New! View global litigation for patent families

CN102346380B - Method for optimizing photoetching configuration parameters based on normalization steepest descent method - Google Patents

Method for optimizing photoetching configuration parameters based on normalization steepest descent method Download PDF

Info

Publication number
CN102346380B
CN102346380B CN 201110353893 CN201110353893A CN102346380B CN 102346380 B CN102346380 B CN 102346380B CN 201110353893 CN201110353893 CN 201110353893 CN 201110353893 A CN201110353893 A CN 201110353893A CN 102346380 B CN102346380 B CN 102346380B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
method
optimizing
photoetching
descent
configuration
Prior art date
Application number
CN 201110353893
Other languages
Chinese (zh)
Other versions
CN102346380A (en )
Inventor
李艳秋
郭学佳
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明提供一种基于归一化最速下降法光刻配置参数的优化方法,具体步骤为:确定欲优化的n种光刻配置参数,确定用于评价光刻性能的m种光刻性能评价指标yj,获取最速下降方向,并对光刻配置参数进行归一化,针对光归一化后的刻配置参数{xi}k,在其所对应的变化范围{[ui,vi]}k内,沿其对应的最速下降方向{di}k进行一维搜索,得到该方向最小的F值,记为Fmin,获取Fmin对应的光刻配置参数{xi}k,并将{xi}k作为下一次循环的光刻配置参数,当循环次数是否达最大或满足搜索精度时,结束优化。 The present invention provides a method of optimization based on the normalized photolithography configuration parameters steepest descent method, the specific steps as follows: m kinds of lithographic performance evaluation of n is determined to be optimized lithographic configuration parameters, determining the lithographic performance evaluation yj, acquiring the steepest descent direction, and the lithographic configuration parameters normalized, the configuration parameters for the engraved light normalized {xi} k, it corresponds to the range {[ui, vi]} k, which corresponds to the direction of steepest descent {di} k one-dimensional search, the direction F to obtain the minimum value, denoted Fmin, photolithography obtain Fmin corresponding to the configuration parameters {xi} k, and as the next {xi} k lithography configuration parameters of the cycle, when the number of cycles of the largest whether or satisfy the search precision, end of the optimization. 本发明统筹考虑各种光刻评价指标,通过构造具有多种光刻性能评价指标的评价函数,实现对优化结果进行评价,因此使得优化后的光刻配置参数具有很好的光刻性能。 The present invention and consider a variety of lithographic evaluation, by structuring the plurality of evaluation function lithographic performance evaluation index, to achieve optimal results for the evaluation, so that the optimized configuration parameter photolithography having a good lithographic performance.

Description

基于归一化最速下降法光刻配置参数的优化方法 Optimization of the normalization of steepest descent method based on the configuration parameters of the lithography

技术领域 FIELD

[0001] 本发明涉及一种基于归一化最速下降法的光刻配置参数优化方法,属于光刻机配置参数协同优化设计领域。 [0001] The present invention relates to a method for optimizing a lithographic configuration parameters normalized based on the steepest descent method, lithography configuration parameters belonging collaborative optimization design.

背景技术 Background technique

[0002] 光学光刻是光刻机用光学投影曝光的方法将掩模板上的电路器件结构图形刻蚀到硅片上的过程。 [0002] Optical lithography is a circuit pattern device configuration method for optical projection lithography exposure mask plate etching process to the silicon wafer. 光刻机主要由光源、照明系统、掩模台、投影物镜以及硅片工件台五部分组成。 Lithography light source is mainly composed of five parts, an illumination system, a mask table, a projection lens and a workpiece wafer stage components. 为了实现良好的光刻性能,达到较大的光刻焦深,需要合理配置光刻机各部分参数,如投影物镜数值孔径NA的大小、照明相干因子Sigma的值、偏振光类型、光刻胶厚度以及掩模Bias大小等。 To achieve good lithographic performance, achieve greater depth of focus of photolithography, a logical configuration of each part of lithography parameters, such as the size of the numerical aperture NA of the projection objective, the illumination coherence factor value of Sigma, polarized type photoresist Bias size and thickness of the mask.

[0003] 评价光刻性能的指标主要有:图形对比度Contrast、归一化对数斜率NILS以及光刻焦深DOF等。 Specification [0003] Evaluation of lithographic performance are: Graphics contrast Contrast, normalized logarithmic slope NILS lithographic depth of focus DOF ​​and the like. 光刻焦深是评价光刻系统性能的主要参数之一,光刻焦深定义为:在一定的曝光剂量变化范围EL内,光刻胶图形在一定的尺寸误差、侧壁角、光刻胶损失的约束条件下,所能实现的最大离焦量。 Lithographic depth of focus is the main parameter for evaluating performance of a lithographic, photolithographic depth of focus is defined as: within a certain range of the EL exposure dose variation, resist pattern a certain dimensional error, sidewall angle, the photoresist under the constraint loss, the maximum amount of defocus can be achieved. 光刻焦深越大,光刻性能越好。 Lithography depth of focus, the better the lithographic performance.

[0004] 光刻配置参数优化是合理的配置光刻系统中器件结构参数、曝光工艺参数、分辨率增强技术(离轴照明、相移掩模、光学临近效应校正)、工艺叠层参数等多个系统参数,统筹考虑不同因素在其不同限定条件下的约束,以实现最优的光刻性能。 [0004] The lithography configuration parameter optimization is reasonable configuration lithography system structure parameters, exposure parameters, the resolution enhancement technology (off-axis illumination, phase shifting masks, optical proximity effect correction), and other process parameters laminate system parameters, and consider different factors in their different constraints defined conditions, to achieve optimal lithographic performance.

[0005] 当前,已有很多优化光刻配置参数的方法(李艳秋等,光学参数配置对ArF光刻性能影响研究[J].电子工业专用设备,2004,33 (4):36-39.)。 [0005] Currently, many prior method of optimizing lithographic configuration parameters (Li Yan Qiu et al., Effect of the optical lithographic performance parameters for ArF [J] Electronic equipment, 2004,33 (4): 36-39.) . 但是,当前的光刻配置参数优化方法仅限于对一个或两个光刻配置参数的优化,要使光刻机的性能达到最优,光刻机中每个参数均应合理配置;同时,当前的研究主要应用遍历仿真的方法确定光刻配置参数,计算量非常大,且精度低,难以找出最优的光刻配置参数。 However, the current configuration parameter optimization photolithography method is limited to optimize a lithography or two configuration parameters, to make the optimal performance of the lithographic machine, the lithography machine configuration for each parameter should be reasonable; the same time, the current the main application of research methods to traverse the lithography simulation to determine the configuration parameters, the calculation is very large, and low precision, lithography is difficult to find the optimal configuration parameters.

发明内容 SUMMARY

[0006] 本发明的目的是提供一种基于归一化最速下降法光刻配置参数的优化方法;该方法同时对多种光刻配置参数进行优化配置,可使优化后的光刻机达到良好的光刻性能,且优化效率高。 [0006] The object of the present invention is to provide an optimization method based on the normalized lithography configuration parameters steepest descent; the method of plural kinds of configuration parameters to optimize the lithography configuration, optimization of the lithography machine can achieve good high lithographic performance and optimize efficiency.

