CN102335742A - Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body - Google Patents

Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body Download PDF

Info

Publication number
CN102335742A
CN102335742A CN2011103442414A CN201110344241A CN102335742A CN 102335742 A CN102335742 A CN 102335742A CN 2011103442414 A CN2011103442414 A CN 2011103442414A CN 201110344241 A CN201110344241 A CN 201110344241A CN 102335742 A CN102335742 A CN 102335742A
Authority
CN
China
Prior art keywords
implant
powder
molybdenum alloy
ti
biomedical
Prior art date
Application number
CN2011103442414A
Other languages
Chinese (zh)
Other versions
CN102335742B (en
Inventor
何新波
曲选辉
路新
颉芳霞
Original Assignee
北京科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京科技大学 filed Critical 北京科技大学
Priority to CN2011103442414A priority Critical patent/CN102335742B/en
Publication of CN102335742A publication Critical patent/CN102335742A/en
Application granted granted Critical
Publication of CN102335742B publication Critical patent/CN102335742B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Process efficiency
    • Y02P10/25Process efficiency by increasing the energy efficiency of the process
    • Y02P10/29Additive manufacturing
    • Y02P10/295Additive manufacturing of metals

Abstract

The invention provides a method for preparing a complexly shaped biomedical porous titanium molybdenum alloy implant body and belongs to the technical field of biomedical porous metallic material preparation. The method comprises the following steps of: taking a mixture of titanium and molybdenum metallic element powder and organic polymer powder as raw materials, and then preparing the biomedical porous titanium molybdenum alloy implant body by adopting the processes, such as three-dimensional modeling, selective laser-firing rapid forming, thermal de-greasing, vacuum sintering, and the like. The processing steps are simple, the period is short, the use ratio of materials is high, the cost is low, any complexly shaped porous titanium alloy implant body can be conveniently manufactured, and the method has efficiency and economic advantages in individual design and rapid manufacturing of the implant body. A titanium molybdenum alloy material prepared by using the method has the advantages that pore space is uniform, adjustment scopes of porosity, aperture ratio and aperture are wide, elasticity modulus and compression strength are in close proximity to natural bone, and the demand on biomechanical compatibility required by a biomedical material is met.

Description

一种复杂形状生物医用多孔钛钼合金植入体的制备方法 A method of preparing a complex shape porous titanium molybdenum alloy biomedical implant

技术领域 FIELD

[0001] 本发明属于生物医用多孔金属材料制备技术领域,提供了一种快速制备复杂形状生物医用多孔钛钼合金植入体的方法。 [0001] The present invention belongs to the biomedical field porous metal material preparation technology, there is provided a method of complex shape biomedical Mo alloy rapid production of porous titanium implant.

背景技术 Background technique

[0002] 钛及钛合金具有高的比强度、优良的耐蚀性、足够的耐磨性及良好的生物相容性,被认为是目前最有发展前途的生物金属材料。 [0002] Titanium and titanium alloys have high specific strength, excellent corrosion resistance, sufficient abrasion resistance and good biocompatibility, is considered to be the most promising biological metallic material. 但是,致密钛及钛合金的弹性模量(55〜 IlOGPa)与自然骨(3. 21〜30GPa)不匹配,使得载荷不能由植入体很好地传递到相邻骨组织,即出现“应力屏蔽”现象,造成植入体周围出现骨应力吸收,导致植入体松动或断裂,而使植入手术失败。 However, the elastic modulus of dense titanium and titanium alloy (55~ IlOGPa) natural bone (3. 21~30GPa) do not match, so that the load is not well transmitted from the implant to the adjacent bone tissue, i.e., a "stress shielding "phenomenon, resulting in stress absorption of bone around the implant, resulting in loose or break implant, the surgical implant failure. 多孔结构的金属材料,由于孔隙的存在,不仅可以有效降低其弹性模量和强度,使其与自然骨的生物力学性能相匹配,而且还能促进细胞长入,并为营养物质的运输与体液的交换提供了便利的通道,是一种更为理想的生物植入材料。 Metallic material of the porous structure due to the presence of pores, not only can reduce the elastic modulus and strength, so that the mechanical properties of natural bone biological matches, but also to promote cell ingrowth, with body fluids and transport of nutrients the exchange provides a convenient channel, is a more desirable biological implant material.

[0003] Ti-6A1-4V是目前使用最广泛也是最早被用于生物医学领域的钛合金,近年来随着研究不断深入,发现Al和V对人体有害,Al会引起精神紊乱和诱发老年痴呆症,V可与人体组织反应,形成黑水。 [0003] Ti-6A1-4V is currently the most widely used titanium alloy is the first to be used in the field of biomedical research in recent years as the deepening find Al and V harmful, can cause mental disorder and Al induced dementia disease, V with human tissue, to form black water. 因此,研发新型的钛合金材料显得越来越重要。 Therefore, the development of new titanium alloy material becomes more and more important. Mo是Ti的β相稳定元素,且与Ti属于同晶型结构,能与Ti形成无限固溶体,不仅降低α-Ti向β-Ti转变的温度和弹性模量,而且能够提高Ti的强度和耐磨性,制备Ti-Mo多孔植入材料是一种很有吸引力的选择。 Mo is of Ti beta] phase stabilizing element, and the Ti belong to the same crystal structure, can form a complete solid solution with Ti, not only reduce the temperature and elastic modulus of the α-Ti transition to β-Ti, and possible to improve the Ti strength and corrosion grindability, Ti-Mo preparing porous implant material is an attractive choice.

[0004] 生物医用的多孔金属材料形状复杂,且其尺寸因人而异,需要个性化设计和快速制造。 [0004] Biomedical porous metal material of complex shape, and its dimensions vary, it is necessary personalized design and rapid manufacturing. 目前,多孔钛合金的制备技术多采用传统的粉末冶金模压法、浆料发泡法和凝胶注模法。 Currently, porous titanium alloy preparation techniques use more conventional powder metallurgy compression molding, foaming and gel slurry injection molding. 其中,模压法采用添加造孔剂的钛粉压制而成,制备工艺简单,组织结构均勻,但是孔尺寸小,孔隙率低;浆料发泡法,虽可获得高孔隙率的多孔钛,但只通过发泡剂的加入量很难控制孔隙结构(如孔径大小和分布);凝胶注模法在制备多孔钛时,加入了有机物、消泡剂和分散剂等多种添加剂,不仅污染环境,增加成本,而且为后续脱除工艺带来很多问题。 Wherein the molding method using pore-forming agent, titanium powder repression, simple preparation process, uniform texture structure, but the small pore size, low porosity; slurry foaming method, although the high porosity obtained porous titanium, but only difficult to control the amount of blowing agent by adding a pore structure (e.g., pore size and distribution); gel casting method in the preparation of porous titanium, adding organic matter, an antifoaming agent and a dispersant additives, not only pollute the environment , increase costs, but also bring a lot of problems for the subsequent removal process. 总之, 多孔钛的传统制备方法,均需要专用模具,成本高且成形精度无法保证,不适合单件或小批量生产,更是无法获得形状复杂的多孔结构植入体,快速成形技术能够有效解决这个问题。 In summary, the conventional method of preparation of porous titanium, need special mold, costly and forming accuracy can not be guaranteed, is not suitable for single or small batch production, it is unable to obtain a complicated shape of the porous structure of the implant, rapid prototyping can effectively solve this problem.

