CN102323754A - Robust gain scheduling control method based on regional pole assignment - Google Patents

Robust gain scheduling control method based on regional pole assignment Download PDF

Info

Publication number
CN102323754A
CN102323754A CN201110217148A CN201110217148A CN102323754A CN 102323754 A CN102323754 A CN 102323754A CN 201110217148 A CN201110217148 A CN 201110217148A CN 201110217148 A CN201110217148 A CN 201110217148A CN 102323754 A CN102323754 A CN 102323754A
Authority
CN
China
Prior art keywords
mtd
mtr
controller
msub
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110217148A
Other languages
Chinese (zh)
Inventor
罗冠辰
于剑桥
梅跃松
张翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201110217148A priority Critical patent/CN102323754A/en
Publication of CN102323754A publication Critical patent/CN102323754A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention provides a robust gain scheduling control method based on regional pole assignment. The realization principle is as follows: the controlled object is divided into a linear time invariant part and a parameter module by the method, wherein the parameter module is used for reflecting the nonlinear characteristic, time variant characteristic and certain uncertainty of the object; the nominal part is linear time invariant and the parametric variation part varies along with variation of the parameter module of the controlled object, thus ensuring the closed-loop system to satisfy the robust stability and robustness and have specified dynamic characteristics; the performance indexes are written into integral quadratic constraints under a unified framework according to the index requirements; in particular, the dynamic characteristics can be directly reflected by closed-loop poles on the position of the complex plane; therefore the index requirements of the dynamic characteristics are realized through regional pole constraints; and the constraints given by the performance index requirements are transformed into linear matrix inequality (LMI) systems and a solver in an LMI toolbox provided by a matrix laboratory (MATLAB) is utilized for solving, thus finally obtaining the controller satisfying the requirements.