[0007] 实现本发明的技术方案如下: [0007] The technical solution of the present invention to achieve the following:

[0008] 一种基于归一化最速下降法光刻配置参数的优化方法,具体步骤为: [0008] An optimization method for normalizing the steepest descent method based on photolithography configuration parameters, the specific steps:

[0009] 步骤101、确定欲优化的η种光刻配置参数,针对每一种光刻配置参数选定一初始值构成IXn维矩阵(Sj1 = {s1; s2, L, SnI1, i = {1,2, L, η};确定每种光刻配置参数的变化范围(Si e [ai; bj} = {[a^bj, [a2,b2]L, [an, bn]},确定每种光刻配置参数用于求解差商的归一化差值{AXie (0,1]},其中|AXi| << I ;给定优化精度允许误差ε >0,最大一维搜索次数k_,并令循环次数k = I ; [0009] Step 101, it is determined to be an optimized configuration parameters η species photolithography, the initial value of a selected one-dimensional matrix configuration IXn (Sj1 = {s1 configuration parameters for each of a lithographic; s2, L, SnI1, i = {1 , 2, L, η}; determining the variation range of each parameter of the lithography configuration (Si e [ai; bj} = {[a ^ bj, [a2, b2] L, [an, bn]}, determined for each lithography configuration parameters for solving difference quotient normalized difference {AXie (0,1]}, where | AXi | << I; optimize accuracy given tolerance ε> 0, the maximum number of one-dimensional search k_, and so that the number of cycles k = I;

[0010] 步骤102、确定用于评价光刻性能的m种光刻性能评价指标y」,j = {l,2,L,m},并m [0010] Step 102, determining the lithographic performance evaluation of m types of lithographic performance evaluation index y ', j = {l, 2, L, m}, and m

构造光刻性能综合评价函数 Construction lithographic performance evaluation function

Figure CN102346380BD00061

,其中L为针对各光刻性能评价指标设定的比 Wherein L is set for each ratio of lithographic performance evaluation

;=1 ; = 1

重值; A weight value;

[0011] 步骤103、对循环次数k进行判断,若k ( kmax,则进入步骤104,若k > kmax,则进入步骤109 ; [0011] Step 103, the determination of the number of cycles k, if k (Kmax, the process proceeds to step 104, if k> kmax, the process proceeds to step 109;

[0012] 步骤104、将光刻配置参数IsJk归一化,即令{x丄Ud,即集合IxJk中 [0012] Step 104, the configuration parameters of the lithography IsJk normalization, and even if {x Shang Ud, i.e., the set IxJk

L i J k L i J k

的每一元素的范围都在O至I之间; Range of each element are between the O to I;

[0013] 步骤105、针对光刻配置参数IxJk计算其差商,获取最速下降方向{屯}, [0013] Step 105, for calculating the difference IxJk lithography configuration parameter provider, acquiring the steepest descent direction Tun {},

Figure CN102346380BD00062
Figure CN102346380BD00063

维矩阵; Dimensional matrix;

、 Jk , Jk

[0014] 步骤106、对Il {dJJI进行判断,当判定Il {dJJI ( ε,进入步骤107,否则进入步骤109,其中Il Il为取模运算; [0014] Step 106, for Il {dJJI judgment, when it is determined Il {dJJI (ε, proceeds to step 107, otherwise proceeds to step 109, where Il Il is a modulo operation;

[0015] 步骤107、针对光刻配置参数IxJk,根据其对应的最速下降方向{djk更新其所对应的一维搜索变化范围为(Xi e [Ui, Vi]}k,其中{[Ui,ViBk中每一元素的范围都在O至I之间; [0015] Step 107, the configuration parameters for the lithography IxJk, in accordance with the corresponding direction of steepest descent {djk update one-dimensional search range of its corresponding (Xi e [Ui, Vi]} k, where {[Ui, ViBk range of each element are between the O to I;

[0016] 步骤108、针对光刻配置参数{xjk,在其所对应的变化范围{[Ui,ViJIk内,沿其对应的最速下降方向WJk进行一维搜索,得到该方向最小的F值,记为Fmin,获取Fmin对应的光刻配置参数IxJk,并将IxJk作为下一次循环的光刻配置参数{Si}k,令k = k+Ι,返回步骤103。 [0016] Step 108, the configuration parameters for the lithography {xjk, {[Ui, the ViJIk, one-dimensional search along the steepest descent direction corresponding WJk in its corresponding range, the direction F to obtain the minimum value, denoted by Fmin is, photolithography obtain Fmin corresponding to the configuration parameters IxJk, and arranged as the next cycle IxJk lithographic parameters {Si} k, so that k = k + Ι, returns to step 103.

[0017] 步骤109、输出最优光刻配置参数{Xi}k,以及{xjk所对应的F值。 [0017] Step 109, the output of the optimum configuration parameters photolithography {Xi} F value k, and the corresponding {xjk.

[0018] 有益效果 [0018] beneficial effects

[0019] 本发明统筹考虑各种光刻评价指标,通过构造具有多种光刻性能评价指标的评价函数,实现对优化结果进行评价,因此使得优化后的光刻配置参数具有很好的光刻性能。 [0019] The present invention and consider a variety of lithographic evaluation, by structuring the plurality of evaluation function lithographic performance evaluation index, to achieve optimal results for the evaluation, so that the configuration parameters optimized lithography has good lithography performance.

[0020] 同时,本发明通过最速下降优化算法确定每一光刻配置参数的最速下降方向,并沿最速下降方向对光刻性能进行优化,获取具有最优光刻性能的光刻配置参数,因此本发明可以快速有效地优化得出最优的光刻配置参数,并有较高的精度。 [0020] Meanwhile, the present invention is by a steepest descent optimization algorithm determines the steepest descent direction of each of the lithography configuration parameters, and to optimize the lithographic performance in the direction of steepest descent, photolithography obtain optimal lithographic performance with configuration parameters, and therefore the present invention can be obtained quickly and efficiently optimize the optimum configuration parameters of the lithography, and has a high accuracy.

附图说明 BRIEF DESCRIPTION

[0021] 图1为基于最速下降法的光刻配置参数优化方法流程图。 [0021] FIG. 1 is a flowchart based on the steepest descent method lithography configuration parameter optimization method.

[0022] 图2为搜索范围与最速下降方向、迭代光刻配置参数点关系图。 [0022] FIG. 2 is a search range with the steepest descent direction, photolithography iterative configuration parameter diagram.

[0023] 图3为一维搜索方法流程图。 [0023] FIG. 3 is a flowchart of a one-dimensional search method.

[0024] 图4为优化过程中光刻性能综合评价函数的下降曲线。 [0024] FIG. 4 is a graph optimization process decreased the total evaluation function lithographic performance.

[0025] 图5为优化过程中光刻焦深的变化曲线 [0025] FIG. 5 is a curve of the lithographic optimization process of the depth of focus

具体实施方式 detailed description

[0026] 下面结合附图进一步对本发明进行详细说明。 The invention will be further described in detail [0026] below in conjunction.

[0027] 图1为本发明基于最速下降法的光刻配置参数优化方法的流程图,其具体步骤为: [0027] FIG. 1 is a flow chart of the optimization method based on the configuration parameters of the lithography steepest descent method of the invention, including the following steps:

[0028] 步骤101、确定欲优化的η种光刻配置参数,针对每一种光刻配置参数选定一初始值构成IXn维矩阵(Sj1 = {s1; s2, L, SnI1, i = {1,2, L, η};确定每种光刻配置参数的变化范围(Si e [ai; bj} = {[a^bj, [a2,b2]L, [an, bn]},确定每种光刻配置参数用于求解差商的归一化差值{AXie (0,1]},其中|AXi| << I ;给定优化精度允许误差ε >0,最大一维搜索次数k_,并令循环次数k = I。 [0028] Step 101, it is determined to be an optimized configuration parameters η species photolithography, the initial value of a selected one-dimensional matrix configuration IXn (Sj1 = {s1 configuration parameters for each of a lithographic; s2, L, SnI1, i = {1 , 2, L, η}; determining the variation range of each parameter of the lithography configuration (Si e [ai; bj} = {[a ^ bj, [a2, b2] L, [an, bn]}, determined for each lithography configuration parameters for solving difference quotient normalized difference {AXie (0,1]}, where | AXi | << I; optimize accuracy given tolerance ε> 0, the maximum number of one-dimensional search k_, and so that the number of cycles k = I.