[0005] 快速成形技术(Rapid Prototyping,简称RP技术)始于20世纪80年代,是集计算机辅助设计、激光加工技术、数控技术和新材料技术为一体的一种新型制造技术。 [0005] Rapid Prototyping (Rapid Prototyping, RP technology for short) began in the 1980s, it is a set of computer-aided design, laser processing technology, digital technology and new material technology, a new type of manufacturing technology as one. 通过CAD、 Pro E等绘图软件,或将CT扫描、MRI技术及其他方法得到的医学影像进行数据化处理,得到三维模型;采用离散/堆积成形原理,激光束在计算机控制下,按照预先设计好的加工参数并根据每个层片的二维轮廓信息进行加工,并将这一系列层片按成形次序堆积在一起, 生成三维实体。 , Or CT scan, MRI techniques and other methods to obtain medical images by CAD, Pro E drawing software data processing to obtain three-dimensional model; discrete / accumulation forming principle, a laser beam under computer control, in accordance with pre-designed the processing parameters and processed in accordance with two-dimensional profile information of each ply, and the series of stacked plies together by forming order to generate three-dimensional solid. 选择性激光烧结(selective laser sintering,简称SLS)是一种重要的快速成形技术,采用CO2激光器为热源,在成形过程中,粉体受到的压力很小,所以SLS工艺制备的材料通常是多孔结构,且表面粗糙,而这正是生物医用植入材料为促进细胞长入和粘附所需要的,植入体的外观形状可通过三维建模来任意改变,能够实现植入体的个性化设计和快速制造,且具有原材料选择广泛、工艺过程简单、成形效率高、无需支撑等优点,近年来在医学领域的应用价值越来越被受到重视。 Selective laser sintering (selective laser sintering, referred to as SLS) is an important rapid prototyping technology, using CO2 laser as a heat source, during the forming process, the pressure on the powder is small, the material prepared by the SLS process is usually a porous structure , and surface roughness, which is biological material is a medical implant to promote cell ingrowth and adhesion required, the external shape of the implant may be arbitrarily changed by the three-dimensional modeling, can be personalized design of the implant and rapid manufacturing, and has a wide selection of raw materials, simple process, high forming efficiency without support, etc., in recent years more and more attention in the medical field value.

[0006] 采用SLS技术制备的多孔生物医用材料多数是聚合物材料或聚合物/陶瓷的复合材料(Tan KH, Chua CK, Leong KF, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering[J]. Biomedical materials and engineering,2005,15 (1-2):113-124 ;Zhang Y,Hao L,Savalani MM,et al. Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite filled polymeric composites[J]. Journal of Biomedical Materials Research Part A,2008,86 (3):607-616; Eosoly S, Brabazon D, Lohfeld S, et al. Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds[J]. Acta Biomaterialia,2010,6 (7):2511_2517),这些材料力学性能普遍偏低,不能满足生物医用材料的力学相容性要求,而钛钼合金具有良好的生物相容性和力学性能,目前还没有见到有关将SLS技术应用于制备多孔钛钼合金材料的报道。 [0006] Preparation of SLS used in most biomedical material is a porous polymeric material or a polymer / ceramic composite material (Tan KH, Chua CK, Leong KF, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering [ . J] Biomedical materials and engineering, 2005,15 (1-2): 113-124; Zhang Y, Hao L, Savalani MM, et al Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite filled polymeric composites [J].. Journal of Biomedical Materials Research Part A, 2008,86 (3):.. 607-616; Eosoly S, Brabazon D, Lohfeld S, et al Selective laser sintering of hydroxyapatite / poly-ε-caprolactone scaffolds [J] Acta Biomaterialia, 2010,6 (7): 2511_2517), the mechanical properties of these materials is generally low, can not meet the mechanical requirements of biomedical compatibility of the material, a titanium molybdenum alloy and has good biocompatibility and mechanical properties, is not seen the reports of the SLS technique applied to the porous titanium molybdenum alloy material prepared.

发明内容 SUMMARY

[0007] 本发明的目的在于提供一种制造任意复杂形状的生物医用多孔钛合金植入体的方法,以弥补传统制备技术的不足,扩大选择性激光烧结技术的应用领域,高效制备出满足医用材料生物相容性和力学相容性要求的复杂形状的钛合金植入体。 [0007] The object of the present invention is to provide a method of manufacturing a biomedical any porous titanium implant complicated shape, in order to compensate for the lack of a conventional preparation techniques, expand the application field of selective laser sintering technology, efficient preparation to meet the medical titanium complex shapes biocompatibility and mechanical compatibility requirements implant.

[0008] 一种制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:首先采用Auto CAD、Pro/E绘图软件,或将通过CT扫描、MRI技术获得的医学摄影图形进行数据化, 设计出植入体的三维模型;将Ti、Mo金属元素粉末与有机高分子粉末进行机械均勻混合, 金属元素粉末中Mo含量为2〜15wt%,余量为Ti,有机高分子的含量占金属粉末总量的3wt%-15wt% ;在氩气保护下,采用(X)2激光束将混合粉末进行选择性激光烧结成形,得到具有特定形状的Ti-Mo合金材料植入体的预成形坯;在真空或氩气保护下,将成形坯进行热脱脂及高温烧结,烧结温度为800〜1500°C,即得到生物医用多孔Ti-Mo合金植入体。 [0008] A method of complex shape porous titanium molybdenum alloy biomedical implant preparation, which is characterized in that: Firstly Auto CAD, Pro / E drawing software, or medical MRI techniques photographic graphics data obtained by a CT scan of the designed three-dimensional model of the implant; and Ti, Mo powder and metal element organic polymer powder was uniformly mixed mechanically, the metal powder elements Mo content 2~15wt%, the balance being Ti, a content of the organic polymer % to 15 wt% accounting for the total amount of 3 wt metal powder; under argon protection using (X) 2 laser beam selective laser sintering mixed powder molded to obtain a pre-Ti-Mo alloy implant having a specific shape parison; under vacuum or an argon atmosphere, the parison thermal debinding and sintering temperature, the sintering temperature of 800~1500 ° C, to obtain a porous biomedical implant Ti-Mo alloy.