Description

Robust gain scheduling control method based on regional pole allocation
Technical Field
The invention relates to a robust gain scheduling control method, in particular to a robust gain scheduling controller design method for realizing specified dynamic performance by using a pole allocation scheme, which can be widely applied to the field of controller design of a time-varying nonlinear multiple-input multiple-output system with higher requirements on dynamic performance.
Background
The design of a controller for a time-varying nonlinear multiple-input multiple-output system by adopting a classical control theory method has to carry out Jacobian linearization on each input and output channel at a series of working points. The resulting controller loses global characteristics and its stability cannot be guaranteed due to possible unstable zero-pole cancellation. The controllers designed based on modern control theory, such as linear quadratic regulators and the like, have poor robustness and extremely high requirements on model precision. The controller designed based on the robust control theory has good robust stability and robust performance, but has large conservative property, is difficult to be really used in engineering practice, and in addition, the performance mainly considered in the design process is H/H2And the global performance is equal, and the designed system is difficult to ensure local characteristics, particularly dynamic characteristics. In order to guarantee local characteristics, scholars propose a design method of robust gain scheduling. The method gives consideration to the global and local characteristics of the controller and meets the requirements of robust stability and robust performance. However, due to the complexity of the algorithm and the conservative property of the algorithm, the robust gain scheduling control method has difficulty in ensuring that the system has the specified dynamic characteristic.
Disclosure of Invention
The invention improves the traditional robust gain scheduling controller design method by using the regional pole allocation scheme, and ensures the local performance, especially the designated dynamic characteristic on the premise of ensuring the global robust stability and robust performance of the system.
The robust gain scheduling control method based on the pole allocation of the region comprises the following steps:
step 1: the controlled object is arranged into a standard form;
the controlled object is arranged into the following form
Figure BDA0000079904850000021
dΔ=ΔeΔ (2)
In the formula, the vector x represents the state of the controlled object, dΔRepresenting disturbance input, r representing reference input, u representing control input, eΔRepresenting the disturbance output, h representing the output of the performance channel, and y representing the measurement output; the matrix A is a system matrix, B1、B2、B3Control matrices from disturbance input, reference input, control input, respectively, C1、C2、C3Output matrices, D, leading to disturbance output channel, performance output channel, measurement output channel, respectivelyij(i, j ═ 1, 2, 3) a direct connection matrix between channels, where the direct connection term from control input u to measurement output y is 0; a parameter module where Δ represents nonlinear, time-varying characteristics and uncertainty;
step 2: establishing an expression of performance index constraint;
2.1 Global Performance: writing the global performance index requirement into an integral quadratic constraint form, wherein the specific index is obtained by a multiplication operator R according to the performance requirementpGiven, having the form shown below:
Figure BDA0000079904850000022
where ε is any positive real number tending to 0; xi is the combination of the input vector and the output vector, and a reference input r and a performance output h are selected; zeta is input vector, choose reference input r; matrix RpGeneral press
Figure BDA0000079904850000023
The form of the method is divided into four blocks, and numerical values of all parts are given according to specific index requirements;
2.2 local Properties
Limiting the poles to a certain area D on the complex plane, where D ═ z ∈ C | fD(z) < 0}, and the region feature function is expressed as
<math> <mrow> <msub> <mi>f</mi> <mi>D</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>L</mi> <mo>+</mo> <mi>zM</mi> <mo>+</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <msup> <mi>M</mi> <mi>T</mi> </msup> <mo>=</mo> <msub> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>ij</mi> </msub> <mo>+</mo> <msub> <mi>M</mi> <mi>ij</mi> </msub> <mi>z</mi> <mo>+</mo> <msub> <mi>M</mi> <mi>ji</mi> </msub> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>&le;</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&le;</mo> <mi>m</mi> </mrow> </msub> <mo>,</mo> </mrow> </math> Wherein the coefficient matrix of the characteristic function
L=LT∈Rm×m,M∈Rm×m
The pole region is a combination of the following simple regions:
1) semi-plane: re (z) < α:
Figure BDA0000079904850000025
then L is-=-2α,M-1 is ═ 1; semi-plane:
Re(z)>β:
Figure BDA0000079904850000031
then L is+=2β,M+=-1;
2) Circle with (-q, 0) as the center and r as the radius: <math> <mrow> <msub> <mi>f</mi> <msub> <mi>D</mi> <mi>r</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>r</mi> </mtd> <mtd> <mi>z</mi> <mo>+</mo> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>+</mo> <mi>q</mi> </mtd> <mtd> <mo>-</mo> <mi>r</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
then L r = - r q q - r , M r = 0 1 0 0 ;
3) Cone with 2 θ as cone angle: <math> <mrow> <msub> <mi>f</mi> <msub> <mi>D</mi> <mi>c</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mrow> <mo>(</mo> <mi>z</mi> <mo>+</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>z</mi> <mo>-</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mrow> <mo>(</mo> <mi>z</mi> <mo>+</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
then L c = 0 0 0 0 , <math> <mrow> <msub> <mi>M</mi> <mi>c</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>sin</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>cos</mi> <mi>&theta;</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>cos</mi> <mi>&theta;</mi> </mtd> <mtd> <mi>sin</mi> <mi>&theta;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
4) Horizontal strip-shaped area with the real axis as the symmetry axis and the width of 2 h:
<math> <mrow> <msub> <mi>f</mi> <msub> <mi>D</mi> <mi>h</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>h</mi> </mtd> <mtd> <mo>-</mo> <mi>z</mi> <mo>+</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> <mo>-</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> </mtd> <mtd> <mo>-</mo> <mi>h</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
then L h = - h 0 0 - h , M h = 0 - 1 1 0 ;
Writing the pole region as the intersection of the above simple regions, i.e. D ═ IσDσThen L and M are written as L respectivelyσAnd MσHas a block diagonal form of L ═ blockdiag { Λ, L ═ Lσ,Λ}M=blockdiag{Λ,MσΛ, wherein the subscript mark σ ∈ { -, +, r, c, h }, which indicates that the pole region is composed of the simple region; and 3, step 3: judging whether a controller exists or not, so that the stability and the dynamic performance of the closed-loop system meet the requirements;
solving the following inequality group by using a feasp solver in an LMI toolbox provided by MATLAB:
Figure BDA0000079904850000041
in the set of inequalities, the unknown variables are: q, S, R,x, Y, where the symbol ker (Φ) represents the basis matrix of the null space of Φ, having ΦTker (Φ) ═ 0; mark
Figure BDA0000079904850000043
Represents the Kronecker product; if the inequality group (3) has a solution, the existence of the controller can enable the performance index of the closed-loop system to be met, and the subsequent steps are carried out to solve the controller; otherwise, the performance index cannot be met, and the original controller design problem is solved;
and 4, step 4: the multiplier P is constructed by first performing singular value decomposition as follows:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>Q</mi> </mtd> <mtd> <mi>S</mi> </mtd> </mtr> <mtr> <mtd> <msup> <mi>S</mi> <mi>T</mi> </msup> </mtd> <mtd> <mi>R</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <msup> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>Q</mi> <mo>~</mo> </mover> </mtd> <mtd> <mover> <mi>S</mi> <mo>~</mo> </mover> </mtd> </mtr> <mtr> <mtd> <msup> <mover> <mi>S</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> </mtd> <mtd> <mover> <mi>R</mi> <mo>~</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mi>&Gamma;</mi> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <msub> <mi>&Sigma;</mi> <mo>-</mo> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Sigma;</mi> <mo>+</mo> </msub> </mtd> </mtr> </mtable> </mfenced> <msup> <mi>&Gamma;</mi> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> where Γ is the unitary matrix, - ∑-Is a diagonal matrix formed by the singular values of the part less than zero, sigma+Is a diagonal matrix formed by the singular values of the part which is larger than zero;
then, order P 1 = Q S S T R , <math> <mrow> <msub> <mi>P</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>&Gamma;</mi> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msubsup> <mi>&Sigma;</mi> <mo>-</mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mi>&Sigma;</mi> <mo>+</mo> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> P 3 = - I 0 0 I - - - ( 5 )
Then there is P = P 1 P 2 P 2 T P 3 - - - ( 6 ) ;
And 5, step 5: solving the linear matrix inequality set to enable the closed-loop system to realize performance indexes;
order toCan be combined with
Figure BDA0000079904850000057
Divided into four blocks, as shown by:
Q ^ S ^ S ^ T R ^ : = I e T PI e - - - ( 7 )
order to <math> <mrow> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mo>:</mo> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>Q</mi> <mo>^</mo> </mover> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>Q</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>:</mo> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>S</mi> <mo>^</mo> </mover> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>S</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> <math> <mrow> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mo>:</mo> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>R</mi> <mo>^</mo> </mover> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>R</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> Solving the following inequality group by using a feasp solver in an LMI toolbox provided by MATLAB:
<math> <mrow> <mfenced open='' close='}'> <mtable> <mtr> <mtd> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>H</mi> <mi>a</mi> </msub> <mo>+</mo> <msubsup> <mi>H</mi> <mi>a</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <msub> <mi>H</mi> <mi>b</mi> </msub> </mtd> <mtd> <msubsup> <mi>H</mi> <mi>c</mi> <mi>T</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>H</mi> <mi>b</mi> <mi>T</mi> </msubsup> </mtd> <mtd> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> </mtd> <mtd> <msubsup> <mi>H</mi> <mi>d</mi> <mi>T</mi> </msubsup> <mo>+</mo> <msup> <mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>H</mi> <mi>c</mi> </msub> </mtd> <mtd> <msub> <mi>H</mi> <mi>d</mi> </msub> <mo>+</mo> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mi>T</mi> </msup> </mtd> <mtd> <mo>-</mo> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> <mo>&CircleTimes;</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mtd> <mi>I</mi> </mtd> </mrow> </mtd> <mtd> <msub> <mi>Y</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>M</mi> <mo>&CircleTimes;</mo> <msub> <mi>H</mi> <mi>a</mi> </msub> <mo>+</mo> <msup> <mi>M</mi> <mi>T</mi> </msup> <mo>&CircleTimes;</mo> <msubsup> <mi>H</mi> <mi>a</mi> <mi>T</mi> </msubsup> <mo>&lt;</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mn>1</mn> </msub> </mtd> <mtd> <mi>I</mi> </mtd> </mtr> <mtr> <mtd> <mi>I</mi> </mtd> <mtd> <msub> <mi>Y</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&GreaterEqual;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, H a : = X 1 A + B k 1 C 3 A k A + B 3 D c 11 C 3 AY 1 T + B 3 C k 1 ,
H b : = X 1 B 1 + B k 1 D 31 B k 2 X 1 B 2 + B k 1 D 32 B 1 + B 3 D c 11 D 31 B 3 D c 12 B 2 + B 3 D c 11 D 32 ,
H c : = C 1 + D 13 D c 11 C 3 C 1 Y 1 T + D 13 C k 1 D c 21 C 3 C k 2 C 2 + D 23 D c 11 C 3 C 2 Y 1 T + D 23 C k 1 ,
H d : = D 11 + D 13 D c 11 D 31 D 13 D c 12 D 12 + D 13 D c 11 D 32 D c 21 D 31 D c 22 D c 21 D 32 D 21 + D 23 D c 11 D 31 D 23 D c 12 D 22 + D 23 D c 11 D 32 ,
the unknown variables are: a. thek,Bk1,Bk2,Ck1,Ck2,Dc11,Dc12,Dc21,Dc22,X1,Y1
If the optimal performance needs to be obtained, only the inequality group (8) is used as a constraint to optimize the unknown variable, so that the R is the sum of the R and the RpThe expressed performance index is optimal;