[0029] 在优化光刻配置参数的过程中需要统筹考虑对光刻性能存在影响的参数,因此本发明所述欲优化的光刻参数包括投影物镜数值孔径NA的大小、照明相干因子Sigma的值、偏振光类型、光刻胶厚度以及掩模Bias大小等。 [0029] The need exists into consideration the influence parameters on the lithographic performance of a lithographic process optimization in the configuration parameters, and thus the present invention is optimized to be the value of the size parameter includes a lithographic projection objective numerical aperture NA, the coherence factor of the illumination of the Sigma polarization type, and the thickness of the photoresist mask Bias size. 针对某一光刻技术节点下的图形结构,其每一光刻配置参数的大概可变化范围是确定的,因此本发明根据选定光刻技术节点以及图形结构类型,确定其对应的每一光刻配置参数的可变化范围。 For the graph structure in a lithography technology nodes, each of which may be photolithography approximate range change configuration parameters are determined, thus the present invention is selected in accordance with a photolithography technique, and the graph structure type node, each determined corresponding light engraved configuration parameters changeable range. 本发明精度允许误差ε可以根据实际的需要进行选取,例如当优化的光刻机需要有较高的光学性能要求时,则可将ε选取为小于0.01的数。 The present invention allows the accuracy of error ε can be selected according to actual needs, for example, when the lithography machine optimization requires a high optical performance requirements, may be selected ε is a number less than 0.01.

[0030] 步骤102、确定用于评价光刻性能的m种光刻性能评价指标y」,j = {I, 2, L,m},并 [0030] Step 102, determining the lithographic performance evaluation of m types of lithographic performance evaluation index y ', j = {I, 2, L, m}, and

m m

构造光刻性能综合评价函数F = -En;,其中L为针对各光刻性能评价指标设定的 Comprehensive evaluation function configured lithographic performance F = -En ;, wherein L is set for each of the lithographic Performance Evaluation

;=1 ; = 1

比重值。 The proportion of value.

[0031] 本发明光刻性能的评价指标包括图形对比度Contrast、归一化对数斜率NILS以及光刻焦深DOF等,其中比重值是根据每种评价指标对光刻性能的重要程度进行设定,当重要程度高时,则比重值可设置较大,当重要程度低,则比重值可设置较小,通过综合考虑各种评价指标构造综合评价函数,可以很好地实现对优化光刻配置参数的光刻机的光刻性能进行评价。 [0031] Evaluation of the performance of the present invention comprises a lithographic pattern contrast Contrast, normalized logarithmic slope NILS lithographic depth of focus DOF ​​and the like, wherein the specific gravity is important to set the degree of lithographic performance evaluation according to each when the high degree of importance, the specific gravity values ​​can be set larger when the degree of importance is low, the proportion of smaller values ​​can be set by considering the total evaluation function evaluation of various configurations, the configuration can realize the optimization of the lithography lithography lithographic performance parameters are evaluated.

[0032] 步骤103、对循环次数k进行判断,若k ( kmax,则进入步骤104,若k > kmax,则进入步骤109。 [0032] Step 103, the determination of the number of cycles k, if k (Kmax, the process proceeds to step 104, if k> kmax, the process proceeds to step 109.

[0033] 步骤104、将光刻配置参 [0033] Step 104, the configuration parameters lithography

Figure CN102346380BD00071

归一化,即令{x丄Ud,即集合IxJk中 Normalization, and even if {x Shang Ud, i.e., the set IxJk

L i J k L i J k

的每一元素的范围都在O至I之间。 Range of each element are between the O to I.

[0034] 若η种光刻配置参数的变化范围(数值大小)不在同一数量级时,则变化范围小的光刻配置参数会阻碍变化范围大的光刻配置参数的优化。 [0034] If the range of variations η (numerical values) not in the same order of magnitude lithography configuration parameters, the range of small lithographic configuration parameters hinder changes in range to optimize the lithography configuration parameters. 这是因为在计算一维搜索变化范围的端点时,需要取最小公倍数(也即步骤203中取gk或hk中绝对值最小的一个),最小公倍数的值也就限制了变化范围大的光刻配置参数的的一维搜索范围。 This is because when calculating one-dimensional search range end, it is necessary to take the least common multiple (i.e. gk step or take a smallest absolute value hk 203), also limits the value of the least common multiple large range lithography configuration parameters of one-dimensional search. 以优化NA、Sigma、Bias为例,在不进行参数归一化时,迭代过程中Bias的变化范围非常小,优化函数值的下降非常慢,这是因为NA和Sigma的变化范围都在I左右,这两个参数的变化范围相当,而Bias的变化范围在40至70。 Optimizing NA, Sigma, Bias, for example, when the parameters are not normalized, Bias iterative process range is very small, the optimization function values ​​decrease very slowly, and because the NA is in range I around Sigma , these two parameters varies considerably, in the range of 40 to 70 Bias. Bias的变化范围远超出了NA、Sigma的变化范围,因此在取最大公倍数计算一维搜索的端点时,NA、Sigma的取值限制了Bias的一维搜索范围。 Bias range far beyond the range of the NA, Sigma, so that when the end point is calculated taking the maximum common multiple of one-dimensional search, NA, Sigma limit value of the one-dimensional search range of Bias. 参数归一化后,所有参数的变化范围均在O至I之间,可有效避免这一问题。 After the parameters are normalized, all parameters are in the range between the O to I, this problem can be effectively avoided.

[0035] 步骤105、针对光刻配置参数IxJk计算其差商,获取最速下降方向{屯},,伽{-••{-也^^11},編一维矩阵。 [0035] Step 105, for calculating the difference quotient lithography configuration parameters IxJk, acquiring the steepest descent direction Tun {gamma} ,, {- •• {- 11} ^^ also, knitting one-dimensional matrix.

、 Jk , Jk

[0036] 步骤106、对Il {djk Il进行判断,当判定Il {djk Il彡ε,进入步骤107,否则进入步骤109,其中Il Il为取模运算。 [0036] Step 106, for Il {djk Il judgment, when it is determined Il {djk Il San [epsilon], proceeds to step 107, otherwise proceeds to step 109, where Il Il is the modulo operation.

[0037] 步骤107、针对光刻配置参数IxJk,根据其对应的最速下降方向{djk更新其所对应的一维搜索变化范围为Ui e [ui; ViBk,其中{[Ui,ViBk中每一元素的范围都在O至I之间。 [0037] Step 107, the configuration parameters for the lithography IxJk, in accordance with the corresponding direction of steepest descent {djk update one-dimensional search range to its corresponding Ui e [ui; ViBk, wherein {[Ui, ViBk each element in a range between the O to I.