[0009] 具体工艺流程和参数如下: [0009] and the specific process parameters are as follows:

(1)采用球磨工艺对原料粉末进行机械混合,其工艺参数为:球料比为3 : 1〜1 : 1,球磨时间3〜12h,转速30〜100r/min ; (1) The ball milling process for mechanically mixing raw material powder, the process parameters were: Charge Ratio of 3: 1~1: 1, milling time 3~12h, speed 30~100r / min;

(2)根据不同患者的需要,采用ftx) Ε, CAD或CT扫描、MRI技术,构建植入体的三维模型,可对任意复杂形状的植入体(如悬臂、中空和内嵌结构等)进行个性化的三维模型设计; (2) the needs of different patients, using ftx) Ε, CAD or CT scan, MRI technology, constructing a three-dimensional model of the implant, can be of any complex shape of the implant (such as a cantilever, and the embedded hollow structure) three-dimensional model design personalized;

(3)在纯度为99. 0%〜99. 9%的惰性氩气保护下,以(X)2激光器为热源,按照预先设计好的加工路线对混合粉末进行选择性激光烧结成形,得到所需植入体的生坯件。 (3) Under an inert argon protective gas having a purity of 99.0% ~99 9%, based on (X) 2 laser as the heat source, according to good design of the pre-processing line selective laser sintering mixed powder molding, obtained by green for an implant body member. SLS工艺参数为:激光功率:10〜40W,扫描速度为1500〜2500mm/s,扫描间距为0. 08〜0. 25mm,切片厚度为0. 08〜0. 25mm,粉床预热温度为45〜160°C ; SLS process parameters were: laser power: 10~40W, scanning speed of 1500~2500mm / s, scanning pitch is 0. 08~0 25mm, slice thickness of 0. 08~0 25mm, powder bed preheating temperature is 45. ~160 ° C;

(4)在真空或惰性气体保护下,将植入体生坯件放入脱脂炉内,直接进行热脱脂;脱脂主要工艺参数为:脱脂温度为20〜750°C,保温时间为0. 5〜3h,脱除速率为1〜5°C /min ; (4) in a vacuum or inert gas, the implant member into a green degreasing furnace, direct thermal debinding; debinding main process parameters: temperature of the degreasing 20~750 ° C, holding time of 0.5 ~3h, the removal rate of 1~5 ° C / min;

(5)在真空或惰性气体保护下,将植入体脱脂件放入烧结炉内,进行高温烧结,最终得到钛钼合金植入体。 (5) in a vacuum or inert gas, degreasing the implant member into a sintering furnace, sintered at high temperature, ultimately to give a titanium molybdenum alloy implants. 烧结主要工艺参数为:烧结温度800〜1500°C,保温时间为0.5〜池, 升温速率为1〜5°C /min。 The main sintering process parameters: sintering temperature 800~1500 ° C, holding time 0.5~ pool heating rate of 1~5 ° C / min.

[0010] 所述原料Ti粉、Mo粉和高分子粉末的粒径分别为:100〜325目、100〜500目和100 〜800 目。 [0010] The raw Ti powder, Mo powder and polymer powder of particle size are: 100~325 mesh, 100~500 ~800 mesh and 100 mesh.

[0011] 所述有机高分子材料为热塑性树脂和热固性树脂;热塑性树脂包括聚乙烯、高密度聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚甲基丙烯酸甲酯、聚碳酸酯或乙烯-醋酸乙烯共聚物,热固性树脂包括酚醛树脂、三聚氰胺、氨基树脂或环氧树脂。 [0011] The organic polymer material is a thermoplastic resin and a thermosetting resin; a thermoplastic resin include polyethylene, high density polyethylene, polypropylene, polystyrene, polyamide, polymethyl methacrylate, polycarbonate or ethylene - vinyl acetate copolymers, thermosetting resins include phenolic resins, melamine, amino resin or epoxy resin.

[0012] 本发明的优势在于: [0012] The advantage of the present invention:

(1)面对不同患者的需求,能够个性化设计,并直接制备出任意复杂形状和高尺寸精度的生物医用植入体; (1) facing the needs of different patients, it can be individually designed and prepared directly any complex shape and high dimensional accuracy biomedical implants;

(2)易于调节合金成分、材料利用率高,添加剂含量少、对材料及环境污染小; (2) easy adjustment of the alloy composition, material utilization, low additive content, material and environmental pollution;

(3)成形工艺具有数字化及无模化的技术特点,制备工艺步骤简单,可操作性及重复性 (3) forming process and having no digital mode of technical features, step preparation process is simple, operability and repeatability

强; Strong;

(4)通过调节Mo含量、SLS成形工艺及烧结工艺参数,可实现多孔Ti-Mo合金材料的孔隙特征、基体显微组织和力学性能的控制; (4) By adjusting the content of Mo, SLS forming process and sintering parameters, pore characteristics can be achieved porous alloy Ti-Mo, control of microstructure and mechanical properties of the matrix microstructure;

(5)所制备出的钛钼合金材料孔隙组织均勻、孔隙率、开孔率和孔径可调节范围广,力学性能优异,其弹性模量和强度与自然骨匹配,可满足作为生物医用材料所需要的生物力学相容性要求。 (5) a titanium molybdenum alloy material prepared porosity tissue uniformity, porosity, pore diameter and opening ratio can be adjusted a wide range, excellent mechanical properties, modulus of elasticity and strength of natural bone match, to meet a biomedical material We need biomechanical compatibility requirements.

[0013] [0013]

具体实施方式 Detailed ways

[0014] 实施方式1 [0014] Embodiment 1

配制原料粉末:首先采用电子天平分别称取300目Ti粉340g、200目Mo粉60g、160目的高密度聚乙烯(HDPE)粉末35g,然后将上述粉末装入球磨机中混合,球料比为3:1,球磨时间为10h,转速为55r/min ; Formulation of Raw Material Powder: First, were weighed using an electronic balance 300 mesh Ti powder 340g, 200 mesh Mo powder 60g, 160 the purpose of high density polyethylene (HDPE) powder 35g, and then mixing the powder was charged into a ball mill, ball charge ratio 3 : 1, 10H milling time, the rotation speed is 55r / min;

构建三维模型:使用ftx) E软件,绘制植入体的三维形状,并采用分层软件对三维模型进行切片处理,将处理得到的二维片层信息以STL格式存储到选择性激光烧结的成形机; Constructing three-dimensional models: the use of ftx) E software, draw a three-dimensional shape of the implant body, and a layered software to slice three-dimensional model, a two-dimensional slice information stored in the process resulting in the selective laser sintering STL format molding machine;

选择性激光烧结成形:以成形精度和生坯强度为标准,激光束在计算机控制下,按照二维片层信息进行选择性激光烧结成形,并将所有的片层逐层连接起来,得到植入体。 Selective Laser Sintering: The green strength and molding accuracy of the standard laser beam under computer control, for selective laser sintering according to the two-dimensional sheet formed layer information, and connect all the sheets in layers, resulting implant body. 选取优化的SLS工艺参数:激光功率34W,扫描速度1650mm/s,扫描间距0. 18mm,切片厚度0. 18mm, 预热温度100°C ; Optimization of the process parameters selected SLS: laser power 34W, the scanning speed of 1650mm / s, scanning pitch 0. 18mm, the slice thickness of 0. 18mm, the preheating temperature of 100 ° C;

