CN102361497B - Display method and display system for spatial three-dimensional video - Google Patents

Display method and display system for spatial three-dimensional video Download PDF

Info

Publication number
CN102361497B
CN102361497B CN 201110360364 CN201110360364A CN102361497B CN 102361497 B CN102361497 B CN 102361497B CN 201110360364 CN201110360364 CN 201110360364 CN 201110360364 A CN201110360364 A CN 201110360364A CN 102361497 B CN102361497 B CN 102361497B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
dimensional
frame rate
video data
space
dimensional video
Prior art date
Application number
CN 201110360364
Other languages
Chinese (zh)
Other versions
CN102361497A (en )
Inventor
袁杰
顾鹏
陈锡显
郭夏玮
刘闯文
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开了一种空间立体视频的显示方法,包括以下步骤:将普通帧率的三维视频数据分割为不同深度的多层普通帧率二维视频数据;将不同深度的多层普通帧率二维视频数据重新组合成高帧率二维视频数据;通过投影的方法将高帧率二维视频数据投射到充满微小颗粒的三维空间;从与投射方向垂直的方向向充满微小颗粒的三维空间投射线状光线,同时控制线状光线的投射位置与分割前二维视频数据前后的位置同步变化,则可在上述充满微小颗粒的三维空间中构成三维活动视频影像。 The present invention discloses a method of displaying video three-dimensional space, comprising the steps of: common frame rate of video data is divided into three layers of different depths of the ordinary frame rate two-dimensional video data; multilayer ordinary frame rate two different depths 3D-video data re-assembled into a high frame rate two-dimensional video data; by the method of projection projecting high frame rate two-dimensional video data to three-dimensional space filled with fine particles; the projection projecting from a direction perpendicular to the direction of the three-dimensional space filled with fine particles linear light, while controlling the linear position of the projected light varies in synchronism with the longitudinal position of the front divided two-dimensional video data, a 3D video images would constitute full minute particles in the above-described three-dimensional space. 本发明还公开了一种空间立体视频的显示系统,包括高帧率二维视频投影设备、充满微小颗粒的密闭三维空间、可控制投影位置的线状光源以及一个协调系统工作的计算机。 The present invention also discloses a stereoscopic video display system for a space, comprising a high frame rate two-dimensional video projecting device, filled with fine particles confined three-dimensional space, can control the position of the projection of the linear light sources and a computer system to coordinate work.

Description

一种空间立体视频的显示方法 A method of displaying video three-dimensional space

技术领域 FIELD

[0001] 本发明涉及立体视频显示技术领域,特别是一种空间立体视频的显示方法及其显示系统。 [0001] The present invention relates to stereoscopic video display technology, and particularly is a method of spatial and stereoscopic video display system.

背景技术 Background technique

[0002] 随着技术发展,研究领域和消费市场上出现了一些显示立体效果的显示终端,主要有两大类型,其一是通过佩戴立体眼睛,根据人眼的视差在大脑中形成立体画面的显示系统;其二是通过物理光学装置让双眼看到不同的画面从而形成立体视觉效应。 [0002] With the development of technology, the emergence of the field of research and consumer markets display a number of three-dimensional effect of display terminals, there are two main types, one is by wearing stereo glasses, according to the human eye parallax form three-dimensional picture in the brain the display system; the other is the two eyes see a different picture to form a stereoscopic effect by means of physical optics. 这两种方法都是被动式的立体显示方式,即观察者不能自主选择观察视角和距离,并且每个观察者不管处于什么位置和角度都只能看到同样的立体画面,和真实生活中的立体视觉完全不同,因此能够解决上述问题的主动式立体显示就成为该领域研究的新途径。 Both methods are passive stereoscopic display mode, that is, the viewer can not choose the viewing angle and distance, and each observer no matter in what position and angle can only see the same three-dimensional three-dimensional images, and in real life vision is completely different, so active stereo display capable of solving the above problems has become a new way to research in this field.

[0003] 同时,现在大型活动展出,也越来越需要三维的图像显示,传统的方式只能进行平面展示或者是三维实物展示,在光线昏暗或者夜晚的时候,三维实物必须借助于外部光源进行展示,但是,展示效果仍然不尽如人意。 [0003] Meanwhile, events are now on display, so has the need of a three-dimensional image display, in a conventional manner or can be a three-dimensional flat display physical display, in dim light or at night, when the external light source by means of a three-dimensional physical must on display, however, show the effect is still not satisfactory.

发明内容 SUMMARY

[0004] 发明目的:本发明所要解决的技术问题是针对现有技术的不足,提供空间立体视频的显示方法及其显示系统。 [0004] Object of the invention: The present invention solves the technical problem of the deficiency of the prior art, to provide space display method and a stereoscopic video display system.

[0005] 为了解决上述技术问题,本发明公开了一种空间立体视频的显示方法,包括以下步骤: [0005] To solve the above problems, the present invention discloses a method of displaying video three-dimensional space, comprising the steps of:

[0006] 步骤一,将普通帧率的三维视频数据分割为不同深度的多层普通帧率二维视频数据;所述普通帧率指50〜60赫兹的帧率。 [0006] Step a, the normal frame rate of video data is divided into three layers of different depths of the ordinary frame rate two-dimensional video data; refers to the normal frame rate of 50 to 60 Hz frame rate.

[0007] 步骤二,将不同深度的多层普通帧率二维视频数据重新组合成高帧率二维视频数据;所述高帧率一般指高于200赫兹的帧率。 [0007] Step two, the multiple layers of different depths of the ordinary two-dimensional video data frame rate recombined into a high frame rate two-dimensional video data; the high frame rate typically above 200 Hz frame rate.