[0038] 步骤108、针对光刻配置参数{xjk,在其所对应的变化范围{[Ui,ViJIk内,沿其对应的最速下降方向WJk进行一维搜索,得到该方向最小的F值,记为Fmin,获取Fmin对应的光刻配置参数IxJk,并将IxJk作为下一次循环的光刻配置参数{Si}k,令k = k+Ι,返回步骤103。 [0038] Step 108, the configuration parameters for the lithography {xjk, {[Ui, the ViJIk, one-dimensional search along the steepest descent direction corresponding WJk in its corresponding range, the direction F to obtain the minimum value, denoted by Fmin is, photolithography obtain Fmin corresponding to the configuration parameters IxJk, and arranged as the next cycle IxJk lithographic parameters {Si} k, so that k = k + Ι, returns to step 103.

[0039] 步骤109、输出最优光刻配置参数{Xi}k,以及{xjk所对应的F值。 [0039] Step 109, the output of the optimum configuration parameters photolithography {Xi} F value k, and the corresponding {xjk.

[0040] 由于一维搜索的范围(或端点)需根据最速下降方向、迭代光刻配置参数点IxJk以及光刻配置参数的变化范围共同确定。 [0040] Since the scope of the common one-dimensional search is determined (or endpoint) to be based on the steepest descent direction, the iterative configuration parameter IxJk lithography and photolithography range configuration parameters. 如图2所示,例如图2(1)中的搜索的维数为2,其对应的范围分别为(^b1)和(a2,b2),其最速下降方向为^方向,迭代光刻配置参数点为(X1, X2),根据上述条件所更新的搜索范围为(UpV1)和(u2,v2)。 2, FIG. 2, for example, the dimension (a) the search is 2, which corresponds to the ranges of (^ B1) and (a2, b2), which direction is the steepest descent direction ^, lithography configuration iteration parameter points (X1, X2), based on the conditions of the updated search range (UpV1) and (u2, v2). 以下对对如何更新搜索范围进行具体的说明,其步骤如下: Hereinafter, how to update the search range will be specifically described, comprises the following steps:

[0041]定义中间变量{HL 犬和(V15V25L ,vn}k ; [0041] The definition of intermediate variables {HL and dogs (V15V25L, vn} k;

[0042] 步骤201、针对第P种光刻配置参数(Xp)k,其中变量P e {l,2,L,n},判断(dp)k的正负:` [0042] Step 201, for the first kind of lithography configuration parameters P (Xp) k, where the variable P e {l, 2, L, n}, is determined (dp) k is positive or negative: `

[0043]当(dp)k > O时,则令中间变量(七)t=0,中间变量0^=1, [0043] When (dp) k> O, so that the intermediate variables (g) T = 0, the intermediate variable 1 = ^ 0,

[0044]当(dp)k < O时,则令中间变量(七\=1,中间变量=0, [0044] When (dp) k <O, then make the intermediate variable (G \ = 1, the intermediate variable = 0,

[0045]当(dp) k = O 时,则令中间变量(Ap)k = {xp)k,中间变量(I)jfc = {xp)k ; [0045] When (dp) k = O, then make the intermediate variable (Ap) k = {xp) k, intermediate variable (I) jfc = {xp) k;

[0046] 步骤202、判断变量P是否取遍I至η上的所有正整数,若是则进入步骤203,否则返回步骤201 ; [0046] Step 202, it is determined whether or not the variable P I to take over all positive integers η, if the process proceeds to step 203, otherwise the process returns to step 201;

[0047] 步骤203、针对第P种光刻配置参数(Xp)k,判断(dp)k是否为O: [0047] Step 203, for the first kind of lithography configuration parameters P (Xp) k, is determined (dp) k whether O:

[0048]当(dp)k = O 时,则令(〜\=(七1= ; [0048] When (dp) k = O, then make (~ \ = (G = 1;

[0049]当(dp)k 关O 时,则(Up)k = (Xp) k+gk.(dp)k, (Vp)k = (xp) k+hk.(dp)k ; . [0049] When (dp) k off O, then (Up) k = (Xp) k + gk (dp) k, (Vp) k = (xp) k + hk (dp) k.;

[0050]其中gk为d)]中绝对值最小的一个,hk为m)]中绝对值最小的一个; [0050] wherein a is the smallest gk D)] in absolute value, hk is m)] in a minimum absolute value;

[0051] 步骤204、判断变量P是否取遍I至η上的所有正整数,若是则结束,否则返回步骤203。 [0051] Step 204, it is determined whether or not the variable P to take over all positive integers I [eta] on, if it ends, otherwise returns to step 203.

[0052] 为了快速准确地获取具有最小光刻性能综合评价函数值F的I Xn维矩阵{Xi}k+1,本发明利用Hopf inger黄金分割法,逐步缩小光刻配置参数的范围进行一维搜索,直至获取具有最小光刻性能综合评价函数值F的IXn维矩阵{Xi}k+1为止,如图3所示,由于步骤107中针对每一光刻配置参数,其进行一维搜索的方法相同,针对第q种光刻配置参数,一维搜索的具体步骤为: [0052] In order to obtain fast and accurate dimensional matrix I Xn {Xi} k + 1 has a comprehensive evaluation function value F is a minimum lithographic performance, the present invention utilizes Hopf inger golden section method, photolithography gradually narrow range one-dimensional configuration parameters searching until obtaining lithographic performance with a minimum value of the total evaluation function F IXn dimensional matrix of {Xi} k + 1 up, shown in Figure 3, in step 107 since the configuration parameters for each photolithography, which is one-dimensional search same method as for the first configuration parameter q photolithography species, particularly one-dimensional search step of:

[0053]设定变量 KX,L yn}t ^v;,v;,L yn}t ,{Α;,Λ;,L,X}t以及{";,/4,L ; [0053] The variable set KX, L yn} t ^ v;, v;, L yn} t, {Α;, Λ;, L, X} t and { ";, / 4, L;

[0054]步骤 301、令{u'X = [U^k ,{v[}t = {vl,i = {1,2,L,η},并设定一维搜索精度因子 [0054] Step 301, so that {u'X = [U ^ k, {v [} t = {vl, i = {1,2, L, η}, and the search accuracy set a dimensional factor

δ 0 δ 0

[0055]步骤加2、根据黄金分割法计算搜索分割点光刻配置参数值{/1/},和{/4,令循环次数t = 1,{A/}, ={<},+0.382({以-{<},),{/4={<},+0.618({以-{<},),获得搜索区间端点光刻配置参数值丨<丨,和,以及搜索区间分割点光刻配置参数值μ/^和{";}t ,其中{<},、K1、{41和{/4这四个集合中的每一个对应一种光刻配置方式;仿真计算{Μ;}ί、K},、{<},和分别对应的m种光刻性能评价指标{y」}u, , t、{y」}v, , t、{yj}u-,t和{y」} λ- ,t;将光刻性能评价指标{yj)v ,t、IyjIv- ,t、IyjI μ,,t和{yj λ,,t代入公式 [0055] Step 2 was added, the division point is calculated in accordance with the configuration parameter values ​​photolithography Golden Section Search {/ 1 /}, and {/ 4, so the number of cycles t = 1, {A /}, = {<}, + 0.382 (in {- {<}) {/ 4 = {<} + 0.618 (in {- {<}), the search interval is obtained lithographic endpoint configuration parameter values ​​Shu <Shu, and, and a search range split point lithography configuration parameter values ​​μ / ^ and { ";} t, where {<} ,, K1, {41, and each of {/ 4 corresponding to these four sets of a lithographic arrangement; [mu] {simulation; } ί, K} ,, {<}, and respectively corresponding to the m types of lithographic performance evaluation {y '} u,, t, {y'} v,, t, {yj} u-, t, and {y "} λ-, t; a lithographic performance evaluation {yj) v, t, IyjIv-, t, IyjI μ ,, t and {yj λ ,, t into equation

m m

F = -1^;a,得到m、n μ,}和μ对应的光刻性能综合评价函数值,分别记 F = -1 ^; a, to give m, n μ,} and [mu] Comprehensive corresponding lithographic performance evaluation function value, denoted by

为Fu, ,t、IV ,t、Fr ,t以及Fli, ,t。 Is Fu,, t, IV, t, Fr, t and Fli,, t. 本发明针对一确定的光刻系统,获取其对应的光刻性能评价指标为现有技术,因此在此不对获取性能评价指标的过程作具体的描述。 The present invention is directed to a lithography system is determined, obtaining lithographic performance evaluation index corresponding to the prior art, so this procedure does not obtain Performance Evaluation specifically described here.