热脱脂:在纯度为99. 8%的氩气保护下,将SLS成形的植入体放入脱脂炉,以去除有机高分子,脱脂工艺分为三步:第一步,25〜250°C,升温速度5°C /min,不需要保温;第二步, 250〜420°C,升温速率3°C /min,保温Ih ;第三步,420〜600°C,升温速率2°C /min,保温lh,并随炉冷却; Thermal degreasing: the purity of 99.8% under an argon atmosphere, the SLS shaped implant placed in a debinding furnace, to remove the organic polymer, the degreasing process is divided into three steps: the first step, 25~250 ° C , temperature rise rate of 5 ° C / min, do not need insulation; the second step, 250~420 ° C, heating rate 3 ° C / min, Ih is incubated; a third step, 420~600 ° C, heating rate 2 ° C / min, holding lh, and allowed to cool with the furnace;

高温烧结:把经过脱脂的植入体放入真空度为2½的烧结炉内,从室温烧结至1200°C, 升温速率3°C /min,并在1200°C保温3h,随炉冷却,得到Ti_15Mo合金的多孔植入体。 Sintering temperature: the degreased body after the implant is placed in a vacuum sintering furnace 2½ degree of sintering from room temperature to 1200 ° C, heating rate 3 ° C / min, and holding at 1200 ° C 3h, furnace cooling, to obtain Ti_15Mo alloy porous implant.

[0015] 通过测量分析,该工艺得到的Ti_15Mo合金的孔隙率为52. 8%,开孔率为48. 6%, 孔隙大小为180 μ m ;弹性模量为5. 55GPa,抗压屈服强度为113. 56MPa,与人骨的弹性模量(3. 21〜30GPa)和抗压强度(130〜180MPa)十分接近。 [0015] By measuring the analysis, the process results in a porosity of 52.8% Ti_15Mo alloy, 48.6% open porosity, pore size of 180 μ m; elastic modulus 5. 55GPa, compressive yield strength It is 113. 56MPa, human bone elastic modulus (3. 21~30GPa) and compressive strength (130~180MPa) very close.

[0016] 实施方式2 [0016] Embodiment 2

在实施例1的基础上,只改变Ti粉和Mo粉的质量配比和高温烧结温度,即Ti/Mo=9/l,从室温按3°C /min的升温速率加热到1500°C,并保温3小时,之后随炉冷却,得到Ti-IOMo 合金,其孔隙率为18%,开孔率为16. 3%,孔径平均大小为30 μ m,弹性模量为54. 89MPa,抗压屈服强度为486. 38 MPa0 On the basis of the embodiment 1, changing only the Ti powder and Mo powder mass ratio and high sintering temperature, i.e., Ti / Mo = 9 / l, by 3 ° C / min heating rate from room temperature to 1500 ° C, and incubated for 3 hours and then furnace cooling, to obtain Ti-IOMo alloy having a porosity of 18%, 16.3% open porosity, the average pore size of 30 μ m, the elastic modulus was 54. 89MPa, compression yield strength of 486. 38 MPa0

[0017] 实施方式3 [0017] Embodiment 3

配制原料粉末:首先采用电子天平分别称取100目的Ti粉460g、325目的Mo粉40g、 400目的聚苯乙烯(PS)粉末30g,然后将上述粉末装入球磨机中混合,球料比为2:1,球磨时间为8h,转速为70r/min ; Formulation of Raw Material Powder: First, were weighed using an electronic balance Ti powder of 100 mesh 460g, 325 Mo purpose flour 40g, 400 purpose polystyrene (PS) powder 30g, and then mixing the powder was charged into a ball mill, ball feed ratio of 2: 1, the milling time was 8h, speed is 70r / min;

构建三维模型:使用CAD绘制植入体的三维形状,并采用分层软件对三维模型进行切片处理,将处理得到的二维片层信息以STL格式存储到选择性激光烧结的成形机; Constructing three-dimensional models: the use of CAD rendering three-dimensional shape of the implant, and use of hierarchical software to slice three-dimensional model, a two-dimensional slice processing information obtained is stored in STL format to a selective laser sintering molding machine;

选择性激光烧结成形:以成形精度和生坯强度为标准,激光束在计算机控制下,按照二维片层信息进行选择性激光烧结成形,并将所有的片层逐层连接起来,得到植入体。 Selective Laser Sintering: The green strength and molding accuracy of the standard laser beam under computer control, for selective laser sintering according to the two-dimensional sheet formed layer information, and connect all the sheets in layers, resulting implant body. 选取优化的SLS工艺参数:激光功率23W,扫描速度1800mm/s,扫描间距0. 20mm,切片厚度0. 20mm, 预热温度130°C ; Optimization of the process parameters selected SLS: laser power 23W, the scanning speed of 1800mm / s, scanning pitch 0. 20mm, the slice thickness of 0. 20mm, the preheating temperature of 130 ° C;

热脱脂:在纯度为99. 8%的氩气保护下,将SLS成形的植入体放入脱脂炉,以去除有机高分子,脱脂工艺分为三步:第一步,25〜30(TC,升温速度5°C /min,不需要保温;第二步, 300〜550°C,升温速率3°C /min,保温2h ;第三步,550〜700°C,升温速率2°C /min,保温lh,并随炉冷却; Thermal debinding: under argon at a purity of 99.8% of the SLS shaped implant placed in a debinding furnace, to remove the organic polymer, the degreasing process is divided into three steps: the first step, 25~30 (TC , temperature rise rate of 5 ° C / min, do not need insulation; the second step, 300~550 ° C, heating rate 3 ° C / min, heat 2H; a third step, 550~700 ° C, heating rate 2 ° C / min, holding lh, and allowed to cool with the furnace;

高温烧结:把经过脱脂的植入体放入真空度为2½的烧结炉内,从室温烧结至1250°C, 升温速率3°C /min,并在1250°C保温2h,随炉冷却,得到Ti_8Mo合金的多孔植入体。 Sintering temperature: the degreased body after the implant is placed in a vacuum sintering furnace 2½ degree of sintering from room temperature to 1250 ° C, heating rate 3 ° C / min, and holding at 1250 ° C 2h, furnace cooling, to obtain Ti_8Mo alloy porous implant.

[0018] 通过测量分析,该工艺得到的Ti-SMo合金的孔隙率为37. 35%,开孔率为35. 72%, 最大孔径达120 μ m ;弹性模量为17. 76GPa,抗压屈服强度为255. 96MPa [0018] By measuring the analysis, the process results in a porosity of the alloy Ti-SMo 37.35%, 35.72% open porosity, maximum pore size of 120 μ m; elastic modulus of 17. 76GPa, compression yield strength of 255. 96MPa

实施方式4 Embodiment 4

在实施例3的基础上,只改变粘结剂的含量,聚苯乙烯由30g变为10g,即占金属粉末总量的2wt%,按相同的SLS工艺参数成形,得到Ti-SMo预成形坯。 On the basis of Example 3, the only change the content of the binder, 30g of polystyrene becomes 10g, 2wt% cent of the total amount of the metal powder molding in the same SLS process parameters, to obtain Ti-SMo preform .