[0008] 步骤三,通过投影的方法将高帧率二维视频数据投射到充满微小颗粒的三维空间; [0008] Step III by a method projection projecting high frame rate two-dimensional video data to three-dimensional space filled with fine particles;

[0009] 步骤四,从与投射方向垂直的方向向充满微小颗粒的三维空间投射线状光线,同时控制线状光线的投射位置与分割前二维视频数据前后的位置同步变化。 [0009] Step four, the linear light is projected to the three-dimensional space filled with fine particles from a direction perpendicular to the projection direction, while controlling the projection position of the linear light varies in synchronism with the position of the front longitudinal dividing two-dimensional video data.

[0010] 将普通帧率的三维视频数据分割为不同深度的多层普通帧率二维视频数据采用平移体扫描方法,依靠平面屏幕平移运动构造出成像空间,根据平面屏幕位置对要显示的三维场景进行切片,在平面屏幕运动的过程中,把二维切片投影到平移的平面屏幕上。 [0010] The common frame rate of video data is divided into three layers of different depths of the ordinary frame rate two-dimensional video data scanning method using the translational body, relying on the translational movement flat screen imaging space constructed three-dimensional plane of the screen to be displayed according to the position slicing scene, during the movement of the flat screen, the translation of the two-dimensional slice projected onto the flat screen.

[0011] 本发明中采用openGL工具获得二维切片数据,通过设定的远近裁剪平面,使得每次可视空间为三维模型空间内的一个平行于正投影平面的薄切面。 [0011] The present invention uses a two-dimensional slice data openGL tool, near and far clipping planes through the set, such that each time a view volume is a thin section in a plane parallel to the orthographic projection of a three-dimensional model space.

[0012] 本发明中步骤二将不同深度的多层普通帧率二维视频数据重新组合成高帧率二维视频数据,包括以下步骤: [0012] In the present invention, step two layers of different depths of the ordinary two-dimensional video data frame rate recombined into a high frame rate two-dimensional video data, comprising the steps of:

[0013] 如果每层二维视频数据帧率为f,共有N层,视频长度为s秒,则每一层都有M帧二维数据,M = fs,将每一层的数据帧编号为Fu,其中i表示层数,从1...N取值;i表示帧数,从1...M取值,则排序后的二维图像帧序列的顺序为Fn,F21,..., Fni, F12, F22,...,Fn2,...,Fim, F2m, , Fnm,将上述二维图像帧序列构成帧率为F的二维视频。 [0013] If the two-dimensional video data of each frame rate is f, a total of N layers, the length of s seconds of video, each layer has the two-dimensional data frame M, M = fs, each layer data frame number Fu, where i represents the number of layers, the value from 1 ... N; i represents the number of frames, the order of the two-dimensional image frame sequences from the value 1 ... M, the order of Fn, F21, ... , Fni, F12, F22, ..., Fn2, ..., Fim, F2m,, Fnm, the sequence of image frames constituting the two-dimensional frame rate F of the two-dimensional video.

[0014] 本发明中步骤三采用DLP投影机投影。 [0014] In the present invention, the step of using three projection DLP projector.

[0015] 本发明中步骤四所述可控制投影位置的线状光源采用多个固定位置的线状光源群,或者采用一个高帧率二维视频投影设备通过输出视频图像。 [0015] In the present invention, the step of controlling the projection position four may be a linear light source using a linear light source group of a plurality of fixed positions, or to use a high frame rate two-dimensional video image projecting device via the video output.

[0016] 本发明还公开了一种显示空间立体视频的显示系统,包括高帧率二维视频投影设备、充满微小颗粒的密闭三维空间、可控制投影位置的线状光源以及一套协调系统工作的计算处理装置。 [0016] The present invention also discloses a display system of the stereoscopic video display space, including a high frame rate two-dimensional video projecting device, the closed three-dimensional space filled with fine particles, can control the position of the linear light source and the projection of a coordinate system of the work calculation processing means. 高帧率二维视频投影设备、充满微小颗粒的密闭三维空间、可控制投影位置的线状光源呈直角形排列,充满微小颗粒的密闭三维空间位于直角上。 High frame rate two-dimensional video projecting device, filled with fine particles confined three-dimensional space, can control the position of the projection of the linear light sources are arranged rectangular in shape, filled with fine particles on a closed three-dimensional space is located at a right angle.

[0017] 所述充满微小颗粒的密闭三维空间包含自由活动的大量微小粉尘状颗粒,当颗粒数量足够多时,颗粒对光线的反射会形成类似漫反射的效果,并且不影响光线的前进,能够形成可视的光亮区域。 [0017] The fine particles fill the sealed space including the three-dimensional freedom of movement of a large number of fine dust-like particles, a long time when a sufficient number of particles, the particles form a similar effect on the diffuse reflection of light will be reflected, and does not affect the advance of the light, can be formed visible light region. 所述的微小粉尘状颗粒可以为标准大气压下,透光率为85%〜95%的烟雾状颗粒群。 The fine dusty particles may be at normal atmospheric pressure, light transmittance was 85 ~ 95% of the particles aerosolized.

[0018] 本发明中可控投影位置的线状光源为多个固定位置的线状光源群,或者一个高帧率二维视频投影设备。 [0018] In the present invention, the projection position controlled linear light source is a linear light source group of a plurality of fixed positions, or a high frame rate two-dimensional video projecting device.

[0019] 所述高帧率二维视频投影设备可以以普通视频显示帧率N倍的帧率输出视频图像,其中N表示原始三维视频被切面的次数。 The [0019] a high frame rate two-dimensional video projecting device may be displayed in normal video frame rate N times the frame rate of an output video image, where N represents the number of the original three-dimensional video is cut.