[0056] 步骤303、比较搜索区间端点与分割点光刻配置参数值所对应的光刻性能综合评价函数值Fu,,t、Fv,,t、FA, ,t 以及Fli, ,t 的大小,令Fmin = min{Fu,,t、Fv,,t、FA, ,t,F,, ,t}。 [0056] Step 303, the comparison search section arranged end to division point lithographic lithographic performance Comprehensive evaluation function value corresponding to the parameter value Fu ,, t, Fv ,, t, FA,, t and Fli,, t size, so Fmin = min {Fu ,, t, Fv ,, t, FA,, t, F ,,, t}.

[0057]步骤 304、若Fu, , t = Fmin 或Fa , , t = Fmin,则进入步骤305 ;若Fli, , t = Fmin 或Fv,,t = Fmin,则进入步骤306。 [0057] Step 304, if Fu,, t = Fmin or Fa,, t = Fmin, the process proceeds to step 305; if Fli,, t = Fmin or Fv ,, t = Fmin, the process proceeds to step 306.

[0058]步骤 3 0 5、令{Μ]ί+1 ={%.}, ,{vJi+i = {f^i]t ,{^}ί+ι = {^)ί ,{Λ.1+1 = Κ}ί+1 +0.382({ν;}ί+ι _{<}ί+ι),仿真计算出μ;}ί+1对应的光刻性能评价指标{Yj}入,,t+1,根据性能评价指标,t+1获取对应的光刻性能综合评价函数值Fa, ,t+1,并进入步骤307。 [0058] Step 305, so that {Μ] ί + 1 = {%.},, {VJi + i = {f ^ i] t, {^} ί + ι = {^) ί, {Λ.1 +1 = Κ} ί + 1 +0.382 ({ν;} ί + ι _ {<} ί + ι), the simulation μ;} ί + 1 corresponding to the lithographic performance evaluation index into {Yj} ,, t +1, according to the performance evaluation, t + 1 corresponding to the lithographic performance of the acquired comprehensive evaluation function value Fa of the,, t + 1, and proceeds to step 307.

[0059]步骤 3 0 6、令{Μί+1=Μ.}ί ,{^li+i = {vi}t ,{^}ί+ι = {^)t , [0059] Step 306, so that {Μί + 1 = Μ.} Ί, {^ li + i = {vi} t, {^} ί + ι = {^) t,

KL=KL+0.618(KL-{<L),仿真计算出KL对应的光刻性能评价指标㈨u,, KL = KL + 0.618 (KL - {<L), the simulation of lithographic performance evaluation index corresponding to KL ,, ㈨u

t+1,根据性能评价指标{&}μί ,t+1获取{/4+1对应的光刻性能综合评价函数值I,,t+i并进入步骤307。 t + 1, the performance evaluation {&} μί, t + 1 {Get / 4 + 1 comprehensive lithographic performance evaluation function value corresponding to the I ,, t + i and proceeds to step 307.

[0060] 步骤307、当判定||{/^+1_{<},+1||<5时,进入步骤308,否则,令七=t+Ι,返回步骤303。 [0060] Step 307, when it is determined || {/ ^ + 1 _ {<}, + 1 || <5 proceeds to step 308, otherwise, to make seven = t + Ι, returns to step 303.

[0061]步骤 308、令Fmin = min {Fu,,t+1、Fv,,t+1、FA, jt+1,F,, ,t+1},获取Fmin 对应的光刻配置参数{xjk,结束一维搜索。 [0061] Step 308, so Fmin = min {Fu ,, t + 1, Fv ,, t + 1, FA, jt + 1, F ,,, t + 1}, corresponding to obtain Fmin photolithography configuration parameters {xjk the end of the one-dimensional search.

[0062] 本发明实施实例: [0062] Example embodiments of the present invention:

[0063] 下面以优化45nm节点光刻配置参数为例说明本发明的优化过程。 [0063] Next, in order to optimize the lithographic 45nm node an example configuration parameters optimization process of the present invention.

[0064] 对45nm节点密集线条,采用浸没式光刻,浸没液体折射率为1.44,投影物镜数值孔径在[1,1.35]内可调,曝光波长为193nm,使用分辨率增强技术来提高其分辨率和增大光刻焦深,掩模类型选择衰减相移掩模,照明方式选择环形照明,在提高分辨率的同时为了保证产率,环形照明方式的环宽选择为0.15,也即外相干因子与内相干因子之间的差为0.15(Δ σ = Oout-Oin = 0.15) 0为了进一步增大光刻焦深,光刻仿真时使用了和线条方向相同的线偏振光。 [0064] of 45nm dense lines nodes using immersion lithography, the immersion liquid refractive index of 1.44, the numerical aperture of the projection objective [1,1.35] the adjustable exposure wavelength of 193 nm, using resolution enhancement techniques to improve the resolution and increasing the depth of focus of photolithography, mask types selected attenuated phase shift mask, an illumination mode selection annular illumination, while increasing the yield of the resolution in order to ensure, annular illumination mode select ring width is 0.15, i.e. an outer coherent a difference between the factor and the coherence factor of 0.15 (Δ σ = Oout-Oin = 0.15) 0 to further increase the focal depth of photolithography, and using the same line when the line direction of the polarized light lithography simulation.

[0065] 为简明起见,本发明仅以优化光刻机中数值孔径、相干因子和掩模偏差为例,说明基于最速下降法的光刻配置参数优化方法。 [0065] For simplicity, only the optimization of the present invention in lithography numerical aperture, coherency factor deviation and the mask as an example, the configuration described parameter optimization method based on the steepest descent method of photolithography. 针对上述光刻配置,给定数值孔径的初始值为1.15,变化范围为[1,1.35],归一化差值为0.01 ;给定相干因子的初始值为0.915,变化范围为[0.64,0.99],归一化差值为0.01 ;给定掩模偏差的初始值为12nm,变化范围为[-10,30],归一化差值为0.01 ;由于数值孔径、相干因子和掩模偏差三个配置参数的变化范围相差太大,因此需要使用基于归一化的最速下降方法来进行光刻配置参数的优化,避免优化过程收敛过慢的问题。 For the above-described configuration photolithography, a given initial value of the numerical aperture of 1.15, the range of variation [1,1.35], normalized difference of 0.01; a given initial value of the coherence factor of 0.915 and a variation [0.64,0.99 ], the normalized difference of 0.01; a given initial value of the deviation mask 12nm, variation range [-10,30], the normalized difference of 0.01; as numerical aperture, coherency factor of three and the mask deviation configuration parameters of the range that much difference, so need to use the steepest descent method based on normalized to optimize lithography configuration parameters, optimization process to avoid the problem of slow convergence. 选择空气中像对比度、光刻胶中归一化对数斜率、光刻焦深为光刻性能评价指标,分别给定5、0.2,0.2的比重值,则光刻性能综合评价函数为F=-(YI * Yi+ Y 2 * y2+ Y 3 * y3) = -(0.2.yi+0.2.y2+5.y3);给定优化精度允许误差ε = Select the image contrast in the air, the photoresist normalized logarithmic slope, the lithographic depth of focus of lithographic performance evaluation, specific gravity are given 5,0.2,0.2, the lithographic performance of a comprehensive evaluation function F = - (YI * Yi + Y 2 * y2 + Y 3 * y3) = - (0.2.yi + 0.2.y2 + 5.y3); optimize accuracy given tolerance ε =