[0019] 在SLS成形结束的后续清粉过程中,预成形坯由于粘结剂含量过低致使强度太小,操作时稍不小心或用力过大都会被损坏,对于后面搬运及运输以进行脱脂和烧结工艺就显得更加困难,尤其是薄壁件,更容易损坏。 [0019] In a subsequent SLS clear powder molding process ends, the preform resulting in low strength since the content of the binder is too small, a little excessive force or careless operation Metropolitan is damaged, for later handling and transport defatting and sintering process becomes more difficult, particularly thin-walled parts, more prone to damage.

[0020] 由此可见,为了获得足够的生坯强度,以方便后续的操作处理,粘结剂的含量须控制在3wt%及以上;对于复杂形状且大尺寸的薄壁件,粘结剂的含量应相对增加,上限可控制在15wt%以内。 [0020] Thus, in order to obtain sufficient green strength to facilitate subsequent processing operations, the binder content shall be controlled to 3wt% or more; complex shape and large size thin wall member, binder content should be relatively increased, it can be controlled within the upper limit of 15wt%.

[0021] 实施方式5 [0021] Embodiment 5

配制原料粉末:首先采用电子天平称量200目的Ti粉480g、400目的钼粉20g、300目的聚酰胺(PA)粉末20g,然后将上述粉末装入球磨机中混合,球料比为1:1,球磨时间为他, 转速为40r/min ; The raw material powder prepared: Firstly electronic balance 200 mesh Ti powder 480g, 400 object molybdenum powder 20g, 300 object of polyamide (PA) powder 20g, and then mixing the powder was charged into a ball mill, ball to powder ratio of 1: 1, his milling time, the rotation speed is 40r / min;

构建三维模型:使用CAD绘制植入体的三维形状,并采用分层软件对三维模型进行切片处理,将处理得到的二维片层信息以STL格式存储到选择性激光烧结的成形机; Constructing three-dimensional models: the use of CAD rendering three-dimensional shape of the implant, and use of hierarchical software to slice three-dimensional model, a two-dimensional slice processing information obtained is stored in STL format to a selective laser sintering molding machine;

选择性激光烧结成形:以成形精度和生坯强度为标准,激光束在计算机控制下,按照二维片层信息进行选择性激光烧结成形,并将所有的片层逐层连接起来,得到植入体。 Selective Laser Sintering: The green strength and molding accuracy of the standard laser beam under computer control, for selective laser sintering according to the two-dimensional sheet formed layer information, and connect all the sheets in layers, resulting implant body. 选取优化的SLS工艺参数:激光功率18W,扫描速度2000mm/s,扫描间距0. 25mm,切片厚度0. 25mm,预热温度; Optimization of the process parameters selected SLS: laser power 18W, the scanning speed of 2000mm / s, scanning pitch of 0. 25mm, slice thickness 25mm, 0. preheating temperature;

热脱脂:在纯度为99. 8%的氩气保护下,将SLS成形的植入体放入脱脂炉,以去除有机高分子,脱脂工艺分为三步:第一步,25〜350°C,升温速度5°C /min,不需要保温;第二步, 350〜500°C,升温速率2V /min,保温2h ;第三步,500〜600°C,升温速率3°C /min,保温lh,并随炉冷却; Thermal degreasing: the purity of 99.8% under an argon atmosphere, the SLS shaped implant placed in a debinding furnace, to remove the organic polymer, the degreasing process is divided into three steps: the first step, 25~350 ° C , temperature rise rate of 5 ° C / min, do not need insulation; the second step, 350~500 ° C, heating rate of 2V / min, heat 2H; a third step, 500~600 ° C, heating rate 3 ° C / min, incubated lh, and cooling with the furnace;

高温烧结:把经过脱脂的植入体放入真空度为2½的烧结炉内,从室温升温至1100°C, 升温速率3°C /min,并在1100°C保温2h,随炉冷却,得到Ti_4Mo合金的多孔植入体,其孔隙率为48. 79%,开孔率为47%,最大孔径达160 μ m ;弹性模量为4. ISGPa,抗压屈服强度为103.74MPa0 Sintering temperature: the degreased body after the implant is placed in a vacuum sintering furnace 2½ degree of from room temperature to 1100 ° C, heating rate 3 ° C / min, and holding at 1100 ° C 2h, furnace cooling, to obtain porous implant Ti_4Mo alloy, having a porosity of 48.79%, open porosity of 47%, maximum pore size of 160 μ m; elastic modulus 4. ISGPa, compressive yield strength 103.74MPa0

[0022] 实施方式6 [0022] Embodiment 6

本例制备多孔Ti_2Mo合金,选用200目钛粉、325目钼粉,300目酚醛树脂为原料粉末, 采用球磨机混合均勻:球料比2:1,转速40r/min,球磨他;选择性激光烧结成形,粉床温度固定在120°C,表一为不同含量的酚醛树脂对应的SLS工艺参数。 This embodiment Ti_2Mo preparing a porous alloy, the choice of 200 mesh titanium powder, 325 mesh molybdenum powder, 300 mesh phenol resin as the raw material powder, mixed well using a ball mill: ball to powder ratio of 2: 1, speed 40r / min, he milling; Selective Laser Sintering forming, powder bed temperature fixed at 120 ° C, a table for the different levels of the SLS process parameters corresponding to the phenolic resin.

[0023] [0023]

表1混合粉末SLS成形工艺 Table 1 SLS mixed powder forming process

Figure CN102335742AD00071

通过以上SLS工艺参数得到的预成形坯,在纯度>99. 5%的氩气气氛中脱脂,待粘结剂完全分解和挥发后,放入真空炉烧结至800°C,并保温池,之后随炉冷却,得到多孔Ti-2Mo 合金。 SLS obtained by the above process parameters preform, at a purity of> 99.5% of skim argon atmosphere, until the binder was completely decomposed and volatilized, into a vacuum oven sintered to 800 ° C, and incubated pool, after furnace cooling to obtain a porous Ti-2Mo alloy. 经分析,Ti-2Mo合金的孔隙度可达60%,孔径大小50〜200 μ m,弹性模量为3. 25GPa, 抗压屈服强度为78. 84 MPa0 After analysis, the porosity Ti-2Mo alloy is up to 60%, a pore size of 50~200 μ m, the elastic modulus of 3. 25GPa, compressive yield strength of 78. 84 MPa0

Claims (4)