[0020] 本发明中当三维空间尺度较大时,还需要在高帧率二维视频投影设备与充满微小颗粒的密闭三维空间之间增加光学透镜以保证在整个显示空间范围内都处于良好的对焦状态。 [0020] In the present invention, when a large-scale three-dimensional space, but also needs to increase the optical lens between a high frame rate two-dimensional video projecting device and a three-dimensional confined space filled with the fine particles to ensure that the entire display space are in a good range focus state.

[0021] 本发明原理是利用高速投影方式将不同视觉深度的图像显示在空间不同位置,构成活动三维影像,观察者可在不同方位看到影像的表面和内部。 [0021] The principles of the present invention is the use of a high-speed projection of the images of different visual depth displayed in different spatial locations, constitute the three-dimensional moving images, a viewer can see the image of the inner surface and at different orientations.

[0022] 有益效果:本发明主要思想是将实际场景的三维实体以切面的方式离散化,每个切面用一个二维活动视频进行表示,通过在三维空间重建这一系列二维切面从而形成活动的三维实体场景显示效果,由此实现在任意视角观察到场景的真实三维实体活动图形显示。 [0022] Advantageous Effects: The main idea of ​​the present invention is a three-dimensional solid actual scene cut in a discrete manner, for each section is represented by a two-dimensional motion video, thereby forming a three-dimensional reconstruction of the events by the series of two dimensional slices surface the three-dimensional solid scene display, thereby realizing a real three-dimensional solid angle of view in any active graphic display of the scene observed. 该方法比现有的其他立体视觉产生方法更具可被接受,在医学影像处理、大屏幕视频广告、展览和宣传等方面有重要的应用前景,更有无法估计的市场商业价值,据申请人初步统计,如果公共场所里现有的二维图像显示器中的十分之一转化为本发明所述的三维显示系统,则市场前景巨大。 This method produces a stereoscopic vision than other existing methods may be more acceptable, have important applications in medical image processing, large-screen video advertising, exhibitions and publicity, the more impossible to estimate the market value of the business, according to the applicant preliminary statistics, if one-tenth of transforming public spaces existing two-dimensional image display of the present three-dimensional display system according to the invention, there is a huge market prospects.

附图说明 BRIEF DESCRIPTION

[0023] 下面结合附图和具体实施方式对本发明做更进一步的具体说明,本发明的上述和/或其他方面的优点将会变得更加清楚。 [0023] The present invention will be further detailed description in conjunction with the accompanying drawings and specific embodiments, the above and / or other aspects of the advantages of the present invention will become more apparent.

[0024] 图1a和图1b是本发明系统框架图。 [0024] Figures 1a and 1b of the present invention is a system framework of FIG.

[0025] 图2a和图2b是本发明所涉及的充满微小颗粒的密闭三维空间示意图。 [0025] Figures 2a and 2b are schematic filled with fine particles confined three-dimensional space according to the present invention.

[0026] 图3a、图3b和图3c是本发明显示效果图。 [0026] Figures 3a, 3b and 3c are showing the effects of the present invention.

具体实施方式:[0027] 如图1a和图1b所示,本发明公开了一种空间立体视频的显示系统,包括高帧率二维视频投影设备1、充满微小颗粒的密闭三维空间4、可控制投影位置的线状光源3以及一个协调系统工作的计算机2。 DETAILED DESCRIPTION: [0027] Figures 1a and 1b, the present invention discloses a video display system for three-dimensional space, comprising a closed three-dimensional space 4 a high frame rate two-dimensional video projecting device 1, filled with fine particles, can be controlling the projection position of a linear light source 3 and a computer system to coordinate the work of 2. 高帧率二维视频投影设备、充满微小颗粒的密闭三维空间、可控制投影位置的线状光源呈直角形排列,充满微小颗粒的密闭三维空间位于直角上。 High frame rate two-dimensional video projecting device, filled with fine particles confined three-dimensional space, can control the position of the projection of the linear light sources are arranged rectangular in shape, filled with fine particles on a closed three-dimensional space is located at a right angle. 所述高帧率二维视频投影设备与充满微小颗粒的密闭三维空间之间设有用于转换投影光焦距的光学透镜5。 5 is provided with an optical lens for converting the projected light between the focal length of a high frame rate two-dimensional video projecting device is filled with fine particles confined three-dimensional space. 所述可控制投影位置的线状光源可以由多个固定位置的线状光源群组成,如图1a所示;也可以由另外一个高帧率二维视频投影设备通过输出特定视频图像构成,如图1b所示。 The projection may be controlled by the position of the linear light source may be a linear light source composed of a group of a plurality of fixed positions, shown in Figure 1a; may be a high frame rate two-dimensional video projecting device by another video image composed by a particular output, shown in Figure 1b.

[0028] 本发明公开了一种空间立体视频的显示方法,包括以下步骤: [0028] The present invention discloses a method of displaying video three-dimensional space, comprising the steps of:

[0029] 步骤一,将普通帧率的三维视频数据分割为不同深度的多层普通帧率二维视频数据;所述的普通帧率二维视频的帧率为50〜60Hz。 [0029] Step a, the normal frame rate of video data is divided into three layers of different depths of the ordinary frame rate two-dimensional video data; frame rate of the ordinary two-dimensional video frame rate is 50~60Hz.

[0030] 步骤二,将不同深度的多层普通帧率二维视频数据重新组合成高帧率二维视频数据。 [0030] Step two, the multiple layers of different depths of the ordinary two-dimensional video data frame rate recombined into a high frame rate two-dimensional video data.

[0031] 步骤三,通过投影的方法将高帧率二维视频数据投射到充满微小颗粒的三维空间。 [0031] Step III by a method projection projecting high frame rate two-dimensional video data to three-dimensional space filled with fine particles.

[0032] 步骤四,从与投射方向垂直的方向向充满微小颗粒的三维空间投射线状光线,同时控制线状光线的投射位置与分割前二维视频数据前后的位置同步变化。 [0032] Step four, the linear light is projected to the three-dimensional space filled with fine particles from a direction perpendicular to the projection direction, while controlling the projection position of the linear light varies in synchronism with the position of the front longitudinal dividing two-dimensional video data.

[0033] 步骤一中将普通帧率的三维视频数据分割为不同深度的多层普通帧率二维视频数据可以采用平移体扫描方法,依靠平移运动构造出成像空间。 [0033] Step a common frame rate in the three-dimensional video data into multiple layers of different depths ordinary frame rate two-dimensional video data scanning method can be employed translational body, relying on the translational movement of an imaging configuration space. 即一个平面屏幕沿着垂直它平面的轴做往复运动,运动的幅度决定了成像空间的景深。 I.e., a flat screen plane along its axis perpendicular to the reciprocating motion, the amplitude of the motion determines the depth of field of the imaging space. 在每一个运动的瞬间,屏幕处于一个特定的位置,根据这个位置对要显示的三维场景进行切片,在屏幕运动的过程中,把二维切片投影到平移的屏幕上。 In each moment of a motion, the screen is in a particular position, slicing a three dimensional scene to be displayed according to this position, during the movement of the screen, the translation of the two-dimensional slices onto a screen. ·具体方法如下: · Specific methods are as follows:

[0034] 首先根据实际物体的相关信息进行三维重建得到由三角面片构成的只有表面信息的三维模型。 [0034] First, according to the information related to the actual three-dimensional reconstruction of the object surface to obtain three-dimensional model only information composed of triangular facets. 假定该三维模型大小和实际物体大小是线性放缩关系,设实际物体所乘的线性放缩因子为ξ (ξ <1),同时设三维模型x,y,z方向上的体素维数分别是X1、Y1、Z1,为方便三维模型上的像素与mXn颗粒的LED平面阵列对应,制作时保证Xl = m, Yl = η。 Assume the three-dimensional object model and the actual size is the size zoom linear relationship, the actual object provided a linear scaling factor is multiplied ξ (ξ <1), while the three-dimensional model disposed x, dimension of the voxel y, z directions, respectively, are X1, Y1, Z1, for the convenience of a planar array of LED and corresponding pixel mXn particles on the three-dimensional model, to ensure that Xl = m, Yl = η during production. 为获得其切片数据,首先根据事先制作的三维模型确定成像空间的景深Ζ、切片层数η,设最前面一层的坐标为Z1,则后面每层坐标为Zi = z^O1-lhZ/n,其中满足Z1-Z1 < Z,则Zi对应的实际屏幕的位置为Zi/ξ,如将切片看作位图,则像素在切片上的坐标位置,即为该像素在前述高帧率显示平面上的位置。 To obtain its slice data, first determines the three-dimensional model prepared in advance Ζ depth of field of the imaging space, slice layers [eta], the front layer disposed coordinates Z1, behind each of the coordinate Zi = z ^ O1-lhZ / n which satisfies Z1-Z1 <Z, then the actual screen corresponding to the position Zi is Zi / ξ, as will be seen bitmap slice, a coordinate position of the pixel in the slice, namely the pixel in the high frame rate display plane position. 接着可以依次取一个Zi,作一切平面ζ = Zi,计算其与三维模型每个三角面片的交点,而后进行矩阵映射、纹理插值计算,最后得到整个切片上的图像数据。 May then take a turn Zi, all for the plane ζ = Zi, calculate its intersection with the three-dimensional model of each face of the sheet, and then performs matrix mapping, texture interpolation calculation, to obtain the final image data on the entire slice.

[0035] 步骤一中可以采用openGL工具获得二维切片数据,其很好的实现缩放、平移、旋转变换,以及纹理插值、裁剪。 [0035] Step a tool may be employed in a two-dimensional slice data openGL, which achieve good scaling, translation, rotation transformation, interpolation and texture, cutting. 获得数据的策略主要是通过设定好需要的远近裁剪平面,使得每次可视空间为三维模型空间内的一个平行于正投影平面的薄切面。 Policy data obtained by setting the distance mainly need good clipping plane, such that each time a view volume is a thin section in a plane parallel to the orthographic projection of a three-dimensional model space.

[0036] 步骤1:打开openGL,设置投影方式为正投影,读取三维网格数据,进行纹理贴图,作图显示。 [0036] Step 1: Open openGL, set to orthographic projection, three-dimensional mesh data read, texture mapping, mapping display. 调整视口大小,确保可以容得下整个三维模型。 Adjust the size of the viewport, make sure you can accommodate the entire three-dimensional model.

[0037] 步骤2:调用glOrtho函数设置可视空间。 [0037] Step 2: calling the function provided glOrtho visual space. 其中,近平面平行于XoY平面,即方程为Z = Z1的切面,而远平面为方程为z = zi+dz的切面,Z1为切片的位置,dz为切片的厚度,厚度根据实际需要,可取一个或多个像素宽。 Wherein, near a plane parallel to XoY plane, i.e. equation Z = Z1 of the section, and far plane equation z = zi + dz facets, Zl is the position of the slice, dz is the thickness of the slice, the thickness according to actual needs, it is desirable one or more pixels wide.

[0038] 步骤3:每层切片绘制后,调用glReadPixels函数,读取正投影后屏幕上各个点的像素值,建表,保存每个点的像素值,以及位置坐标,当然很多点是绘图窗口界面的背景点,步骤I中设定背景点像素值为(255,255,255)。 [0038] Step 3: pixel value of each sliced ​​draw, the function call glReadPixels read pixel value of each point on the forward projection screen, construction of the table is maintained for each point, and the position coordinates of the drawing window is of course a number of points bACKGROUND point interface, in step I set point background pixel values ​​(255,255,255).

[0039] 步骤4:合理消隐。 [0039] Step 4: blanking reasonable. 从投影方向看去,前面切片上点(Xl,Y1)上出现了三维模型表面上的像素,那么所有后面的切片上对应点(Xl,yi)的像素就该忽略,即从表中剔除。 Viewed from the projection direction, in front of the slice point (Xl, Y1) on a pixel appears on the surface of the three-dimensional model, then the point (Xl, yi) in respect of a corresponding pixel on ignore all subsequent sections, i.e., removed from the table. 至于如何判断某点像素是来至于三维模型表面,还是窗口界面的白色背景点,方法是,在步骤I读取三维网格数据时,如果某点像素值是(255,255,255)那么修改为(255,255,244),显然对纹理显示无大影响,但却方便了判断。 As for how to determine a point pixel is a white background as to be three-dimensional model surface point, or window interface, the method, in step I three-dimensional mesh data is read, if the pixel value is a point (255,255,255) the modifier is (255,255,244), apparently showed no significant impact on the texture, but easy to judge.

[0040] 步骤5:上述步骤完成后,将一旋转矩阵作用于三维模型以改变视角,绕X,y, ζ轴的旋转矩阵(旋转角Φ)分别为: [0040] Step 5: After completion of the above steps, a rotation matrix acting on the three-dimensional model viewing angle changes around X, y, ζ axis rotation matrix (the rotation angle [Phi]) are:

Figure CN102361497BD00061

[0044] 实际操作则可以调用glRotate函数完成计算。 [0044] The actual operation is complete the calculation function can call glRotate. 重复前面步骤,可以获得另一视角下,一组三维切片数据。 Repeat the previous step, at another viewing angle can be obtained, a set of three-dimensional data slice.

[0045] 步骤6:在提取切片的过程中,可以发现因为取的dz只有几个像素宽很小,故遗漏了ZH+dz到Zi这块区间,一般而言,因为切割层数比较多,故这块区间深度很小,即和dz是同等数量级的,区间内的物体沿着观察者视线方向正投影,得到的二维图像相比整个切片较小可忽略。 [0045] Step 6: In the process of extracting the slice can be taken as found in only a few pixels wide dz is small, so the missing ZH + dz Zi to this range, in general, because the cutting more layers, therefore, the depth of this interval is very small, i.e., dz, and are of equal magnitude, in the interval orthographic projection of the object along the line of sight direction of the viewer, the two-dimensional image slices obtained is small compared to the entire negligible. 但也不排除区间内存在着和投影方向垂直或近乎垂直的特殊面,有它投影得到的二维图像相比整个切片较大,不可忽略,为解决此问题可以令dz = Z2-Z1,而且正是因为结合了openGL这样的编程工具,才能够保证在dz的取值变大时不增加程序的复杂度并且不降低程序的计算速度。 Particular but not exclusively in the vertical plane memory section and the projection direction or almost vertical, two-dimensional projected image obtained as compared to its large entire slice, can not be ignored, can solve this problem so dz = Z2-Z1, and It is because such a combination openGL programming tools, it can be guaranteed without increasing the complexity of the program when the value of dz becomes large and does not reduce the calculation speed of the program. 由此便获得三维立体模型每个二维切片的数据。 Thus they obtain three-dimensional data model for each 2D slice.

[0046] 本步骤可以采用任何其他将三维视频流分割为多层二维视频数据的方法替代而不影响本发明的实施。 [0046] The present step can be implemented in any other three-dimensional video stream into a multi-layer two-dimensional video data without affecting the alternative method of the present invention is employed.

[0047] 本发明中,步骤二,将不同深度的多层普通帧率二维视频数据重新组合成高帧率二维视频数据的方法具体如下。 [0047] In the present invention, step two, the multiple layers of different depths of the ordinary two-dimensional video data frame rate recombined into a high frame rate two-dimensional video data method follows.

[0048] 设每层二维视频数据帧率为f,共有N层,视频长度为s秒,则每一层都有fs帧二维数据,将每一层的数据帧编号为Fu (其中i表示层数,从1...N取值;i表示帧数,从1...M取值,M = fs),则排序后的二维图像帧序列的顺序为Fn,F21, • •.,FnijF12, F22,...,FX,...,Fim, F2m,...,Fnm,则上述二维图像帧序列可构成帧率为F的二维视频。 [0048] provided on each two-dimensional video data frame rate is f, a total of N layers, the length of s seconds of video, each layer has the two-dimensional data frame fs, each layer data frame number Fu (where i denotes the number of layers, the value from 1 ... N; I represents the number of frames, the order of the two-dimensional image frame sequences from the value 1 ... M, M = fs), the order of Fn, F21, • • ., FnijF12, F22, ..., FX, ..., Fim, F2m, ..., Fnm, the two-dimensional image frame sequence F may be configured as a two-dimensional video frame rate.

[0049] 本发明中,步骤三,通过投影的方法将高帧率二维视频数据投射到充满微小颗粒的三维空间的时候,采用了DLI公司(美国Digital Light Innovations)的高速投影设备,该设备可以达到最高每秒291〜22727帧的视频输出速率。 [0049] In the present invention, step three, by a method projection projecting high frame rate two-dimensional video data to three-dimensional space when filled with fine particles, using a DLI Inc. (Digital Light Innovations) high-speed projection apparatus, the apparatus you can achieve the highest output rate of the video frames per second 291~22727. 普通二维视频的帧率为50〜60Hz,因此采用该设备可以将三维视频分割5〜400层。 Ordinary two-dimensional video frame rate is 50~60Hz, so three-dimensional video using the apparatus may be divided 5~400 layer. 如图2b所示,扇形投影输出时,不同距离的影像需要调节光学镜头以达到正确的对焦状态,而本发明实施例中的三维空间场景尺度达到了2米,因此在光学镜头后面增加了会聚光路,使得输出光线在三维空间场景内相互平行,如图2a所示,为了显示本发明效果,图2只能以灰度形式表现。 2b, when the fan projected output image from the different lens needs to be adjusted to achieve the correct optical focus state, while the three-dimensional scene scale embodiment of the present invention reached 200 meters behind the optical lens thus increased convergence the optical path, so that the output light parallel to each other in three dimensional space scene shown in Figure 2a, to show the effect of the present invention, FIG 2 only form showed in gray.

[0050] 本实施例中采用向有机玻璃空间中灌入液氮液体,利用液氮在室温下气化后形成烟雾状气体颗粒的方法来实现充满微小颗粒的三维空间。 [0050] The present embodiment uses a liquid nitrogen poured into plexiglass space, the process gas aerosolized particles formed by gasification of liquid nitrogen at room temperature to achieve a three-dimensional space filled with minute particles. 具体方法如下: Specific methods are as follows:

[0051] 在长宽高为2米、I米、I米的有机玻璃体的底层中部设有一宽10厘米的金属槽,两端开口,金属槽一端略深(5厘米),一端略浅(3厘米),从略浅一端注入液氮液体,另一端回收剩余液氮,液氮在流动过程中气化形成白色烟雾状气体,在室温下整个空间透光率约为90%;同时由于液氮气化后比重略低于空气,因此在有机玻璃空间顶部留有约20余个直径为I厘米的小孔以平衡整个空间内气压。 [0051] 2 meters in length and breadth, I m, I m plexiglass bottom central body is provided with a metal trough 10 cm wide, open at both ends, one end of the metal somewhat deeper groove (5 cm), slightly shallow end (3 cm), omitted shallow end of the injection of liquid nitrogen, the other end of collecting excess liquid nitrogen, vaporized liquid nitrogen forming white smoke-like process gas flow, at room temperature over the spatial transmittance of about 90%; the same time as the liquid nitrogen gas slightly lower than the specific gravity of the air, so the space left at the top of the plexiglass than about 20 cm in diameter I orifice to balance air pressure across the space.

[0052] 当然,也可以采用其他方式构成烟雾状环境甚至可以采用透光率在70 %〜90 %的悬浊液或乳浊液实现。 [0052] Of course, other means may be employed fumed environment configuration can be employed even in a transmittance of 70% ~ 90% of a suspension or emulsion implemented.

[0053] 本步骤可以采用任何其他方式解决大尺度空间对焦的问题而不影响本发明的实施。 [0053] The present step may be employed in any other way to solve the problem of large-scale space without affecting the focus of the embodiment of the present invention. 本步骤可以采用任何其他方式构成充满微小颗粒的三维空间而不影响本发明的实施。 This step can be configured in any other manner in three-dimensional space filled with minute particles without affecting the embodiment of the present invention.

[0054] 本发明中,步·骤四是从与投射方向垂直的方向向充满微小颗粒的三维空间投射线状光线,同时控制线状光线的投射位置与分割前二维视频数据前后的位置同步变化。 [0054] In the present invention, the step-step four linear light is projected to the three-dimensional space filled with the fine particles from the direction perpendicular to the projection direction, while controlling the position of the front and rear two-dimensional video data before the division of the linear light projection position synchronization Variety. 其中所述可控制投影位置的线状光源可以由多个固定位置的线状光源群组成,如图1a所示;也可以由另外一个高帧率二维视频投影设备通过输出特定视频图像构成,如图1b所示。 Wherein the projection position can be controlled by the linear light source may be a linear light source composed of a group of a plurality of fixed positions, shown in Figure 1a; may be by another high frame rate two-dimensional video projecting device configured by outputting a specific video image , shown in Figure 1b.

[0055] 本实施例中采用多个固定位置的线状光源群组成,每个线光源通过计算机控制轮流点亮或关闭,从而实现顺序扫描式的发光。 [0055] The present embodiment uses a plurality of fixed positions of the linear light source group of embodiments, each linear light sources controlled by the computer turns on or off, enabling sequential scanning of the light emission.

[0056] 本实施例实现在任意视角观察到场景的真实三维实体活动图形显示,效果如图3a〜图3c所示(为了显示本发明效果,图3a〜图3c只能以灰度形式表现)。 [0056] The present real physical activity pattern at an arbitrary three-dimensional perspective on the embodiment implements a display scene, the effect shown in FIG. 3c 3a~ (to show effect of the present invention, FIG. 3c 3a~ FIG form can only be shown in gray) . 本实施例中,平面屏幕沿垂直于它的轴作往复运动,每一运动瞬间与正投影线状光束相交从而形成三维场景的一个薄切片;运动的幅度决定成像空间的深景,正投影线状光束大小决定成像截面的大小,平面屏幕运动位置与线状光束根据原三维视频数据信息同时变化,由此再现出原三维实体场景。 In this embodiment, the screen in the plane perpendicular to its axis of reciprocation, each motion moment and the orthogonal projection of the linear beam intersect to form a thin slice of the three-dimensional scene; deep scene determined magnitude of the motion of the imaging space, orthogonal projection of line shaped beam size determines the size of the imaging section changes, flat screen according to the moving position of the linear beam at the same time the original three-dimensional video data, thereby reproducing the original three-dimensional scene entity. 图3a为平面屏幕运动到三维空间的中间位置时与线状光束相交所得的三维场景的薄切片;图3b为平面屏幕运动到三维空间前端位置与线状光束相交所得的三维场景的薄切片;图3c为平面屏幕运动到后端位置与线状光束相交所得的三维场景的薄切片。 The resulting thin sections of the three-dimensional scene of the linear beam intersects Figure 3a is moved to an intermediate position of the three-dimensional space for the flat screen; FIG. 3b is moved to the front end of the three-dimensional spatial position of the flat screen is three-dimensional scene resulting thin sections intersect with the linear beam; FIG. 3c thin sections to the rear end position of the linear beam intersects the resulting three-dimensional scene as a moving flat screen.

[0057] 本发明提供了一种空间立体视频的显示方法及其显示系统,具体实现该技术方案的方法和途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 [0057] The present invention provides a method of displaying video three-dimensional space and a display system, particularly to achieve many ways and means of the technical solution, the above embodiment is merely a preferred embodiment of the present invention, it should be noted that in the art for of ordinary skill in the art, without departing from the principles of the invention premise, you can make various improvements and modifications, and these improvements and modifications should be the scope of the invention. 本实施例中未明确的各组成部分均可用现有技术加以实现。 The various components are not explicitly described in this embodiment can be realized by the prior art.

Claims (1)

  1. 1.一种空间立体视频的显示方法,其特征在于,包括以下步骤: 步骤一,将普通帧率的三维视频数据分割为不同深度的多层普通帧率二维视频数据; 步骤二,将不同深度的多层普通帧率二维视频数据重新组合成高帧率二维视频数据; 步骤三,将高帧率二维视频数据投影到充满烟雾状颗粒的三维空间; 步骤四,从与投射方向垂直的方向向充满微小颗粒的三维空间投射线状光线,同时控制线状光线的投射位置与分割前二维视频数据前后的位置同步变化; 将普通帧率的三维视频数据分割为不同深度的多层普通帧率二维视频数据采用平移体扫描方法,依靠平面屏幕平移运动构造出成像空间,根据平面屏幕位置对要显示的三维场景进行切片,在平面屏幕运动的过程中,把二维切片投影到平移的平面屏幕上;具体包括:根据实际物体的信息进行三维重建得到由 1. A method of displaying video three-dimensional space, characterized by comprising the following steps: a, the frame rate of an ordinary three-dimensional video data into multiple layers of different depths of the ordinary frame rate two-dimensional video data; step two, different the multilayer depth ordinary two-dimensional video data frame rate recombined into a high frame rate two-dimensional video data; step three, the high frame rate two-dimensional video data to full aerosolized particles projected three-dimensional space; step four, from a projection direction direction perpendicular to the projected three-dimensional space filled with fine particles of the linear light, while controlling the position of the front and rear two-dimensional video data before dividing and the projection position of the linear light changes in synchronization; ordinary frame rate 3D video data is divided into a plurality of different depths data layer using ordinary two-dimensional video frame rate translational body scanning method relies on constructing a translational movement flat screen imaging volume, slicing a three dimensional scene to be displayed according to the screen plane position, during the movement of the flat screen, two-dimensional projection slice translated to the screen plane; comprises: a three-dimensional reconstruction of the object based on the information obtained from the actual 角面片构成的只有表面信息的三维模型,设实际物体所乘的线性放缩因子为I, I〈1,同时设三维模型X,1,Z方向上的体素维数分别是X1、YU Ζ1,制作时保证三维模型上的像素与mXn颗粒的LED平面阵列对应,gpXl=m, Yl=n ;确定成像空间的景深Ζ、切片层数η,设最前面一层的坐标为Z1,则后面每层坐标为,Zi=ZjO1-1hZAi,其中满足Z1-Z^Z,则Zi对应的实际屏幕的位置为Zi/ξ ,依次取一个Zi作一切平面Z=Zi,计算其与三维模型每个三角面片的交点,而后进行矩阵映射、纹理插值计算,最后得到整个切片上的图像数据; 采用openGL工具获得二维切片数据,通过设定的远近裁剪平面,使得每次可视空间为三维模型空间内的一个平行于正投影平面的薄切面; 步骤二将不同深度的多层普通帧率二维视频数据重新组合成高帧率二维视频数据,包括以下步骤: 如果每层二维视频数据帧率 Only the surface of the three-dimensional model information of the corner patch configuration, provided the actual object multiplied linear scaling factor I, I <1, while the three-dimensional model set X, 1, voxel dimension in the Z-direction are X1, YU Ζ1, pixel mXn particles ensure three-dimensional model corresponding to the production of a planar array of LED, gpXl = m, Yl = n; Ζ determining the depth of field of the imaging space, slice layers [eta], the front layer disposed coordinates Z1, the behind each coordinate, Zi = ZjO1-1hZAi, which satisfies Z1-Z ^ Z, the actual screen corresponding to the position Zi is Zi / ξ, taking a turn for all Zi plane Z = Zi, calculate each of the three-dimensional model intersection of two triangular facets, then a matrix mapping, texture interpolation calculation, and finally obtain the image data on the entire slice; openGL tools using a two-dimensional slice data, near and far clipping planes through the set, such that each time three-dimensional visualization space a plane parallel to the orthographic projection of the model space in the thin section; step two layers of different depths of the ordinary two-dimensional video data frame rate recombined into a high frame rate two-dimensional video data, comprising the steps of: if each two-dimensional video data Frame Rate f,共有N层,视频长度为s秒,则每一层都有M帧二维数据,M=fs,将每一层的数据帧编号为Fu,其中i表示层数,从I...N取值;j表示帧数,从I…M取值,则排序后的二维图像帧序列的顺序为Fn,F21, -,Fni, F12, F22, -,Fn2,…,F1m,F2m,…,Fnm,将上述二维图像帧序`列构成帧率为F的二维视频; 步骤三采用DLP投影机投影; 步骤四所述可控制投影位置的线状光源采用多个固定位置的线状光源群,或者采用一个高帧率二维视频投影设备通过输出视频图像。 F, a total of N layers, the length of s seconds of video, each layer has the two-dimensional data frame M, M = fs, each layer data frame number Fu, where i represents the number of layers, from the I ... N value; J represents the number of frames, the order of two-dimensional images from the frame sequence I ... M values, the order of Fn, F21, -, Fni, F12, F22, -, Fn2, ..., F1m, F2m, ..., Fnm, the two-dimensional image frame sequence `configured column two-dimensional video frame rate of F; DLP projector using three step projection; said step of controlling the projection position four may be a linear light source using a plurality of fixed positions of the line light source group, or with a high frame rate two-dimensional video image projecting device via the video output.
CN 201110360364 2011-11-15 2011-11-15 Display method and display system for spatial three-dimensional video CN102361497B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110360364 CN102361497B (en) 2011-11-15 2011-11-15 Display method and display system for spatial three-dimensional video

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110360364 CN102361497B (en) 2011-11-15 2011-11-15 Display method and display system for spatial three-dimensional video

Publications (2)

Publication Number Publication Date
CN102361497A true CN102361497A (en) 2012-02-22
CN102361497B true CN102361497B (en) 2013-10-23

Family

ID=45586751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110360364 CN102361497B (en) 2011-11-15 2011-11-15 Display method and display system for spatial three-dimensional video

Country Status (1)

Country Link
CN (1) CN102361497B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327353A (en) * 2013-05-24 2013-09-25 无锡商业职业技术学院 Stereoscopic imaging device
CN104689674B (en) * 2013-12-05 2017-09-05 浙江大学 Particle aggregation method based on generalized quantum traps ultrasound, aggregation and the aggregation processing method processing system
CN104135655B (en) * 2014-07-10 2016-02-03 南京大学 A method for the stereoscopic display for photoacoustic imaging
CN105262969A (en) * 2015-11-20 2016-01-20 广景视睿科技(深圳)有限公司 Combined projection method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1269103A (en) 1997-06-28 2000-10-04 英国国防部 Autostereoscopic display
CN101754037A (en) 2009-06-17 2010-06-23 中国科学院自动化研究所 Vivid 3D imaging engine system and projection method
CN101859061A (en) 2010-04-19 2010-10-13 牛培行;牛培利 Screen-free display three-dimensional imaging device
CN102055996A (en) 2011-02-23 2011-05-11 南京航空航天大学 Real three-dimensional display system and method based on space layer-by-layer scanning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1269103A (en) 1997-06-28 2000-10-04 英国国防部 Autostereoscopic display
CN101754037A (en) 2009-06-17 2010-06-23 中国科学院自动化研究所 Vivid 3D imaging engine system and projection method
CN101859061A (en) 2010-04-19 2010-10-13 牛培行;牛培利 Screen-free display three-dimensional imaging device
CN102055996A (en) 2011-02-23 2011-05-11 南京航空航天大学 Real three-dimensional display system and method based on space layer-by-layer scanning

Also Published As

Publication number Publication date Type
CN102361497A (en) 2012-02-22 application

Similar Documents

Publication Publication Date Title
Schmalstieg et al. Studierstube-an environment for collaboration in augmented reality
US5822117A (en) Systems for three-dimensional viewing including first and second light polarizing layers
US6388666B1 (en) System and method for generating stereoscopic image data
US6583808B2 (en) Method and system for stereo videoconferencing
US5905499A (en) Method and system for high performance computer-generated virtual environments
Bimber et al. Modern approaches to augmented reality
US6481849B2 (en) Autostereo projection system
US20090009593A1 (en) Three dimensional projection display
US6595644B2 (en) Dynamic time multiplexed holographic screen with 3-D projection
US20100253766A1 (en) Stereoscopic Device
US20020080094A1 (en) Teleportal face-to-face system
US20090115783A1 (en) 3d optical illusions from off-axis displays
US20130057644A1 (en) Synthesizing views based on image domain warping
US20090219283A1 (en) Non-linear depth rendering of stereoscopic animated images
US8179424B2 (en) 3D display method and apparatus
US20050219694A1 (en) Horizontal perspective display
Schmidt et al. Multiviewpoint autostereoscopic dispays from 4D-Vision GmbH
US20060012675A1 (en) Three dimensional interaction with autostereoscopic displays
WO2005060271A1 (en) Method and apparatus for generating a stereoscopic image
Zilly et al. Production rules for stereo acquisition
Agrawala et al. Artistic multiprojection rendering
US20100110069A1 (en) System for rendering virtual see-through scenes
US20040135744A1 (en) Virtual showcases
US20110216160A1 (en) System and method for creating pseudo holographic displays on viewer position aware devices
CN101266546A (en) Method for accomplishing operating system three-dimensional display and three-dimensional operating system

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01