0.001,给定最大一维搜索次数为45次。 0.001, given a maximum of one-dimensional searches of 45 times. 下面通过本发明的方法来确定最佳的光刻配置参数(数值孔径、相干因子与掩模偏差的配置),以得到最优光刻性能。 The following method of the present invention is determined by the best lithography configuration parameters (numerical aperture, coherence factor and a mask disposed deviation), to give the best lithographic performance.

[0066] 图4为光刻性能综合评价函数的下降曲线,图5为光刻焦深的变化曲线,从图4和图5中可看出,经过一次一维搜索即可将光刻性能综合评价函数下降到最优值附近,极大地提高了光刻性能。 [0066] FIG. 4 is a comprehensive evaluation function decline curve lithographic performance, FIG. 5 is a curve depth of focus of photolithography, it can be seen from FIGS. 4 and 5, and after a one-dimensional search can be integrated lithographic performance evaluation function falls to near optimal value, greatly improved lithographic performance. 在初始点处,光刻性能综合评价函数值为-0.0817,光刻焦深为0,经过第一次一维搜索,光刻性能综合评价函数值为迅速降为-3.853,光刻焦深变为0.6975微米,经过不断的一维搜索后,光刻性能也在不断地变优,最终在数值孔径为1.178,相干因子为0.988,掩模偏差为13.972nm时,光刻性能综合评价函数值最优,为-4.163,光刻焦深最大,为0.76微米。 At the initial point, the lithographic performance of comprehensive evaluation function value -0.0817 lithographic depth of focus is 0, after the first one-dimensional search, the lithographic performance of comprehensive evaluation function value -3.853 rapidly reduced, the lithographic depth of focus becomes to 0.6975 microns, after continuous one-dimensional search, the lithographic performance are constantly becomes excellent, the final numerical aperture of 1.178, a coherent factor of 0.988, a mask deviation is 13.972nm, the lithographic performance of the most comprehensive evaluation function value preferably, is -4.163, the maximum depth of focus of photolithography, of 0.76 microns.

[0067] 虽然结合附图描述了本发明的具体实施方式,但是对于本技术领域的技术人员来说,在不脱离本发明的前提下,还可以做若干变形、替换和改进,这些也视为属于本发明的保护范围。 [0067] Although the drawings illustrate specific embodiments of the present invention in conjunction with, but for a person skilled in the art, without departing from the present invention, further can be done a number of variations, substitutions and modifications, which are also considered It falls within the scope of the present invention.

Claims (3)