1. 一种制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:首先采用Auto CAD、Pro/E绘图软件,或将通过CT扫描、MRI技术获得的医学摄影图形进行数据化, 设计出植入体的三维模型;将Ti、Mo金属元素粉末与有机高分子粉末进行机械均勻混合, 金属元素粉末中Mo含量为2〜15wt%,余量为Ti,有机高分子的含量占金属粉末总量的3wt%-15wt% ;在氩气保护下,采用(X)2激光束将混合粉末进行选择性激光烧结成形,得到具有特定形状的Ti-Mo合金材料植入体的预成形坯;在真空或氩气保护下,将成形坯进行热脱脂及高温烧结,烧结温度为800〜1500°C,即得到生物医用多孔Ti-Mo合金植入体。 CLAIMS 1. A method for preparing a biological complex shape body of porous titanium molybdenum alloy medical implants, which is characterized in that: Firstly Auto CAD, Pro / E drawing software, or medical MRI techniques photographic graphics data obtained by CT scanning of designed three-dimensional model of the implant; and Ti, Mo powder and metal element organic polymer powder was uniformly mixed mechanically, the metal powder elements Mo content 2~15wt%, the balance being Ti, a content of the organic polymer accounts the total amount of 3wt% -15wt% metal powder; under argon protection using (X) 2 laser beam selective laser sintering mixed powder molding, obtained preformed Ti-Mo alloy implant having a specific shape blank; in a vacuum or an argon atmosphere, the parison thermal debinding and sintering temperature, the sintering temperature of 800~1500 ° C, to obtain a porous biomedical implant Ti-Mo alloy.
2.根据权利要求1所述的制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:具体工艺流程和参数如下:(1)采用球磨工艺对原料粉末进行机械混合,其工艺参数为:球料比为3:1〜1:1,球磨时间3〜12h,转速30〜100r/min ;(2)根据不同患者的需要,采用ftx) Ε, CAD或CT扫描、MRI技术,构建植入体的三维模型,可对任意复杂形状的植入体进行个性化的三维模型设计;(3)在纯度为99. 0%〜99. 9%的惰性氩气保护下,以(X)2激光器为热源,按照预先设计好的加工路线对混合粉末进行选择性激光烧结成形,得到所需植入体的生坯件;SLS工艺参数为:激光功率:10〜40W,扫描速度为1500〜2500mm/s,扫描间距为0. 08〜0. 25mm,切片厚度为0. 08〜0. 25mm,粉床预热温度为45〜160°C ;(4)在真空或惰性气体保护下,将植入体生坯件放入脱脂炉内,直接进行热脱脂;脱脂主要工艺 The biological complex shape prepared according to claim 1 Porous medical implant of titanium molybdenum alloy, characterized in that: the specific process and parameters are as follows: (1) ball milling process for mechanically mixing raw material powder, which process parameters: Charge ratio of 3: 1~1: 1, milling time 3~12h, speed 30~100r / min; (2) according to the needs of different patients, using ftx) Ε, CAD or CT scan, MRI technology, Building three-dimensional model of the implant, it can be of any complex shape three-dimensional model of the implant personalized design; (3) at a purity of 99.0% 9% ~99 inert argon atmosphere at (X. ) 2 laser as the heat source, according to good design of the pre-processing line selective laser sintering mixed powder molded to obtain the desired green implant member; the SLS process parameters: laser power: 10~40W, scanning speed of 1500 ~2500mm / s, scanning pitch is 0. 08~0 25mm, slice thickness of 0. 08~0 25mm, powder bed preheating temperature of 45~160 ° C;.. (4) under vacuum or inert gas, the implant member into a green degreasing furnace, direct thermal debinding; main process debinding 数为:脱脂温度为20〜750°C,保温时间为0. 5〜3h,脱除速率为1〜5°C /min ;(5)在真空或惰性气体保护下,将植入体脱脂件放入烧结炉内,进行高温烧结,最终得到钛钼合金植入体;烧结主要工艺参数为:烧结温度800〜1500°C,保温时间为0. 5〜3h, 升温速率为1〜5°C /min。 Number: degreasing temperature of 20~750 ° C, holding time is 0. 5~3h, the removal rate of 1~5 ° C / min; (5) under vacuum or inert gas, the implant member degreased placed in a sintering furnace, sintered at high temperature, ultimately to give a titanium molybdenum alloy implant; main sintering process parameters: sintering temperature 800~1500 ° C, the holding time was 0. 5~3h, a heating rate of 1~5 ° C / min.
3.根据权利要求1所述的制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:所述原料Ti粉、Mo粉和高分子粉末的粒径分别为:100〜325目、100〜500目和100 〜800 目。 3. The method of molybdenum alloy implant of claim 1 prepared porous titanium complex shapes biomedical claim, wherein: said raw Ti powder, Mo powder and polymer powder of particle size are: 100~325 mesh , 100~500 ~800 mesh and 100 mesh.
4.根据权利要求1所述的制备复杂形状生物医用多孔钛钼合金植入体的方法,其特征在于:所述有机高分子材料为热塑性树脂和热固性树脂;热塑性树脂包括聚乙烯、高密度聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚甲基丙烯酸甲酯、聚碳酸酯或乙烯-醋酸乙烯共聚物;热固性树脂包括酚醛树脂、三聚氰胺、氨基树脂或环氧树脂。 4. A method according molybdenum alloy implant of claim 1 prepared porous titanium complex shapes biomedical claim, wherein: said organic polymer material is a thermoplastic resin and a thermosetting resin; a thermoplastic resin include polyethylene, high density polyethylene ethylene, polypropylene, polystyrene, polyamide, polymethyl methacrylate, polycarbonate, or an ethylene - vinyl acetate copolymer; thermosetting resins include phenolic resins, melamine, amino resin or epoxy resin.
CN2011103442414A 2011-11-04 2011-11-04 Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body CN102335742B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103442414A CN102335742B (en) 2011-11-04 2011-11-04 Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103442414A CN102335742B (en) 2011-11-04 2011-11-04 Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body

Publications (2)

Publication Number Publication Date
CN102335742A true CN102335742A (en) 2012-02-01
CN102335742B CN102335742B (en) 2013-01-30

Family

ID=45511830

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103442414A CN102335742B (en) 2011-11-04 2011-11-04 Method for preparing complexly shaped biomedical porous titanium molybdenum alloy implant body

Country Status (1)

Country Link
CN (1) CN102335742B (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634687A (en) * 2012-04-18 2012-08-15 北京科技大学 Method for preparing stainless steel biological porous implant material by selective laser sintering
CN102941343A (en) * 2012-11-16 2013-02-27 西北有色金属研究院 Quick manufacturing method of titanium-aluminum alloy composite part
CN103420681A (en) * 2012-05-15 2013-12-04 中南大学 Method for realizing secondary sintering preparation of artificial bone by utilizing selective laser and temperature control furnace
CN103495731A (en) * 2013-09-03 2014-01-08 广州中国科学院先进技术研究所 Method for manufacturing pure titanium porous structure through selective laser melting
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
CN104758982A (en) * 2015-04-10 2015-07-08 中国人民解放军第二军医大学 Individual beta-Ti-15Mo alloy-Co-28Cr-6Mo alloy-Al2O3 ceramic acetabulum artificial bone scaffold
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
CN105397091A (en) * 2015-10-30 2016-03-16 苏州大学张家港工业技术研究院 Preparation method for porous graphene reinforced titanium matrix nanometer composite material based on laser sintering technology
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
CN106390198A (en) * 2016-09-19 2017-02-15 西安交通大学 Method for preparing individualized porous implant through selective laser formation and electrolytic reduction
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
CN107177769A (en) * 2016-03-09 2017-09-19 中国科学院金属研究所 Anti-infection stainless steel implantation material preparation method
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
CN107374784A (en) * 2017-06-14 2017-11-24 西安交通大学 Preparation method for porous implant based on additive manufacturing of macromolecular polymer
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
CN107626925A (en) * 2017-11-02 2018-01-26 上海航天精密机械研究所 Laser additive manufacturing method of variable cross-section closed chamber structure
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142914A1 (en) * 2005-12-06 2007-06-21 Eric Jones Laser-produced porous surface
CN101249279A (en) * 2008-03-19 2008-08-27 中国人民解放军第四军医大学 Method using laser quick forming producing HA/Ti gradient biological activity material
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101948964A (en) * 2010-09-16 2011-01-19 大连理工大学 Method for preparing biomedical porous titanium and titanium alloy material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070142914A1 (en) * 2005-12-06 2007-06-21 Eric Jones Laser-produced porous surface
CN101249279A (en) * 2008-03-19 2008-08-27 中国人民解放军第四军医大学 Method using laser quick forming producing HA/Ti gradient biological activity material
EP2149414A1 (en) * 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
CN101948964A (en) * 2010-09-16 2011-01-19 大连理工大学 Method for preparing biomedical porous titanium and titanium alloy material

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9480490B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific guides
US10206695B2 (en) 2006-02-27 2019-02-19 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9913734B2 (en) 2006-02-27 2018-03-13 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9662216B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific hip joint devices
US9662127B2 (en) 2006-02-27 2017-05-30 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9522010B2 (en) 2006-02-27 2016-12-20 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9173661B2 (en) 2006-02-27 2015-11-03 Biomet Manufacturing, Llc Patient specific alignment guide with cutting surface and laser indicator
US9345548B2 (en) 2006-02-27 2016-05-24 Biomet Manufacturing, Llc Patient-specific pre-operative planning
US9539013B2 (en) 2006-02-27 2017-01-10 Biomet Manufacturing, Llc Patient-specific elbow guides and associated methods
US9918740B2 (en) 2006-02-27 2018-03-20 Biomet Manufacturing, Llc Backup surgical instrument system and method
US9289253B2 (en) 2006-02-27 2016-03-22 Biomet Manufacturing, Llc Patient-specific shoulder guide
US9113971B2 (en) 2006-02-27 2015-08-25 Biomet Manufacturing, Llc Femoral acetabular impingement guide
US9480580B2 (en) 2006-02-27 2016-11-01 Biomet Manufacturing, Llc Patient-specific acetabular alignment guides
US9339278B2 (en) 2006-02-27 2016-05-17 Biomet Manufacturing, Llc Patient-specific acetabular guides and associated instruments
US9700329B2 (en) 2006-02-27 2017-07-11 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9861387B2 (en) 2006-06-09 2018-01-09 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9993344B2 (en) 2006-06-09 2018-06-12 Biomet Manufacturing, Llc Patient-modified implant
US8979936B2 (en) 2006-06-09 2015-03-17 Biomet Manufacturing, Llc Patient-modified implant
US10206697B2 (en) 2006-06-09 2019-02-19 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9795399B2 (en) 2006-06-09 2017-10-24 Biomet Manufacturing, Llc Patient-specific knee alignment guide and associated method
US9572590B2 (en) 2006-10-03 2017-02-21 Biomet Uk Limited Surgical instrument
US9907659B2 (en) 2007-04-17 2018-03-06 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10159498B2 (en) 2008-04-16 2018-12-25 Biomet Manufacturing, Llc Method and apparatus for manufacturing an implant
US10052110B2 (en) 2009-08-13 2018-08-21 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9393028B2 (en) 2009-08-13 2016-07-19 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9839433B2 (en) 2009-08-13 2017-12-12 Biomet Manufacturing, Llc Device for the resection of bones, method for producing such a device, endoprosthesis suited for this purpose and method for producing such an endoprosthesis
US9456833B2 (en) 2010-02-26 2016-10-04 Biomet Sports Medicine, Llc Patient-specific osteotomy devices and methods
US9271744B2 (en) 2010-09-29 2016-03-01 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US10098648B2 (en) 2010-09-29 2018-10-16 Biomet Manufacturing, Llc Patient-specific guide for partial acetabular socket replacement
US9968376B2 (en) 2010-11-29 2018-05-15 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US9241745B2 (en) 2011-03-07 2016-01-26 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9445907B2 (en) 2011-03-07 2016-09-20 Biomet Manufacturing, Llc Patient-specific tools and implants
US9743935B2 (en) 2011-03-07 2017-08-29 Biomet Manufacturing, Llc Patient-specific femoral version guide
US9717510B2 (en) 2011-04-15 2017-08-01 Biomet Manufacturing, Llc Patient-specific numerically controlled instrument
US9474539B2 (en) 2011-04-29 2016-10-25 Biomet Manufacturing, Llc Patient-specific convertible guides
US8956364B2 (en) 2011-04-29 2015-02-17 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9743940B2 (en) 2011-04-29 2017-08-29 Biomet Manufacturing, Llc Patient-specific partial knee guides and other instruments
US9757238B2 (en) 2011-06-06 2017-09-12 Biomet Manufacturing, Llc Pre-operative planning and manufacturing method for orthopedic procedure
US9084618B2 (en) 2011-06-13 2015-07-21 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9687261B2 (en) 2011-06-13 2017-06-27 Biomet Manufacturing, Llc Drill guides for confirming alignment of patient-specific alignment guides
US9668747B2 (en) 2011-07-01 2017-06-06 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9173666B2 (en) 2011-07-01 2015-11-03 Biomet Manufacturing, Llc Patient-specific-bone-cutting guidance instruments and methods
US9427320B2 (en) 2011-08-04 2016-08-30 Biomet Manufacturing, Llc Patient-specific pelvic implants for acetabular reconstruction
US9066734B2 (en) 2011-08-31 2015-06-30 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9295497B2 (en) 2011-08-31 2016-03-29 Biomet Manufacturing, Llc Patient-specific sacroiliac and pedicle guides
US9439659B2 (en) 2011-08-31 2016-09-13 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9603613B2 (en) 2011-08-31 2017-03-28 Biomet Manufacturing, Llc Patient-specific sacroiliac guides and associated methods
US9386993B2 (en) 2011-09-29 2016-07-12 Biomet Manufacturing, Llc Patient-specific femoroacetabular impingement instruments and methods
US9351743B2 (en) 2011-10-27 2016-05-31 Biomet Manufacturing, Llc Patient-specific glenoid guides
US9936962B2 (en) 2011-10-27 2018-04-10 Biomet Manufacturing, Llc Patient specific glenoid guide
US9554910B2 (en) 2011-10-27 2017-01-31 Biomet Manufacturing, Llc Patient-specific glenoid guide and implants
US9301812B2 (en) 2011-10-27 2016-04-05 Biomet Manufacturing, Llc Methods for patient-specific shoulder arthroplasty
US9451973B2 (en) 2011-10-27 2016-09-27 Biomet Manufacturing, Llc Patient specific glenoid guide
US9827106B2 (en) 2012-02-02 2017-11-28 Biomet Manufacturing, Llc Implant with patient-specific porous structure
US9237950B2 (en) 2012-02-02 2016-01-19 Biomet Manufacturing, Llc Implant with patient-specific porous structure
CN102634687A (en) * 2012-04-18 2012-08-15 北京科技大学 Method for preparing stainless steel biological porous implant material by selective laser sintering
CN103420681A (en) * 2012-05-15 2013-12-04 中南大学 Method for realizing secondary sintering preparation of artificial bone by utilizing selective laser and temperature control furnace
CN103420681B (en) * 2012-05-15 2015-12-16 中南大学 And temperature control by using a selective laser sintering furnace secondary implemented method of preparing artificial bone
CN102941343A (en) * 2012-11-16 2013-02-27 西北有色金属研究院 Quick manufacturing method of titanium-aluminum alloy composite part
CN102941343B (en) * 2012-11-16 2014-12-24 西北有色金属研究院 Quick manufacturing method of titanium-aluminum alloy composite part
US9060788B2 (en) 2012-12-11 2015-06-23 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9204977B2 (en) 2012-12-11 2015-12-08 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9597201B2 (en) 2012-12-11 2017-03-21 Biomet Manufacturing, Llc Patient-specific acetabular guide for anterior approach
US9839438B2 (en) 2013-03-11 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid guide with a reusable guide holder
US9579107B2 (en) 2013-03-12 2017-02-28 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9700325B2 (en) 2013-03-12 2017-07-11 Biomet Manufacturing, Llc Multi-point fit for patient specific guide
US9498233B2 (en) 2013-03-13 2016-11-22 Biomet Manufacturing, Llc. Universal acetabular guide and associated hardware
US9826981B2 (en) 2013-03-13 2017-11-28 Biomet Manufacturing, Llc Tangential fit of patient-specific guides
US9517145B2 (en) 2013-03-15 2016-12-13 Biomet Manufacturing, Llc Guide alignment system and method
CN103495731A (en) * 2013-09-03 2014-01-08 广州中国科学院先进技术研究所 Method for manufacturing pure titanium porous structure through selective laser melting
US9408616B2 (en) 2014-05-12 2016-08-09 Biomet Manufacturing, Llc Humeral cut guide
US9561040B2 (en) 2014-06-03 2017-02-07 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9839436B2 (en) 2014-06-03 2017-12-12 Biomet Manufacturing, Llc Patient-specific glenoid depth control
US9833245B2 (en) 2014-09-29 2017-12-05 Biomet Sports Medicine, Llc Tibial tubercule osteotomy
US9826994B2 (en) 2014-09-29 2017-11-28 Biomet Manufacturing, Llc Adjustable glenoid pin insertion guide
US9820868B2 (en) 2015-03-30 2017-11-21 Biomet Manufacturing, Llc Method and apparatus for a pin apparatus
CN104758982A (en) * 2015-04-10 2015-07-08 中国人民解放军第二军医大学 Individual beta-Ti-15Mo alloy-Co-28Cr-6Mo alloy-Al2O3 ceramic acetabulum artificial bone scaffold
US10226262B2 (en) 2015-06-25 2019-03-12 Biomet Manufacturing, Llc Patient-specific humeral guide designs
CN105397091A (en) * 2015-10-30 2016-03-16 苏州大学张家港工业技术研究院 Preparation method for porous graphene reinforced titanium matrix nanometer composite material based on laser sintering technology
CN105397091B (en) * 2015-10-30 2017-08-11 苏州大学 Laser sintered porous reinforcing graphene preparing nanocomposites titanium
CN107177769B (en) * 2016-03-09 2019-02-12 中国科学院金属研究所 A kind of anti-infective stainless steel implantation material preparation method
CN107177769A (en) * 2016-03-09 2017-09-19 中国科学院金属研究所 Anti-infection stainless steel implantation material preparation method
CN106390198A (en) * 2016-09-19 2017-02-15 西安交通大学 Method for preparing individualized porous implant through selective laser formation and electrolytic reduction
CN107374784A (en) * 2017-06-14 2017-11-24 西安交通大学 Preparation method for porous implant based on additive manufacturing of macromolecular polymer
CN107626925A (en) * 2017-11-02 2018-01-26 上海航天精密机械研究所 Laser additive manufacturing method of variable cross-section closed chamber structure

