路1依次经过吸收热泵7、离心热泵10、溴化锂制冷机8并释放热能。The cooling water circulation pipeline 1 also passes through a
冷却水循环管路1上还设有冷却水回水管路2,冷却水回水管路2经过水水换热器9,除盐水管路5也经过水水换热器9;冷却水回水管路2的进水口设置在离心热泵10与溴化锂制冷机8之间,冷却水回水管路2的回水口设置在凝汽器13与吸收热泵7之间。通过设置冷却水回水管路2,可以选择打开冷却水回水管路补水阀22,将在离心热泵10进行热交换后的冷却水重新输送回吸收热泵7进行热交换。同时,冷却水回水管路2还经过除盐水管路5,并将一部分的热能直接传递给除盐水管路5。冷却水回水管路2上还设有冷却水回水管路循环泵21。冷却水回水管路2通过在溴化锂制冷机8处吸收热能,然后通过水水换热器9将热能传递给除盐水管路5,然后与进入吸收热泵7之前的冷却水循环管路1汇合后进入吸收热泵7。The cooling water circulation pipeline 1 is also provided with a cooling
除盐水管路5连接除盐水箱54,经过与水水换热器9后通过除盐水回水管路回到盐水箱54。除盐水管路5中的热能通过水水换热器9获得。除盐水管路5上设有除盐水管路循环泵51,除盐水管路循环泵51设置在水水换热器9与除盐水箱54之间。除盐水管路5经过与水水换热器9后吸收热能。当除盐水管路5内水温升高至90℃以上后,打开除盐水回水管路控制阀52,将热水输送给除氧器53。经过除氧器53处理后的水被输送到发电锅炉,从而将发电厂的凝结热、废水余热进行有效的回收利用,具有热能回收利用率高,节能环保的优点。The desalted water pipeline 5 is connected to the desalted
还包括内循环管路3,内循环管路3经过离心热泵10、吸收热泵7、溴化锂制冷机8以及水水换热器9。内循环管路3通过冷却水循环管路1上的吸收热泵7、高温废水管路6中的溴化锂制冷机8以及冷却水回水管路2上的离心热泵10进行热交换获取热能,然后通过水水换热器9将获得的热能以热交换的方式传递给除盐水管路5。内循环管路3上设有内循环管路循环泵31,内循环管路循环泵31设置在离心热泵10与水水换热器9之间。内循环管路3内的水经过离心热泵10后获得热能,温度升高至70℃以上,此时在流经吸收热泵7,因为经过吸收热泵7的冷却水温度更高,因此内循环管路3内的水被继续加热后,内循环管路3经过溴化锂制冷机8释放部分热能,然后经过水水换热器9继续释放热能后温度下降至53℃以下。It also includes an
冷却水回水管路2上设有冷却水回水管路循环泵21与冷却水回水管路补水阀22,冷却水回水管路补水阀22设置在进入溴化锂制冷机8之前的冷却水回水管路2上。通过打开冷却水回水管路补水阀22可以对经过吸收热泵7的冷却水进行二次回收利用,提高了热能的利用效率。当冷却水回水管路补水阀22打开后,经过离心热泵10的热水一部分继续在冷却水循环管路1上,另一部分进入冷却水回水管路2;此时,通过冷却水回水管路补水阀22补充进入温度较低的常温水,使得通过冷却水回水管路2进入溴化锂制冷机8前的水温大大降低,并且在经过溴化锂制冷机8时吸收了热能,转而将这部分热能通过水水换热器9传递给除盐水管路5。The cooling
除盐水回水管路上设有除盐水回水管路控制阀52,水水换热器9与除盐水回水管路控制阀52之间设有除氧管路,除氧管路与除氧器53连接。当除盐水回水管路控制阀52打开时,除盐水管路5中的水通过水水换热器9后回流至除盐水箱54;当除盐水回水管路控制阀52关闭时,除盐水管路5中的水通过水水换热器9后通过除氧管路进入除氧器53。经过除氧器53处理后的水被输送到发电锅炉,从而将发电厂的凝结热、废水余热进行有效的回收利用,具有热能回收利用率高,节能环保的优点。A desalinated water return
蒸汽管路4经过汽机41,将汽机41产生的蒸汽输送至凝汽器13,蒸汽经过凝汽器13将热能传递给冷却水循环管路1中的冷却水后凝水排出。锅炉产生的蒸汽在汽机中作功,在这个热媒的循环过程中,需要放出大量的冷凝热,经汽机作功后的蒸汽通过排汽进入凝汽器13,在凝汽器13冷凝的过程中释放热能并凝结成水再经回热后进入锅炉,此时,经过凝汽器13冷却水循环管路1中的冷却水温度升高。The
内循环管路3上设有内循环管路补水阀32。随着内循环管路3内的水在不断的吸收释放热能会有一定的蒸发损耗,因此,通内循环管路补水阀32可以对内循环管路3内的水进行一定的补充,从而保证内循环管路3的正常运作。The
总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。In a word, the above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the patent of the present invention.
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110291106.8A CN102374692B (en) | 2011-09-29 | 2011-09-29 | Power-plant waste-heat recovering device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110291106.8A CN102374692B (en) | 2011-09-29 | 2011-09-29 | Power-plant waste-heat recovering device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102374692A CN102374692A (en) | 2012-03-14 |
| CN102374692B true CN102374692B (en) | 2014-05-14 |
Family
ID=45793667
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110291106.8A Expired - Fee Related CN102374692B (en) | 2011-09-29 | 2011-09-29 | Power-plant waste-heat recovering device |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102374692B (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102607090B (en) * | 2012-03-21 | 2017-04-05 | 浙江盾安人工环境股份有限公司 | A kind of big temperature-difference central heating system of utilization industrial exhaust heat |
| CN102997311B (en) * | 2012-12-25 | 2017-01-25 | 浙江工商大学 | Power plant condensing heat recovery heat supply system |
| CN103017140B (en) * | 2012-12-25 | 2016-01-06 | 浙江工商大学 | Biomass electric power plant cigarette wind waste heat recovery plant |
| CN103017238B (en) * | 2012-12-25 | 2016-01-06 | 浙江工商大学 | Biomass electric power plant Waste Heat Recovery heating system |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN200993358Y (en) * | 2006-12-30 | 2007-12-19 | 山东寿光巨能金玉米开发有限公司 | Heat energy comprehensive utilization device cooling ash slag by using condensate water |
| JP2009198142A (en) * | 2008-02-25 | 2009-09-03 | Aisin Seiki Co Ltd | Heat utilization device |
| CN101881190A (en) * | 2010-06-11 | 2010-11-10 | 北京中科华誉能源技术发展有限责任公司 | System for supplying heat and heating condensate water by extracting residual heat of power plant through heat pump |
| CN201671665U (en) * | 2010-05-17 | 2010-12-15 | 石家庄安能科技有限公司 | Thermal power generation device utilizing heat pump for energy saving |
| CN201706478U (en) * | 2010-02-10 | 2011-01-12 | 同方川崎空调设备有限公司 | Heat-recovering type demineralized water heating system |
| CN201705400U (en) * | 2009-03-19 | 2011-01-12 | 浙江工商大学 | Power plant cooling system adopting waste heat refrigeration form to increase cooling efficiency |
| CN202229168U (en) * | 2011-09-29 | 2012-05-23 | 李同强 | Waste heat recovering device for generator unit |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR910000555A (en) * | 1989-06-19 | 1991-01-29 | 한형수 | Glass Paste for Ceramic Substrate |
| JP3050783B2 (en) * | 1995-11-13 | 2000-06-12 | 川崎重工業株式会社 | Method for cooling intake air of compressor of gas turbine in gas turbine plant |
-
2011
- 2011-09-29 CN CN201110291106.8A patent/CN102374692B/en not_active Expired - Fee Related
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN200993358Y (en) * | 2006-12-30 | 2007-12-19 | 山东寿光巨能金玉米开发有限公司 | Heat energy comprehensive utilization device cooling ash slag by using condensate water |
| JP2009198142A (en) * | 2008-02-25 | 2009-09-03 | Aisin Seiki Co Ltd | Heat utilization device |
| CN201705400U (en) * | 2009-03-19 | 2011-01-12 | 浙江工商大学 | Power plant cooling system adopting waste heat refrigeration form to increase cooling efficiency |
| CN201706478U (en) * | 2010-02-10 | 2011-01-12 | 同方川崎空调设备有限公司 | Heat-recovering type demineralized water heating system |
| CN201671665U (en) * | 2010-05-17 | 2010-12-15 | 石家庄安能科技有限公司 | Thermal power generation device utilizing heat pump for energy saving |
| CN101881190A (en) * | 2010-06-11 | 2010-11-10 | 北京中科华誉能源技术发展有限责任公司 | System for supplying heat and heating condensate water by extracting residual heat of power plant through heat pump |
| CN202229168U (en) * | 2011-09-29 | 2012-05-23 | 李同强 | Waste heat recovering device for generator unit |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102374692A (en) | 2012-03-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103017236B (en) | The power plant heat of condensation is recycled and heating system | |
| CN201568088U (en) | Absorption heat pump directly recovers steam turbine exhaust heat cogeneration system of power station | |
| CN102287957B (en) | Open absorption heat pump | |
| CN106369866A (en) | Waste steam directly absorbed type double-effect lithium bromide heat pump system and working method thereof | |
| CN102435015B (en) | Condensation heat recovery device in power plant | |
| CN202102727U (en) | Closed type cooling water system for nuclear power plant | |
| CN102374692B (en) | Power-plant waste-heat recovering device | |
| CN103017238A (en) | Waste heat recovery heating system of biomass power plant | |
| CN204691833U (en) | A kind of circulating water afterheat utilized device | |
| CN204693371U (en) | One directly reclaims turbine discharge waste heat and heat-setting water system | |
| CN212076474U (en) | System for reducing coastal power station temperature discharge by coupling seawater desalination | |
| CN108800275A (en) | A kind of big temperature-difference central heating system and working method using residual heat of electric power plant | |
| CN102997224A (en) | Power plant condensing heat recycle system | |
| CN103017140B (en) | Biomass electric power plant cigarette wind waste heat recovery plant | |
| CN211650196U (en) | Steam-driven water-feeding pump small-machine exhaust waste heat recycling device | |
| CN104807237B (en) | Energy-saving device applying lithium bromide | |
| CN202303334U (en) | Energy-saving thermal deaerator | |
| CN201817298U (en) | Seawater desalination system | |
| CN103032913B (en) | Power plant condensation heat recovery heat supply system taking circular cooling water as heat supply network water | |
| CN102997311B (en) | Power plant condensing heat recovery heat supply system | |
| CN207776921U (en) | A kind of CHP Heating System based on absorption heat pump cycle | |
| CN203010751U (en) | Heat-supply device utilizing waste heat of biomass power plant | |
| CN202304470U (en) | Condensation heat recovery device for generating set | |
| CN204730508U (en) | A kind ofly apply the energy-conservation device of lithium bromide | |
| CN101520252B (en) | A New Process for Improving the Comprehensive Utilization Rate of Low-temperature Potential Heat Energy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140514 Termination date: 20150929 |
|
| EXPY | Termination of patent right or utility model |