  1. 1.一种基于归一化最速下降法光刻配置参数的优化方法,其特征在于,具体步骤为: 步骤101、确定欲优化的η种光刻配置参数,针对每一种光刻配置参数选定一初始值构成IXn维矩阵(Si)1 = {s1; s2,..., S1J1, i = {1,2,..., η};根据选定光刻技术节点以及图形结构类型,确定每种光刻配置参数的变化范围(Si e [ai,bi]} = {[a^bj, [a2,b2]…,[an,bn]},确定每种光刻配置参数用于求解差商的归一化差值{AXi e 0,1]},其中I Axi<< I ;给定优化精度允许误差ε > 0,最大一维搜索次数kmax,并令循环次数k = I ; 步骤102、确定用于评价光刻性能的m种光刻性能评价指标ypj = {1,2,…,m},并构IMJ造光刻性能综合评价函数 An optimization method based on the normalized lithography configuration parameters steepest descent, characterized in that the specific steps: Step 101, it is determined to be an optimized configuration parameters η species photolithography, lithographic parameters for each configuration selected from set an initial value IXn dimensional matrix configuration (Si) 1 = {s1; s2, ..., S1J1, i = {1,2, ..., η}; photolithography technique according to the selected node type and a graphical structure, determining for each range the lithography configuration parameters (Si e [ai, bi]} = {[a ^ bj, [a2, b2] ..., [an, bn]}, determining configuration parameters for solving each lithography normalized differential difference quotient {AXi e 0,1]}, where I Axi << I; optimize accuracy given tolerance ε> 0, the maximum number of one-dimensional search kmax, and so the number of cycles k = I; step 102, it is determined for evaluating the lithographic performance of the m types of lithographic performance evaluation ypj = {1,2, ..., m}, and configured to create a comprehensive lithographic performance evaluation function IMJ
    Figure CN102346380BC00021
    其中Yj为针对各光刻性能评价指标设定的比重./ J值,所述m种光刻性能评价指标为分副为图形对比度、归一化对数斜率以及光刻焦深; 步骤103、对循环次数k进行判断,若k ( kmax,则进入步骤104,若k > kmax,则进入步骤109 ; 步骤104、将光刻配置参数Isjk归一化,即令 Where Yj is the specific gravity for each set of lithographic performance evaluation ./ J values, the m types of lithographic performance evaluation for the sub-sub-pattern contrast is normalized logarithmic slope and depth of focus of lithography; step 103, the determination of the number of cycles k, if k (Kmax, the process proceeds to step 104, if k> kmax, the process proceeds to step 109; step 104, the lithography configuration parameters Isjk normalization, and even if
    Figure CN102346380BC00022
    即集合Ixjk中的每一元素的范围都在O至I之间; 步骤105、针对光刻配置参数IxJk计算其差商,获取最速下降方向{dJk, I.e., the range of each element are set in Ixjk between the O to I; step 105, calculating the difference quotient for lithography configuration parameters IxJk, acquiring the steepest descent direction {dJk,
    Figure CN102346380BC00023
    维矩阵;; 步骤106、对II {dJJ I进行判断,当判定11 {djk| I ( ε,进入步骤107,否则进入步骤109,其中1111为取模运算;步骤107、针对光刻配置参数IxJk,根据其对应的最速下降方向{dJk更新其所对应的一维搜索变化范围为(Xi e [UpViBk,其中([UyViBk中每一元素的范围都在O至I之间;步骤108、针对光刻配置参数{xjk,在其所对应的变化范围{[uk,ViJIk内,沿其对应的最速下降方向WJk进行一维搜索,得到该方向最小的F值,记为Fmin,获取Fmin对应的光刻配置参数{xjk,并将IxJk作为下一次循环的光刻配置参数IsJk,令k = k+l,返回步骤103。步骤109、输出最优光刻配置参数IxJ k,以及{xjk所对应的F值。 Dimensional matrix ;; step 106, a judgment II {dJJ I, when it is determined 11 {djk | I (ε, proceeds to step 107, otherwise proceeds to step 109, where 1111 is a modulo operation; step 107, the configuration parameters for the lithography IxJk the corresponding direction of steepest descent {dJk update one-dimensional search range of its corresponding (Xi e [UpViBk, wherein each element in the range of ([UyViBk in between the O to I; step 108, for the light engraved configuration parameters {xjk, {[uk, the ViJIk, one-dimensional search for the steepest descent direction WJk corresponding direction in the range corresponding thereto to obtain the minimum on the direction F value, denoted Fmin, light harvesting Fmin corresponding to {xjk engraved configuration parameters, and the next cycle IxJk as photolithography configuration parameters IsJk, so that k = k + l, step 103. Returning to step 109, the output of the optimum configuration parameters photolithography IxJ k, and the corresponding {xjk F value.
  2. 2.根据权利要求1所述基于最速下降法光刻配置参数的优化方法,其特征在于,所述步骤107中针对光刻配置参数IxJk,根据其对应的最速下降方向{djk更新其所对应的变化范围为Ixi e [Ui, ViJIk的具体过程如下: 定义中间变量R心…4丄和-; 步骤201、针对第P种光刻配置参数(Xp)k,其中变量P e {1,2,…,n},判断(dp)k的正负: 当(dp)k > O时,则令中间变量=0,中间变量=1, 当(dp)k < O时,则令中间变量问,)/; =1,中间变量=0, 当(dp)k = O时,贝Ij令中间变量(七);1.', \ »中间变量(》.V)f:Ιχμ\ ; 步骤202、判断变量P是否取遍I至η上的所有正整数,若是则进入步骤203,否则返回步骤2001 ; 步骤203、针对第P种光刻配置参数(Xp)k,判断(dp)k是否为O: 当(dp)k = ο时,则令(《4.-(%),,u =(M ; 当(dp)k 关O 时,则( 2. The method of claim 1 lithography optimization method of steepest descent configuration parameters, characterized in that, in step 107 the parameters for the lithography configuration IxJk, in accordance with the corresponding direction of steepest descent update its corresponding {djk ranged Ixi e [Ui, ViJIk specific process is as follows: the definition of intermediate variables R and Shang heart ... 4 -; step 201, for the first kind of lithography configuration parameters P (Xp) k, where the variable P e {1,2, ..., n}, is determined (dp) k is negative: when (dp) k> O, = 0 then let the intermediate variables, intermediate variables = 1, when (dp) k <O, then asked to make intermediate variables, ) /; = 1, 0 = an intermediate variable, when (dp) k = O, the intermediate shell variable so Ij (VII); 1 '\ »intermediate variable (" .V) f: Ιχμ \; step 202. determining whether the variable P to take over all positive integers I [eta] on, if the process proceeds to step 203, otherwise it returns to step 2001; step 203, for the first kind of lithography configuration parameters P (Xp) k, is determined (dp) k whether the O : when (dp) k = ο, the order ( "4 .- (%) ,, u = (M; when (dp) k off O, then (
    Figure CN102346380BC00031
    其中g为 Where g is
    Figure CN102346380BC00032
    中绝对值最小的一个,hk为\ --L-77T—!-1 \中绝对值最小的一I ⑷* J* I ⑷t J*个; 步骤204、判断变量P是否取遍I至η上的所有正整数,若是则结束,否则返回步骤203。 A minimum absolute value, as HK \ --L-77T - - 1 \ in a minimum absolute value I ⑷ * J * I ⑷t J * a;! Step 204, it is determined whether or not the variable P η I to take over the all positive integers, if the end, otherwise it returns to step 203.
  3. 3.根据权利要求1所述基于最速下降法光刻配置参数的优化方法,其特征在于,步骤108中所述进行一维搜索的具体步骤为: 设定变量IV 1; U' 2,...,U' JUlv' 1; V' 2,...,V' η} ! > {λ ; 1;入'2,…,入'Jt 以及{μ ' P μ ' 2,…,μ ' Jt ; 步骤301、令{V Jt = {ujk, {v; Jt = [vjk, i = {1,2,…,η},并设定一维搜索精度因子δ ; 步骤302、根据黄金分割法计算搜索分割点光刻配置参数值{λ ' Jt和{μ' Jt,令循环次数t = l,U, Jt = (Ui Jt+0.382 ((Vi 丄-lu' Jt), {μ / Jt = (Ui Jt+0.618({V 丄-1V丄),获得搜索区间端点光刻配置参数值{V丄和{V丄,以及搜索区间分割点光刻配置参数值U '丄和{>'丄,其中{V丄、{V Jt, {λ ^ Jt和{μ' Jt这四个集合中的每一个对应一种光刻配置方式;仿真计算IV Jt、{V Jt,{λ '丄和{μ '丄分别对应的m种光刻性能评价指标{yj}u, ,t、{yj)v ,t、{yjh,,,和{yj mλ- ,t;将光刻性能评价指标{yj)v ,t、IyjIv- ,t 1 3. The method of steepest descent optimization based lithography configuration parameters, characterized in that claim, the specific steps performed in step 108 of the one-dimensional search is: set variable IV 1; U '2, .. ., U 'JUlv' 1; V '2, ..., V' η}> {λ;! 1; the '2, ..., into' of Jt and {μ 'P μ' 2, ..., μ 'Jt ; step 301, so that {V Jt = {ujk, {v; Jt = [vjk, i = {1,2, ..., η}, and sets a one-dimensional search accuracy factor [delta]; step 302, is calculated according to the golden section Search division point lithographic configuration parameter values ​​{λ 'Jt and {μ' Jt, so cycle times t = l, U, Jt = (Ui Jt + 0.382 ((Vi Shang -lu 'Jt), {μ / Jt = ( Ui Jt + 0.618 ({V Shang Shang -1V), obtained search space lithographic endpoint configuration parameter values ​​{V {V and Shang Shang, search space division point and the configuration parameter values ​​photolithography U 'and Shang {>' Shang, wherein {V Shang, {V Jt, {λ ^ Jt and {μ 'Jt each of these four sets of configuration corresponding to a lithographic; simulation IV Jt, {V Jt, {λ' and Shang {μ ' Shang respectively corresponding to m kinds of lithographic performance evaluation {yj} u,, t, {yj) v, t, {yjh ,,, and {yj mλ-, t; a lithographic performance evaluation {yj) v, t, IyjIv-, t IyjI μ , ,t 和{yj λ, ,t 代入公式, IyjI μ,, t, and {yj λ,, t into the formula,
    Figure CN102346380BC00033
    得到IV丄、{V Jt, {λ ^丄和{μ'丄对应的光刻性能综合评价函数值,分别记为Fu,,t、Fv,,t 以及FV ,t ; 步骤303、比较搜索区间端点与分割点光刻配置参数值所对应的光刻性能综合评价函数值Fu,,t、Fv,,t、Fx, ,t 以及Fli, ,t 的大小,令Fniin = min{Fu, ,t,Fv, ,t,Fa, ,t,Fij, ,t}; 步骤304、若Fu, , t = Fmin 或Fa , , t = Fmin,则进入步骤305 ;若Fli, , t = Fmin 或Fv, , t =Fmin,则进入步骤306 ; 步骤305、令{V Jw=IV Jt, {v; Jt+1 = {μ ; Jt, {μ ; Jt+i = {λ ]ν{λ/ ilt+1 = {V Jt+1+0.382 ({¥; Jt+1-{u/丄+1),仿真计算出{入'丄+1对应的光刻性能评价指标{&} λ , , t+1,根据性能评价指标{&} λ , , t+1获取{入'J t+1对应的光刻性能综合评价函数值? IV obtained Shang, {V Jt, {λ ^ Shang and {μ 'corresponding to the lithographic performance Shang comprehensive evaluation function value, respectively denoted Fu ,, t, Fv ,, t and FV, t; step 303, the search space Comparison endpoint and split point configuration lithographic lithographic performance comprehensive evaluation function value corresponding parameter value ,, t, Fv ,, t, Fx,, t and Fli,, t is the size of Fu, so Fniin = min {Fu,, t , Fv,, t, Fa,, t, Fij,, t}; step 304, if Fu,, t = Fmin or Fa,, t = Fmin, the process proceeds to step 305; if Fli,, t = Fmin or Fv, , t = Fmin, the process proceeds to step 306; step 305, so that {V Jw = IV Jt, {v; Jt + 1 = {μ; Jt, {μ; Jt + i = {λ] ν {λ / ilt + 1 = {V Jt + 1 + 0.382 ({¥; Jt + 1- {u / Shang + 1), the simulation {into '+1 Shang lithographic performance evaluation index corresponding to {&} λ,, t + 1, the performance evaluation {&} λ,, t + 1 {Get the '+ 1 corresponding to the lithographic performance of comprehensive evaluation function value J t? 入,,t+1,并进入步骤307 ; 步骤306、令{V 丄+1={入'Jt, {v; Jt+1 = {v1 Jt, { λ ; Jt+1 = {μ ; Jt, {μ ; Jt+1 = {V丄+1+0.618({v' Jt+1-{u/ i}t+1),仿真计算出{ μ ' i}t+1对应的光刻性能评价指标{yj U ■ ,t+1,根据性能评价指标{yj / ,t+1获取{μ ' J t+1对应的光刻性能综合评价函数值Fli, ,t+1,并进入步骤307 ; 步骤307、当判定II {μ ' Jt+1-U'丄+1| I < δ时,进入步骤308,否则,令t = t+1,返回步骤303 ;步骤308、令Fmin = min {Fu, ,t+1,Fv, ,t+1,FA, jt+1,F,, ,t+1},获取Fmin 对应的光刻配置参数{Xi}k,结束一维搜索。 The ,, t + 1, and proceeds to step 307; step 306, so Shang + 1 = {V {into 'Jt, {v; Jt + 1 = {v1 Jt, {λ; Jt + 1 = {μ; Jt, {μ; Jt + 1 = {V Shang + 1 + 0.618 ({v 'Jt + 1- {u / i} t + 1), the simulation {μ' i} t + 1 corresponding to the lithographic performance evaluation {yj U ■, t + 1, the performance evaluation {yj /, t + 1 Get {μ 'J t + 1 corresponding to the lithographic performance of comprehensive evaluation function values ​​Fli,, t + 1, and proceeds to step 307; step 307, when it is determined II {μ 'Jt + 1-U' + 1'd Shang | when I <δ, proceeds to step 308, otherwise, let t = t + 1, returns to step 303; step 308, so Fmin = min {Fu, , t + 1, Fv,, t + 1, FA, jt + 1, F ,,, t + 1}, corresponding to obtain Fmin photolithography configuration parameters {Xi} k, the end of one-dimensional search.
CN 201110353893 2011-11-09 2011-11-09 Method for optimizing photoetching configuration parameters based on normalization steepest descent method CN102346380B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110353893 CN102346380B (en) 2011-11-09 2011-11-09 Method for optimizing photoetching configuration parameters based on normalization steepest descent method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110353893 CN102346380B (en) 2011-11-09 2011-11-09 Method for optimizing photoetching configuration parameters based on normalization steepest descent method