Also Published As

Publication number Publication date
CN102335742B (en) 2013-01-30

Similar Documents

Publication Publication Date Title
Esen et al. Processing of titanium foams using magnesium spacer particles
US6022509A (en) Precision powder injection molded implant with preferentially leached texture surface and method of manufacture
Song et al. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V
Shahzad et al. Preparation and indirect selective laser sintering of alumina/PA microspheres
Yan et al. Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering
Ng et al. Layer manufacturing of magnesium and its alloy structures for future applications
Guo et al. Additive manufacturing: technology, applications and research needs
WO2011010189A1 (en) Biomedical device, method for manufacturing the same and use thereof
Horn et al. Overview of current additive manufacturing technologies and selected applications
CN102009175B (en) Manufacturing method of multilayer shell-core composite structural part
Shahzad et al. Additive manufacturing of zirconia parts by indirect selective laser sintering
Zhang et al. Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting
CN103817767A (en) Method for manufacturing ceramic products with 3D printing technology
CN104526838B (en) 3d printing ceramic molding method
CN103801696B (en) 3d printing utilizing powder metallurgy mold complex shapes preparation method
CN103769586A (en) Metal 3D printing product production method by means of low-power laser sintering
CN1970202A (en) Method for selective laser sintering for quick and direct production of injection die
CN100537802C (en) Method for preparing high dense TiAl-base alloy
JP2013502945A (en) Method for producing a tooth portion made of dental metal powder
Soon et al. Fabrication and compressive strength of porous hydroxyapatite scaffolds with a functionally graded core/shell structure
Maleksaeedi et al. Toward 3D printed bioactive titanium scaffolds with bimodal pore size distribution for bone ingrowth
RU2320739C2 (en) Dense self-lubricating material, method of preparation thereof, and a mechanical product therefrom
Kolan et al. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering
El-Hajje et al. Physical and mechanical characterisation of 3D-printed porous titanium for biomedical applications
CN103008657A (en) Method for preparing oxide dispersion strengthened alloy by rapid forming

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C53 Correction of patent for invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: JIE FANGXIA LU XIN HE XINBO QU XUANHUI TO: HE XINBO LU XIN JIE FANGXIA QU XUANHUI

C14 Grant of patent or utility model