and 6, step 6: solving a nominal part of the controller;
using already solved X1,Y1Performing singular value decomposition; the expression of the specific calculation method is as follows: I-X1Y1=UΛVTLet X2=UΛ1/2 (9)
Y2=VΛ1/2 (10)
U, V in the formula is unitary matrix, and A obtained by the solution is usedk,Bk1,Bk2,Ck1,Ck2,Dc11,Dc12,Dc21,Dc22,X1,Y1,X2,Y2Solving a linear equation set;
X 1 B 3 D c 11 + X 2 B c 1 = B k 1 X 1 B 3 D c 12 + X 2 B c 2 = B k 2 D c 11 C 3 Y 1 T + C c 1 Y 2 T = C k 1 D c 21 C 3 Y 1 T + C c 2 Y 2 T = C k 2 X 1 ( A + B 3 D c 11 C 3 ) Y 1 T + X 2 B c 1 C 3 Y 1 T + X 1 B 3 C c 1 Y 2 T + X 2 A c Y 2 T = A k - - - ( 11 )
wherein the unknown variable is Ac,Bc1,Bc2,Cc1,Cc2(ii) a A obtained by solvingc,Bc1,Bc2,Cc1,Cc2And Dc11,Dc12,Dc21,Dc22Together forming a nominal part of the controller;
and 7, step 7: solving a variable parameter part of the controller;
the following inequality was solved using the feasp solver in the LMI toolbox provided by MATLAB:
<math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>R</mi> <mo>^</mo> </mover> <mo>+</mo> <msup> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Delta;</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mtd> <mtd> <mover> <mi>S</mi> <mo>^</mo> </mover> <mo>+</mo> <msup> <mover> <mi>S</mi> <mo>^</mo> </mover> <mi>T</mi> </msup> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Delta;</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msup> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Delta;</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mi>&Delta;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&Delta;</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mtd> <mtd> <mo>-</mo> <msup> <mover> <mi>Q</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>></mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, the unknown variable is DeltacChanges along with the change of the parameter module delta;
and 8, step 8: a controller is constructed.
According to the previously determined Ac,Bc1,Bc2,Cc1,Cc2,Dc11,Dc12,Dc21,Dc22And ΔcConstructing a controller, wherein a state equation is as follows:
Figure BDA0000079904850000071
d=Δce (14)
the realization principle of the invention is as follows: the method divides a controlled object into a linear time-invariant part and a parameter module, wherein the parameter module is used for reflecting the nonlinear characteristic, the time-variant characteristic and certain uncertainty of the object. The objective is to design a variable parameter controller, the nominal part of which is linear and time-invariant, and the variable parameter part changes along with the change of a controlled object parameter module, so that a closed-loop system meets the requirements of robust stability and robust performance and has specified dynamic characteristics. The performance indexes are written into a form of integral quadratic constraint according to the index requirements under a unified framework. It should be noted that, since the dynamic characteristics can be directly represented by the positions of the poles of the closed loop on the complex plane, these dynamic characteristics index requirements are achieved by the regional pole constraint. And converting constraints given by various performance index requirements into linear matrix inequality groups, and solving by using a solver in an LMI toolbox provided by MATLAB to finally obtain the controller meeting the requirements.
The invention has the beneficial effects that:
the robust gain scheduling controller design method based on the regional pole allocation can be widely applied to the design of a control system, and is particularly suitable for designing a controller for a time-varying nonlinear multiple-input multiple-output system. The controller designed by the method can meet the global performance index requirement and the local performance requirement, particularly the transition performance requirement.
Drawings
FIG. 1 is a block diagram of a model of a controlled object in the control method of the present invention;
FIG. 2 is a block diagram of a controller model in the control method of the present invention;
FIG. 3 is a diagram of an autopilot model matching architecture in the control method of the present invention;
FIG. 4 is a graph of a parameter change in an embodiment of the present invention;
FIG. 5 is a graph of square wave response in an embodiment of the present invention.
Detailed Description
Taking a certain missile as an example of longitudinal movement, an autopilot is designed to have the form of expressions (13) and (14), as shown in fig. 2.
To cope with time-varying characteristics and uncertainties, the controller is designed to be divided into two parts: linear time-invariant part K and time-variant parameter module ΔcParameters can be automatically adjusted along with the change of missile dynamics. In order to ensure the stability of the guidance loop and achieve the required performance, an autopilot model matching design structure as shown in fig. 3 is constructed. In the figure, fycFor reference to the normal acceleration input command, u is the control input described in expression (1) above, δzFor rudder deflection angle, fyNormal acceleration, q pitch angular velocity, fyrNormal acceleration output for reference model, epIs the performance output. Will be controlledThe target missile is divided into two parts: a linear time-invariant portion G and a time-variant parameter block Δ; act represents steering engine dynamics; wPA low pass filter representing the performance weighting function; and R represents a reference model for describing the required dynamic performance index. The design aim is to examine the low-frequency response characteristic of a closed-loop system formed by a controller, a steering engine and a missile. A closed-loop system formed by a controller, a steering engine and a missile is compared with a reference model, and if the low-frequency response of the closed-loop system is very close to that of the reference model, the closed-loop system can achieve the required dynamic performance index. As can be seen from the figure, the performance output epIs the low frequency part of the difference between the true value of normal acceleration and the reference model output value, we expect epAs close to 0 as possible. Thus, in the case of parameter variations, the global performance requirement is a robust secondary performance requirement with index γ, i.e.: ensure the robust stability of the system and have
<math> <mrow> <mfrac> <msub> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>e</mi> <mi>p</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msub> <msub> <mrow> <mo>|</mo> <mo>|</mo> <msub> <mi>f</mi> <mi>yc</mi> </msub> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msub> </mfrac> <mo>&lt;</mo> <mi>&gamma;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
According to HDefinition of Properties, expression (15) is practically equivalent to H with index γAnd (4) performance requirements. Note that γ should be as small as possible so that the problem is an optimal one; given an index value of γ, it is a sub-optimal feasibility problem, where γ is usually 1. In this example, global refers toMarking gamma as 1; the transition performance requirement overshoot is less than 5%, and the 2% stabilization time is less than 0.15 s; to limit the controller fast mode, the controller poles are required to be limited in the left half complex plane where the absolute values of the real and imaginary parts are less than 1000.
The controller design steps are detailed below.
1) The original missile longitudinal dynamics equation is subjected to quasi-linearization treatment, the design area of the example is selected as Ma belonging to [1.8, 3.6], H belonging to [500m, 6000m ], and a linear time invariant system and a variable parameter block which are connected in the mode of the figure 1 are obtained.
The state space expression of the linear time invariant system G is
Figure BDA0000079904850000091
Therein, there are
A g = - 1.4318 1307.1288 0.55 - 3.8971
B g 1 = - 466.4594 1.7891 500.6380 332.3441 - 3.4649 5.8017 84.0866 5.1033 - 15.5201 - 74.1971 , B g 2 = - 140.6400 353.4696 ,
C g 1 = 0.0012 - 1.3540 - 0.0001 0.0888 0.0006 0.0048 0.0013 - 1.3876 - 0.0003 0.2732
D g 11 = - 0.0003 - 0.00003 - 0.0003 - 0.1111 - 0.0065 - 0.0040 0.0005 - 0.0037 - 0.0247 - 0.0693 - 0.0002 0.00003 - 0.0003 0.2509 - 0.0285 0 0 0 0 0 0 0 0 0 0 , D g 12 = 0.1199 0.9906 - 0.0006 0.2732 1.3876 ,
C g 2 = 1 0 , D g 21 = 0 0 0 0 0 , D g 22 = 0 , C g 3 = 0 1 , D g 31 = 0 0 0 0 0 ,
D g 32 = 0 ;
Order to
Figure BDA00000799048500000914
Andrepresenting normalized variables corresponding to Ma and H, i.e.
Figure BDA00000799048500000916
Figure BDA00000799048500000917
The time-varying parameter block delta is then of the form
<math> <mrow> <mi>&Delta;</mi> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mover> <mi>Ma</mi> <mo>&OverBar;</mo> </mover> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <msub> <mi>I</mi> <mrow> <mn>2</mn> <mo>&times;</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
2) The reference model R is selected as
R ( s ) = 1600 s 2 + 48 s + 1600 - - - ( 18 )
It is rewritten into a state space form
Figure BDA00000799048500000920
In the formula A r = - 48 - 12.5 128 0 , B r = 4 0 , Cr=(0 3.125),Dr=0。
3) Performance weighting function WPIs selected as
W P ( s ) = 0.5 ( s + 840 ) s + 3 - - - ( 20 )
It is rewritten into a state space expression of
Figure BDA0000079904850000104
In the formula Aw=-3,Bw=16,Cw=26.1563,Dw=0.5。
4) Steering engine dynamics Act is approximated as
Act ( s ) = 170 ( s + 170 ) - - - ( 22 )
Rewriting it into a state space expression can be written as
Figure BDA0000079904850000106
In the formula Aa=-170,Ba=16,Ca=10.625,Da=0。
5) G, R, WPLinearly connected with Act to form a linear time-invariant part of the extended controlled object, and having the following form
Arranged in the form of (1), i.e.
A = A g B g 2 C a 0 0 0 A a 0 0 0 0 A r 0 B w C g 2 B w D g 22 C a B w C r A w = - 1.4318 1307.1288 - 1494.3000 0 0 0 0.55 - 3.8971 3755.6145 0 0 0 0 0 - 170 0 0 0 0 0 0 - 48 - 12.5 0 0 0 0 128 0 0 16 0 0 0 50 - 3
, B 1 = B g 1 0 0 B w D g 21 = - 466.4594 1.7891 500.6380 332.3441 - 3.4649 5.8017 84.0866 5.1033 - 15.5201 - 7401971 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ,
B 2 = 0 0 B r - B w D r = 0 0 0 4 0 0 , B 3 = B g 2 D a B a 0 B w D g 22 D a = - 140.6400 353.4696 16 0 0 0 ,
C 1 = C g 1 D g 12 C a 0 0 = 0.0012 - 1.3540 1.2739 0 0 0 - 0.00012 0.0888 10.5247 0 0 0 0.00062 0.0048 - 0.0061 0 0 0 0.0013 - 1.3876 2.9029 0 0 0 - 0.00027 0.2732 14.7429 0 0 0 ,
D 11 = D g 11 = - 0.0003 - 0.00003 - 0.0003 - 0.1111 - 0.0065 - 0.0040 0.0005 - 0.0037 - 0.247 - 0.0693 - 0.0002 - 0.00003 - 0.0003 - 0.2509 - 0.0285 0 0 0 0 0 0 0 0 0 0 , D 12 = 0 0 0 0 0 ,
D 13 = D g 12 D a = 0 0 0 0 0 ,
C 2 = D w C g 2 D w C g 22 C a - D w C r C w = 0.5 0 0 0 - 3.125 26.1563 ,
D 21 = D w D g 21 = 0 0 0 0 0 , D22=-DwDr=0, D 23 = D w C g 22 D a = 0 ,
C 3 = 0 0 0 0 C g 2 D g 22 C a 0 0 C g 3 D g 32 C a 0 0 = 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 ,
D 31 = 0 D g 21 D g 31 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , D 32 = 1 0 0 , D 33 = 0 D g 22 D a D g 32 D a = 0 0 0 , x = x g x a x r x w ,
r=fyc,h=ep y = f yc f y q .
And delta is used as a variable parameter block of the controlled object after expansion as shown in expression (17).
Up to this point, the (generalized) controlled object that can be used for controller design, as represented by expressions (1) and (2), has been constructed. The global and local performance index requirements are then rewritten to a standard form to complete the controller design.
6) In this example, the design goal of the robust gain scheduling autopilot is to design an LPV controller so that the controlled closed-loop system meets the robust secondary performance index requirement of γ ═ 1, that is, the design goal is to design an LPV controller <math> <mrow> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <msub> <mi>t</mi> <mn>1</mn> </msub> </msubsup> <msup> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>yc</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>&gamma;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>/</mo> <mi>&gamma;</mi> </mtd> </mtr> </mtable> </mfenced> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>yc</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mi>p</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>dt</mi> <mo>&le;</mo> <mo>-</mo> <mi>&xi;</mi> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <msub> <mi>t</mi> <mn>1</mn> </msub> </msubsup> <msubsup> <mi>f</mi> <mi>yc</mi> <mn>2</mn> </msubsup> <mi>dt</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>R</mi> <mi>p</mi> </msub> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>&gamma;</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> <mo>/</mo> <mi>&gamma;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <mo>-</mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
Since the controller poles can be limited by limiting the closed-loop poles, the closed-loop pole constraints are written in the form of regional pole constraints, including
L-=0,M-=1;L+=-2000,M+=-1; L h = - 1000 0 0 - 1000 , M h = 0 - 1 1 0 .
Therefore, it is
L = L - 0 0 0 L + 0 0 0 L h = 0 0 0 0 0 - 2000 0 0 0 0 - 1000 0 0 0 0 - 1000 , M = M - 0 0 0 M + 0 0 0 M h = 1 0 0 0 0 - 1 0 0 0 0 0 - 1 0 0 1 0 .
7) A, B1,B2,B3,C1,D11,D12,D13,C2,D21,D22,D23,C3,D31,D32,RpAnd substituting L and M into the inequality group (3), and solving the feasibility problem by using a feasp solver in an LMI toolbox provided by MATLAB.
Solving the feasibility problem and obtaining a feasible solution
Q = - 2459.6 0 0 0 0 0 0 - 1 0 0 0 - 2459.6 0 0 0 0 - 1 0 0 0 0 0 - 2459.6 0 0 0 0 0 - 1 0 0 0 0 - 2459.6 0 - 1 0 0 0 0 0 0 0 0 - 2459.6 0 0 0 0 - 1 0 0 0 - 1 0 - 0.00041 0 0 0 0 0 - 1 0 0 0 0 - 0.00041 0 0 0 - 1 0 0 0 0 0 0 - 0.00041 0 0 0 0 - 1 0 0 0 0 0 - 0.00041 0 0 0 0 0 - 1 0 0 0 0 - 0.00041 ,
S = - 1.2979 e - 10 0 0 0 0 0 0 0 4.3042 e - 15 0 0 - 1.2979 e - 10 0 0 0 4.3042 e - 15 0 0 0 0 0 0 - 1.2979 e - 10 0 0 0 0 4.3042 e - 15 0 0 0 0 0 - 6.0809 e - 11 0 0 2.0165 e - 15 0 0 0 0 0 0 0 - 6.0809 e - 11 0 0 0 0 2.0165 e - 15 0 0 0 - 2.4723 e - 14 0 0 8.1984 e - 19 0 0 0 0 - 5.2769 e - 14 0 0 0 1.7499 e - 18 0 0 0 0 - 5.2769 e - 14 0 0 0 0 0 0 0 1.7499 e - 18 0 0 0 - 5.2769 e - 14 0 0 0 0 1.7499 e - 18 0 0 0 0 0 0 - 2.4723 e - 14 0 0 0 0 8.1984 e - 19 ,
R = 30155 0 0 0 0 0 0 0 - 1 0 0 30155 0 0 0 - 1 0 0 0 0 0 0 30155 0 0 0 0 - 1 0 0 0 0 0 30155 0 0 - 1 0 0 0 0 0 0 0 30155 0 0 0 0 - 1 0 - 1 0 0 0 0.000033 0 0 0 0 0 0 0 - 1 0 0 0.000033 0 0 0 0 0 - 1 0 0 0 0 0.000033 0 0 - 1 0 0 0 0 0 0 0 0.000033 0 0 0 0 0 - 1 0 0 0 0 0.000033 ,
Figure BDA0000079904850000134
Figure BDA0000079904850000135
Figure BDA0000079904850000136
X = 6.4985 0.7574 3.4 9.1732 1.7777 - 0.2428 0.7574 206.6773 - 674.3242 - 4.6010 - 0.9817 0.1517 3.4 - 674.3242 216240 8.0901 11.9220 - 1.1219 9.1732 - 4.6010 8.0901 37051 20812 - 3900.8 1.7777 - 0.9817 11.9220 20812 118890 - 2466.9 - 0.2428 0.1517 - 1.1219 - 3900.8 - 2466.9 3252 ,
Y = 696.4801 - 11.0024 - 0.6236 - 30.0742 106.62 0.2413 - 11.0024 5.8708 - 0.4571 2.0474 0.2423 - 0.3173 - 0.6236 - 0.4571 0.2475 0.0914 0.1068 0.0775 - 30.0742 2.0474 0.0914 80.1077 - 16.8275 - 3.8082 106.62 0.2423 0.1068 - 16.8275 21.406 1.6258 0.2413 - 0.3173 0.0775 - 3.8082 1.6258 0.833 .
8) Constructing P according to (4) - (6), and substituting into step 5
Figure BDA0000079904850000143
Solving an inequality group (8) by using a feasp solver in an LMI toolbox provided by MATLAB, and solving unknown variables
A k = - 1288.6 18.7622 60.8087 45.9548 - 21.9677 - 27.0336 1124.6 - 1272.5 281.9359 38.436 58.1303 - 5.4829 3586.6 521.7326 - 570.4227 - 1368 341.9625 78.9544 - 951.1645 - 652.2056 233.2493 144.4435 - 3.5302 - 39.3907 - 193.4034 - 165.4955 44.9922 - 72.6537 88.8478 145.7109 - 542.9429 343.3224 - 18.6637 1552.6 - 717.1845 - 415.2463 ,
B k 1 = - 73.1464 - 5753.6 - 8646.8 36.6791 5.5095 - 146810 - 58.9907 - 294.518 - 632.7225 - 296370 43756 - 1269.9 - 166500 37004 - 925.5923 31204 - 51489 71.5198 ,
B k 2 = 0.8754 0.0312 - 1.2337 1.3276 - 0.0326 - 1.1894 7.0742 0.3250 0.6043 - 6.2428 4.7209 - 22.9192 - 2.2694 - 0.6529 20.2209 1.2658 - 0.1535 - 1.7461 1.8525 0.1285 0.2462 - 0.0343 - 0.3388 0.3588 0.0289 - 0.0332 0.0011 0.0463 - 0.0496 - 0.00079 ,
Ck1=(39.5182 -3.7509 -11.4033 -8.7521 -5.0904 2.6514),
C k 2 = - 2.2433 e + 5 - 1.2982 e + 5 7.7062 e + 4 3.4794 e + 4 3.4233 e + 4 2.3731 e + 4 4.1831 e + 5 - 2.8208 e + 5 4.0253 e + 4 - 7.9968 e + 4 3.0482 e + 3 2.0239 e + 4 8.5441 e + 3 1.8336 e + 3 - 268.5281 - 605.249 1.9332 e + 3 - 9.1609 4.3764 e + 5 - 2.5419 e + 5 2.7769 e + 4 - 8.2202 e + 4 - 200690 e + 3 1.6088 e + 4 - 3.6414 e + 5 - 1.5583 e + 5 1.0589 e + 5 5.8106 e + 4 4.8748 e + 4 3.1804 e + 4
,Dc11=(0.0325-5.0983-22.6357),
Dc12=(0.00069 0.00087 -0.0011 0.0013 -0.00077),
D c 21 = 0.3813 - 656.4937 15156 - 0.7336 172.2624 - 37326 0.0046 6652.1 - 2492 - 0.7664 - 2750.6 - 32309 0.6476 - 95.5463 8590.4 ,
D c 22 = 0.339 0.0054 - 0.0033 0.1030 0.8391 - 0.0583 0.0172 0.0785 - 0.0819 - 0.0149 - 3.0926 0.0045 0.025 - 0.0197 0.3451 1.3065 0.0113 0.1789 - 0.0758 0.0703 0.0564 0.0181 - 0.0826 0.091 - 0.0163 ,
X 1 = 6.4985 0.7574 3.4 9.1732 1.7777 - 0.2728 0.7574 206.6773 - 674.3242 - 4.6010 - 0.9817 0.1517 3.4 - 674.3242 216240 8.0901 11.9220 - 1.1219 9.1732 - 4.6010 8.0901 37051 20812 - 3900.8 1.7777 - 0.9817 11.9220 20812 118890 - 2466.9 - 0.2428 0.1517 - 1.1219 - 3900.8 - 2466.9 3252 ,
Y 1 = 696.4801 - 11.0024 - 0.6236 - 30.0742 106.62 0.2413 - 11.0024 5.8708 - 0.4571 2.0474 0.2423 - 0.3173 - 0.6236 - 0.4571 0.2475 0.0914 0.1068 0.0775 - 30.0742 2.0474 0.0914 80.1077 - 16.8275 - 3.8082 106.62 0.2423 0.1068 - 16.8275 21.406 1.6258 0.2413 - 0.3173 0.0775 - 3.8082 1.6258 0.833 .
9) Calculated according to equations (9) and (10)
X 2 = - 1.2706 0.3484 - 0.0480 2.8605 - 2.5636 1.1823 0.3544 - 0.0155 3.4521 - 14.5029 23.7837 0.1351 33.8124 4.6740 - 355.2026 0.6478 0.3330 0.00075 - 296.344 1626.7 0.1364 - 5.6224 - 0.7229 0.0026 - 3493.7 - 139.9009 - 3.5094 - 0.1023 - 0.0071 - 0.00033 39.1632 - 175.5206 - 5.3982 - 52.0013 - 6.6919 0.0271 ,
Y 2 = 3451.4 - 53.7335 - 21.3585 - 7.5083 1.387 - 0.0785 22.7953 - 46.1752 - 287.9025 19.3499 - 9.958 - 0.2797 4.076 - 2.5695 151.8740 - 8.9714 - 16.5412 - 0.7012 - 27.7805 - 1623.3 28.7284 6.5642 - 0.2286 0.0451 617.9432 225.4126 127.7795 40.2645 - 7.9124 0.4918 29.0623 73.3286 51.5717 27.9124 13.4275 - 0.7725 , The result is substituted into equation set (11) to solve, resulting in the nominal part of the controller, K in fig. 3:
Figure BDA0000079904850000162
10) solving according to expression (7) from the previously solved P
Figure BDA0000079904850000163
Solving for Delta by substituting inequality (12)cThe variable parameter part of the controller is connected with the nominal part to form the controller. Note that ΔcVaries with the change in delta. Since Delta is variable parameter and needs to be determined in real time according to working conditions, DeltacIs also a real-time variable.
The simulation results are shown in fig. 4 and 5, wherein fig. 4 shows the actual parameter variation curve, and fig. 5 shows the square wave response output. From the normal acceleration curve in fig. 5, f can be seenyAnd fyrVery close, almost returnable, and overshoot less than 5%, 2% settling time less than 0.15s, both global and local performance requirements are met.

Claims (4)

1. The robust gain scheduling control method based on the pole allocation of the region is characterized by comprising the following steps of:
step 1: the controlled object is arranged into a standard form;
step 2: establishing an expression of performance index constraint;
2.1 Global Performance: writing the global performance index requirement into an integral quadratic constraint form, wherein the specific index is obtained by a multiplication operator R according to the performance requirementpGiven, having the form shown below:
Figure FDA0000079904840000011
where ε is any positive real number tending to 0; xi is the combination of the input vector and the output vector, and a reference input r and a performance output h are selected; zeta is input vector, choose reference input r; matrix RpGeneral press
Figure FDA0000079904840000012
The form of the method is divided into four blocks, and numerical values of all parts are given according to specific index requirements;
2.2 local Properties: limiting the poles to a certain area D on the complex plane, where D ═ z ∈ C | fD(z) < 0}, and the region feature function is expressed as
Figure FDA0000079904840000013
Wherein the coefficient matrix L of the characteristic function is LT∈Rm×m,M∈Rm×m
And 3, step 3: judging whether a controller exists or not, so that the stability and the dynamic performance of the closed-loop system meet the requirements;
and 4, step 4: constructing a multiplier P; first, singular value decomposition is performed as follows:
Figure FDA0000079904840000014
where Γ is the unitary matrix, - ∑-Is a diagonal matrix formed by the singular values of the part less than zero, sigma+Is a diagonal matrix formed by the singular values of the part which is larger than zero; then, order
Figure FDA0000079904840000015
Figure FDA0000079904840000017
Then there is
Figure FDA0000079904840000018
And 5, step 5: solving the linear matrix inequality set to enable the closed-loop system to realize performance indexes;
order to
Figure FDA0000079904840000019
Can be combined with
Figure FDA00000799048400000110
Divided into four blocks, as shown by:
Figure FDA00000799048400000111
order to
Figure FDA00000799048400000112
Figure FDA00000799048400000113
Figure FDA00000799048400000114
Solving the following inequality group by using a feasp solver in an LMI toolbox provided by MATLAB:
Figure FDA0000079904840000021
wherein,
Figure FDA0000079904840000022
Figure FDA0000079904840000023
Figure FDA0000079904840000024
Figure FDA0000079904840000025
the unknown variables are: a. thek,Bk1,Bk2,Ck1,Ck2,Dc11,Dc12,Dc21,Dc22,X1,Y1
And 6, step 6: solving a nominal part of the controller;
using already solved X1,Y1Performing singular value decomposition; the expression of the specific calculation method is as follows: I-X1Y1=UΛVTLet X2=UΛ1/2 (9) Y2=VΛ1/2 (10);
U, V in the formula is unitary matrix, and A obtained by the solution is usedk,Bk1,Bk2,Ck1,Ck2,Dc11,Dc12,Dc21,Dc22,X1,Y1,X2,Y2Solving a linear equation set;
Figure FDA0000079904840000026
wherein the unknown variable is Ac,Bc1,Bc2,Cc1,Cc2(ii) a A obtained by solvingc,Bc1,Bc2,Cc1,Cc2And Dc11,Dc12,Dc21,Dc22Together forming a nominal part of the controller;
and 7, step 7: solving a variable parameter part of the controller;
the following inequality was solved using the feasp solver in the LMI toolbox provided by MATLAB:
Figure FDA0000079904840000027
in the formula, the unknown variable is DeltacChanges along with the change of the parameter module delta;
and 8, step 8: a controller is constructed.
According to the previously determined Ac,Bc1,Bc2,Cc1,Cc2,Dc11,Dc12,Dc21,Dc22And ΔcConstructing a controller, wherein a state equation is as follows:
Figure FDA0000079904840000031
d=Δce (14) 。
2. the robust gain scheduling control method based on pole-in-area allocation as claimed in claim 1, characterized in that the standard form is sorted as follows:
Figure FDA0000079904840000032
dΔ=ΔeΔ (2)
in the formula, the vector x represents the state of the controlled object, dΔRepresenting disturbance input, r representing reference input, u representing control input, eΔRepresenting the disturbance output, h representing the output of the performance channel, and y representing the measurement output; the matrix A is a system matrix, B1、B2、B3Control matrices from disturbance input, reference input, control input, respectively, C1、C2、C3Output matrices, D, leading to disturbance output channel, performance output channel, measurement output channel, respectivelyij(i, j ═ 1, 2, 3) a direct connection matrix between channels, where the direct connection term from control input u to measurement output y is 0; Δ represents a parametric model of the non-linear, time-varying characteristics and uncertainty.
3. The robust gain scheduling control method based on the regional pole allocation as claimed in claim 1 or 2, wherein in step 3, the feasp solver in the LMI toolbox provided by MATLAB is used to solve the following inequality set to determine whether the controller exists:
Figure FDA0000079904840000041
in the set of inequalities, the unknown variables are: q, S, R,
Figure FDA0000079904840000042
x, Y, where the symbol ker (Φ) represents the basis matrix of the null space of Φ, having ΦTker (Φ) ═ 0; mark
Figure FDA0000079904840000043
Represents the Kronecker product; if the inequality group (3) has a solution, the existence of the controller can enable the performance index of the closed-loop system to be met, and the subsequent steps are carried out to solve the controller; otherwise, the performance index can not be met, and the design problem of the original controller is solved.
4. The robust gain scheduling control method based on pole-in-region allocation as claimed in claim 1 or 2, wherein the pole region in step 2 is a combination of the following simple regions:
1) semi-plane: re (z) < α:then L is-=-2α,M-1 is ═ 1; semi-plane: re (z) > β:
Figure FDA0000079904840000045
then L is+=2β,M+=-1;
2) Circle with (-q, 0) as the center and r as the radius:
Figure FDA0000079904840000051
then
Figure FDA0000079904840000052
Figure FDA0000079904840000053
3) Cone with 2 θ as cone angle:
Figure FDA0000079904840000054
then
Figure FDA0000079904840000055
Figure FDA0000079904840000056
4) Horizontal strip-shaped area with the real axis as the symmetry axis and the width of 2 h:
Figure FDA0000079904840000057
then
Figure FDA0000079904840000058
Figure FDA0000079904840000059
Writing the pole region as the intersection of the above simple regions, i.e. D ═ IσDσThen L and M are written as L respectivelyσAnd MσHas a block diagonal form of L ═ blockdiag { Λ, L ═ Lσ,Λ}M=blockdiag{Λ,MσΛ, where the subscript σ ∈ { -, +, r, c, h }, indicates that the pole region is composed of the above simple regions.
CN201110217148A 2011-07-29 2011-07-29 Robust gain scheduling control method based on regional pole assignment Pending CN102323754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110217148A CN102323754A (en) 2011-07-29 2011-07-29 Robust gain scheduling control method based on regional pole assignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110217148A CN102323754A (en) 2011-07-29 2011-07-29 Robust gain scheduling control method based on regional pole assignment

Publications (1)

Publication Number Publication Date
CN102323754A true CN102323754A (en) 2012-01-18

Family

ID=45451510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110217148A Pending CN102323754A (en) 2011-07-29 2011-07-29 Robust gain scheduling control method based on regional pole assignment

Country Status (1)

Country Link
CN (1) CN102323754A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991566A (en) * 2015-07-07 2015-10-21 北京航天自动控制研究所 Parameter uncertainty LPV system modeling method for hypersonic flight vehicles
CN106094518A (en) * 2016-06-22 2016-11-09 北京航空航天大学 A kind of structural vibration Pole Assignment Control System method for designing optimized based on Multidisciplinary systems
CN107037727A (en) * 2017-03-13 2017-08-11 贾杰 A kind of big envelope curve adaptive gain dispatching method of depopulated helicopter
CN108008630A (en) * 2016-11-01 2018-05-08 贵州火星探索科技有限公司 A kind of design of Compensator method and device of unmanned plane position ring
CN109960151A (en) * 2019-05-10 2019-07-02 中国科学院光电技术研究所 A kind of robust Controller Design method based on model
CN111381581A (en) * 2020-03-06 2020-07-07 北京控制工程研究所 Integrated method and system for fault diagnosis and fault-tolerant control of execution mechanism

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104991566A (en) * 2015-07-07 2015-10-21 北京航天自动控制研究所 Parameter uncertainty LPV system modeling method for hypersonic flight vehicles
CN104991566B (en) * 2015-07-07 2016-06-08 北京航天自动控制研究所 A kind of parameter uncertainty LPV system modeling method for hypersonic aircraft
CN106094518A (en) * 2016-06-22 2016-11-09 北京航空航天大学 A kind of structural vibration Pole Assignment Control System method for designing optimized based on Multidisciplinary systems
CN106094518B (en) * 2016-06-22 2018-12-21 北京航空航天大学 A kind of structural vibration pole placement control method based on Multidisciplinary systems optimization
CN108008630A (en) * 2016-11-01 2018-05-08 贵州火星探索科技有限公司 A kind of design of Compensator method and device of unmanned plane position ring
CN108008630B (en) * 2016-11-01 2022-04-19 贵州火星探索科技有限公司 Design method and device for compensator of unmanned aerial vehicle position ring
CN107037727A (en) * 2017-03-13 2017-08-11 贾杰 A kind of big envelope curve adaptive gain dispatching method of depopulated helicopter
CN109960151A (en) * 2019-05-10 2019-07-02 中国科学院光电技术研究所 A kind of robust Controller Design method based on model
CN111381581A (en) * 2020-03-06 2020-07-07 北京控制工程研究所 Integrated method and system for fault diagnosis and fault-tolerant control of execution mechanism
CN111381581B (en) * 2020-03-06 2021-07-09 北京控制工程研究所 Integrated method and system for fault diagnosis and fault-tolerant control of execution mechanism

Similar Documents

Publication Publication Date Title
Alan et al. Safe controller synthesis with tunable input-to-state safe control barrier functions
CN102323754A (en) Robust gain scheduling control method based on regional pole assignment
CN109241674B (en) Multi-time-delay stability analysis method for intelligent networked vehicle formation
Hua et al. Decentralized networked control system design using T–S fuzzy approach
Long et al. Decentralized adaptive fuzzy output-feedback control of switched large-scale nonlinear systems
Wu et al. Adaptive terminal sliding mode control for hypersonic flight vehicles with strictly lower convex function based nonlinear disturbance observer
CN107193210B (en) Adaptive learning preset performance control method of nonlinear system
Furtat et al. Nonlinear feedback control providing plant output in given set
Zhao et al. Composite observer-based optimal attitude-tracking control with reinforcement learning for hypersonic vehicles
CN106249717A (en) A kind of control method for coordinating based on the modeling of executor&#39;s saturated multi-agent system
Liu et al. Suboptimal integral sliding mode controller design for a class of affine systems
CN106371313A (en) Design method of memory state H-infinity state feedback controller of time-delay LPV (linear parameter variable) system
CN106227964B (en) Nonlinear systems with hysteresis parameter identification method based on extended state observer
Ma et al. Finite-time filtering of TS fuzzy semi-Markov jump systems with asynchronous mode-dependent delays
Van Kien et al. Adaptive inverse multilayer fuzzy control for uncertain nonlinear system optimizing with differential evolution algorithm
CN103454921B (en) Tangent linearization method of flight control system nonlinear tracking controller design
CN106647241B (en) Novel nonlinear PID controller
Nebeluk et al. Computationally simple nonlinear MPC algorithm for vehicle obstacle avoidance with minimization of fuel utilization
Liu et al. Adaptive dynamic programming for optimal control of unknown nonlinear discrete-time systems
Shinar et al. A pursuit-evasion game with hybrid pursuer dynamics
Liu et al. Optimal Control of Unknown Nonlinear Discrete‐Time Systems Using the Iterative Globalized Dual Heuristic Programming Algorithm
CN102043380A (en) Quadratic polynomial-based nonlinear compound PID (proportional-integral-differential) neural network control method
Wei et al. Design and implementation of fractional differentiators, part I: system based methods
Duan et al. A new decentralised controller design method for a class of strongly interconnected systems
Li et al. Time-domain mapping-based adaptive fuzzy formation control of nonlinear multi-agent systems with input saturation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120118