Publications (2)

Publication Number Publication Date
CN102346380A true CN102346380A (en) 2012-02-08
CN102346380B true CN102346380B (en) 2013-11-06

Family

ID=45545180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110353893 CN102346380B (en) 2011-11-09 2011-11-09 Method for optimizing photoetching configuration parameters based on normalization steepest descent method

Country Status (1)

Country Link
CN (1) CN102346380B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259845A (en) 2003-02-25 2004-09-16 Nikon Corp Parameter adjustment method, object transfer method, aligner, and program
CN101561634A (en) 2008-04-15 2009-10-21 北大方正集团有限公司;深圳方正微电子有限公司 Method and device for acquiring optimal parameters of photoetching machine
CN102122111A (en) 2011-03-20 2011-07-13 北京理工大学 Pixel-based optimization method for optical proximity correction
CN102224459A (en) 2008-11-21 2011-10-19 Asml荷兰有限公司 Fast freeform source and mask co-optimization method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163005A (en) * 2000-11-29 2002-06-07 Nikon Corp Method of designing control system, control system, method of regulating control system, and method for exposure
JP4018438B2 (en) * 2002-04-30 2007-12-05 キヤノン株式会社 Management system for managing the semiconductor exposure apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259845A (en) 2003-02-25 2004-09-16 Nikon Corp Parameter adjustment method, object transfer method, aligner, and program
CN101561634A (en) 2008-04-15 2009-10-21 北大方正集团有限公司;深圳方正微电子有限公司 Method and device for acquiring optimal parameters of photoetching machine
CN102224459A (en) 2008-11-21 2011-10-19 Asml荷兰有限公司 Fast freeform source and mask co-optimization method
CN102122111A (en) 2011-03-20 2011-07-13 北京理工大学 Pixel-based optimization method for optical proximity correction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
胡志卷.基于最速下降法的可制造性模型.《计算机工程》.2010,第36卷(第20期),

Also Published As

Publication number Publication date Type
CN102346380A (en) 2012-02-08 application

Similar Documents

Publication Publication Date Title
US20030198872A1 (en) Method for setting mask pattern and illumination condition
US7245356B2 (en) Lithographic apparatus and method for optimizing illumination using a photolithographic simulation
US20080204690A1 (en) Method, program product and apparatus for generating a calibrated pupil kernel and method of using the same in a lithography simulation process
US6178360B1 (en) Methods and apparatus for determining optimum exposure threshold for a given photolithographic model
JP2007035671A (en) Exposure device and method
JP2004312027A (en) Optimizing source and mask
US20070121090A1 (en) Lithographic apparatus and device manufacturing method
JP2008040470A (en) Method and program for producing original data
Mack Understanding focus effects in submicron optical lithography
Rhyins et al. Characterization of quartz-etched PSM masks for KrF lithography at the 100-nm node
CN102269925A (en) Abbe vector of a phase shift mask imaging model based optimization method
JP2002250865A (en) Projection optical system, exposure device and method for manufacturing them
US20030093766A1 (en) Alternating phase shift mask design with optimized phase shapes
Schellenberg A little light magic [optical lithography]
JP2008166777A (en) Lithographic device and method of manufacturing device
Staals et al. Advanced wavefront engineering for improved imaging and overlay applications on a 1.35 NA immersion scanner
Wu et al. Freeform lens arrays for off-axis illumination in an optical lithography system
Wagner et al. EUV lithography at chipmakers has started: performance validation of ASML's NXE: 3100
US20060256311A1 (en) Lithographic apparatus and device manufacturing method
JP2006237109A (en) Evaluating method of optical system, optical system, exposure device, and method of exposure
JP2003050454A (en) Phase shifting mask and method for producing the same
EP1473596A2 (en) Lithographic apparatus and method for optimizing an illumination source using photolithographic simulations
JP2007305972A (en) Method of setting exposure conditions and method of manufacturing semiconductor device
CN101105633A (en) Optical approximate correction method and its photomask pattern
CN101535898A (en) A method and a system for reducing overlay errors within exposure fields by APC control strategies

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted