CN102321863A - Method for preparing Ni-Zn ferrite film - Google Patents

Method for preparing Ni-Zn ferrite film Download PDF

Info

Publication number
CN102321863A
CN102321863A CN201110112982A CN201110112982A CN102321863A CN 102321863 A CN102321863 A CN 102321863A CN 201110112982 A CN201110112982 A CN 201110112982A CN 201110112982 A CN201110112982 A CN 201110112982A CN 102321863 A CN102321863 A CN 102321863A
Authority
CN
China
Prior art keywords
ni
ferrite
layer
thin film
film
Prior art date
Application number
CN201110112982A
Other languages
Chinese (zh)
Inventor
蒋长军
薛德胜
郭党委
Original Assignee
兰州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰州大学 filed Critical 兰州大学
Priority to CN201110112982A priority Critical patent/CN102321863A/en
Publication of CN102321863A publication Critical patent/CN102321863A/en

Links

Abstract

The invention discloses a method for preparing a ferrite film, in particular to a method which can obtain a spinel type Ni-Zn ferrite film with better soft magnetic and microwave properties. The method includes the following steps: first depositing a layer of antiferromagnetic material Fe50Mn50 on a substrate, and then depositing a Ni-Zn ferrite film layer on the Fe50Mn50 layer. The method can also prepare multiple layers of Ni-Zn ferrite films. The adoption of the method can enhance the soft magnetic and microwave properties of the prepared Ni-Zn ferrite film.

Description

一种制备Ni-Zn铁氧体薄膜的方法 A method of Ni-Zn ferrite film prepared

技术领域 FIELD

[0001] 本发明涉及一种制备Ni-ai铁氧体薄膜的方法,特别是一种可得到具有更佳的软磁和微波性能的尖晶石型Ni-ai铁氧体薄膜的方法。 [0001] The present invention relates to a process for preparing the Ni-ai ferrite thin film method, particularly to a Ni-ai obtained spinel ferrite having better soft magnetic properties of the film and the microwave method.

背景技术 Background technique

[0002] 近年来,随着通讯、计算机以及高密度磁记录材料的迅速发展,对磁性材料的性能要求越来越高。 [0002] In recent years, along with communications, computers and the rapid development of high-density magnetic recording materials, increasingly high performance requirements of magnetic materials. 尤其是随着信息处理频率的不断提高(例如:手机、无线LAN系统和蓝牙器件等常用的工作频率已经提高到了1-5GHZ),涉及信息存储和转换(例如:电感、变压器和电磁屏蔽系统等)的微磁器件迫切要求工作在GHz范围内的高性能磁性材料。 Especially with the continuous improvement of the information processing frequency (e.g.: common phone operating frequency, the wireless LAN system and Bluetooth devices and the like has been increased to 1-5GHZ), relates to information storage and conversion (e.g.: inductors, transformers, and electromagnetic shielding systems ) micromagnetic device requires urgent work in high performance magnetic material in the GHz range. 尖晶石型Ni-Si铁氧体材料由于其具有高电阻率、高居里温度、低温度系数和优良的高频微波性能等优点,在变压器、高频电感磁芯和微波吸收等方面有着广泛的应用。 Ni-Si spinel ferrite material because of its high resistivity, the advantages in the highest temperature, low temperature coefficient and excellent high-frequency microwave performance, is widely in transformers, high frequency and microwave absorption inductor core Applications. 因此制备具有优良电磁特性的Ni-Si铁氧体薄膜材料在高频微磁器件方面有很大的市场需求。 Thus prepared ferrite Ni-Si thin film material having excellent electromagnetic properties have a great market demand in terms of high-frequency micromagnetic devices.

[0003] 目前,为使材料便于在电子集成微器件中应用,Ni-Si铁氧体薄膜一般在低温下制备。 [0003] Currently, in order to facilitate the application of the electronic material integrated microdevices, Ni-Si ferrite thin film is generally prepared at a low temperature. 然而,低温制备的Ni-ai铁氧体薄膜软磁和微波性能较差,这严重影响了其在集成微磁器件中的应用。 , Ni-ai soft ferrite thin film microwave properties and poor low-temperature preparation, however, seriously affecting their use in integrated micro-magnetic devices. 因此从薄膜制备的角度来看,找到一种有效提高Ni-ai铁氧体薄膜的软磁和微波性能的方法是非常重要的。 Thus from the perspective view of a film prepared to find an effective method of improving the soft magnetic properties and Ni-ai microwave ferrite thin film is very important.

[0004] 就目前报道的文献来看,薄膜制备时使用衬底层(缓冲层)是一种提高铁氧体薄膜软磁性能常用且有效的办法。 [0004] The current literature reports on the situation, the use of a substrate layer (buffer layer) preparing thin film is a soft magnetic ferrite used and effective way to improve performance. 例如:使用Sii^2O4作为衬底层来提高Ni-ai铁氧体薄膜软磁性能:JH Gao, YT Cui, and Ζ. Yang, "The magnetic properties of NixZn1^Fe2O4 films fabricated by alternative sputtering technology", Materials Science and Engineering B 110,111-114(2004);使用YSZ(YaiJra85O2)作为衬底层来制备和提高Ni-Zn 铁氧体薄膜软磁性能:SY Bae,CS Kim, and YJ Oh, "Magnetic properties of sol-gel derived Ni-Zn ferrite thin films on yttria stabilized zirconia buffered Si(IOO) ”,Journal of Applied Physics 85,5226-5228(1999).这种使用非磁性氧化物作为衬底层的传统方法是利用减弱基底与铁氧体薄膜间的应力从而达到提高铁氧体薄膜软磁性能的目的,然而这种传统的方法仅仅实现了对铁氧体薄膜软磁性能的优化(例如:饱和磁化强度Ms得到了提高,矫顽力H。得到了降低),而对铁氧体薄膜微波磁性的提高却没有明显的效果。 For example: Use as Sii ^ 2O4 underlayer to improve the soft magnetic thin film Ni-ai ferrite properties:. JH Gao, YT Cui, and Ζ Yang, "The magnetic properties of NixZn1 ^ Fe2O4 films fabricated by alternative sputtering technology", Materials Science and Engineering B 110,111-114 (2004); the use of YSZ (YaiJra85O2) was prepared, and improve the soft magnetic thin film Ni-Zn ferrite serving as the underlying properties: SY Bae, CS Kim, and YJ Oh, "Magnetic properties of sol- gel derived Ni-Zn ferrite thin films on yttria stabilized zirconia buffered Si (IOO) ", Journal of Applied Physics 85,5226-5228 (1999). this method uses the conventional non-magnetic oxide serving as the underlying substrate is reduced and the use of stress between the ferrite thin film so as to improve soft magnetic properties of the ferrite thin film, however, this traditional method only realizes the optimization of the soft magnetic properties of the ferrite film (for example: the saturation magnetization Ms is improved, H. coercivity been reduced), and to improve the microwave magnetic ferrite thin film has no significant effect. 同时在现有报道的文献中,也没有见到同时有效提高铁氧体薄膜软磁性能和微波磁性的方法。 Meanwhile in the conventional literature reported, nor see the method and the microwave ferrite thin film magnetic soft magnetic properties while effectively improved.

发明内容 SUMMARY

[0005] 本发明为一种可克服现有技术不足,能制备出其软磁性能和微波性能均优于现有技术制备的尖晶石型Ni-ai铁氧体薄膜方法。 [0005] The present invention overcomes the prior art as a lack of capable of producing a spinel ferrite thin film Ni-ai soft magnetic properties and its method of microwave properties are superior to the prior art prepared.

[0006] 本发明的Ni-ai铁氧体薄膜制备方法是首先在基底材料上沉积一层反铁磁材料Fe50Mn50,然后再在!^e5ciMn5ci层上沉积Ni-Si铁氧体薄膜层。 Ni-ai ferrite thin film production method of the invention [0006] This is first deposited on the base material layer of antiferromagnetic material Fe50Mn50, then the! ^ Ni-Si deposited film layer e5ciMn5ci ferrite layer. 本发明所这的薄膜沉积方法可以是溅射法(sputtering)、脉冲激光沉积法(PLD)和分子束外延法(MBE)等常用的制备方法。 The thin film deposition method of this invention may be a sputtering method (sputtering), the commonly used method for preparing epitaxy (MBE) and other pulsed laser deposition (PLD), and molecular beam.

[0007] 本发明制备Ni-ai铁氧体薄膜的方法优选的是先在基底材料上沉积厚度为15〜 35nm的!^5ciMn5tl层,然后再沉积制M-Si铁氧体薄膜层。 Preparation of Ni-ai preferred ferrite thin film method [0007] The present invention is first deposited on a substrate having a thickness of 15~ 35nm! ^ 5ciMn5tl layer, then the ferrite M-Si deposition film layer. 根据相关的实验,实施本发明的方法时,先沉积制得的层厚15〜35nm Fe50Mn50层后,再沉积制得的Ni-Si铁氧体薄膜层厚度为10 〜50nm,其成分为NixZn1^xFe2O4 (0 < χ < 1)。 According to the relevant experiments, the methods of the invention embodiment, the thickness of the first deposition obtained 15~35nm Fe50Mn50 layer, then deposition obtained ferrite thin film of Ni-Si layer having a thickness of 10 ~50nm, which component is NixZn1 ^ xFe2O4 (0 <χ <1).

[0008] 利用本发明的方法还可在同一衬底上制备出多层Ni-ai铁氧体薄膜,其具体做法是:首先在基底材料上沉积一层反铁磁材料I^5tlMn5tl,再在!^e5ciMn5ci层上沉积Ni-Si铁氧体薄膜,然后再在Ni-Si铁氧体薄膜层上沉积一层ί^5(1Μη5(1,再在这一!^e5ciMn5ci层上沉积Ni-Si铁氧体薄膜层,依次重复这一过程,得到多层M-Si铁氧体薄膜。按本发明的方法得到的多层[Fe5ciMn5cZNixZrvxFi52O4]n薄膜可有效提高不同厚度的Ni-Si铁氧体薄膜软磁和微波性能。 [0008] With the method of the invention can also be prepared on the same substrate in a multilayer Ni-ai ferrite thin film, which specific approach is: first depositing a layer of antiferromagnetic material I ^ 5tlMn5tl on the base material, and then in ! ^ ferrite thin film is deposited on the Ni-Si layer e5ciMn5ci, then deposited a layer on ί ferrite thin film layer Ni-Si ^ 5 (1Μη5 (1, again in this! ^ Ni-Si deposition layer on e5ciMn5ci ferrite thin film layer, successively repeating this process, M-Si multilayer ferrite thin film. the method according to the present invention obtained a multilayer [Fe5ciMn5cZNixZrvxFi52O4] n film of different thicknesses can improve the ferrite thin film Ni-Si soft magnetic and microwave properties.

[0009] 本发明中利用反铁磁材料!^e5ciMn5ci作为衬底层可以达到提高Ni-Si铁氧体薄膜软磁性能和微波性能,其原因是=Fe5tlMn5tl衬底层的使用,可以改变铁氧体薄膜的微结构,其组成晶粒得到了细化,降到了纳米量级,同时颗粒形貌也变得均勻化。 [0009] In the present invention, the use of anti-ferromagnetic material! ^ E5ciMn5ci as an underlayer can Ni-Si film to improve the soft magnetic properties of the ferrite and the microwave properties, the reason is to use Fe5tlMn5tl = backing layer may be varied ferrite thin film the microstructure, grain composition which has been refined down to nanometers, but also becomes uniform particle morphology. 由于在纳米晶材料中晶粒尺寸小于交换长度,通过晶粒之间的交换耦合作用可以大幅度降低每一个晶粒的磁晶各向异性,所以制备的M-Si铁氧体薄膜软磁性能得到了很好的优化。 Since the grain size of the nanocrystalline material is less than the length of the exchange, can greatly reduce the magnetocrystalline anisotropy of each crystal grain by the exchange coupling between the crystal grains, the M-Si soft magnetic properties of the ferrite thin film prepared It has been well optimized. 同时!^e5ciMn5ci材料是一种反铁磁材料,用它作为衬底层,对生长的Ni-Si铁氧体薄膜具有钉扎作用,从而使铁氧体薄膜的磁化强度更趋于面内排列,因此制备的Ni-Si铁氧体薄膜的微波性能得到了提高。 Meanwhile! ^ E5ciMn5ci antiferromagnetic material is a material used as substrate layer, having a pinning effect on Ni-Si film growth of ferrite, so that the magnetization of the ferrite thin film tends to be more in-plane arrangement, Thus prepared microwave properties of Ni-Si ferrite thin film is improved.

附图说明 BRIEF DESCRIPTION

[0010] 图1是成份为χ = 0. 45的Ni-ai铁氧体薄膜的掠角入射X射线衍射图。 [0010] FIG. 1 is a grazing incidence X-ray diffraction angle ingredients χ = 0. 45 Ni-ai of the ferrite thin film.

[0011] 图2是利用扫描电镜对未使用(a)和使用(b)衬底层制备的Ni-Si铁氧体薄膜的微观形貌观测。 [0011] FIG 2 is observed using a Ni-Si microstructure ferrite SEM unused (a) and (b) Use of the underlayer film prepared.

[0012] 图3是利用原子力显微镜对样品的微观形貌观测图,其中:图a和图b和为现有技术制备的Ni-ai铁氧体薄膜样品,而图C和图d为本发明实施例的Ni-ai铁氧体薄膜样品。 [0012] FIG. 3 is a sample using an atomic force microscope observation of morphology in FIG, wherein: a and b, and FIGS Ni-ai ferrite thin film sample is prepared prior art, and FIG C d of the present invention and FIG. Ni-ai embodiment of ferrite thin film sample.

[0013] 图4是利用振动样品磁强计对样品的宏观直流磁性测量。 [0013] FIG. 4 is a macro using a DC magnetic vibrating sample magnetometer measurements of the sample. 其中标记有方格的曲线为现有技术所得到的Ni-Si铁氧体薄膜样品,而标记有小圆圈的曲线为本发明实施例制备的Ni-Si铁氧体薄膜样品。 Wherein the ferrite labeled with Ni-Si film sample squares curve obtained for the prior art, the curve marked with a small circle ferrite Ni-Si film prepared samples of Examples of the present invention.

[0014] 图5是利用矢量网络分析仪并结合微带线法对样品进行微波磁性测量,其中:图a 为现有技术制备的Ni-Si铁氧体薄膜样品,图b为本发明实施例制备的Ni-Si制备的铁氧体薄膜样品。 [0014] FIG. 5 is the use of a vector network analyzer and the microstrip line binding method of microwave magnetic measurement sample, wherein: FIG Ni-Si is a prior art ferrite thin film sample was prepared, b of the present invention embodiment of FIG. ferrite Ni-Si film samples prepared in preparation a.

[0015] 图6是对采用本发明的方法制备的多层M-ai铁氧体薄膜样品的宏观直流磁性测量和高频磁性测量的结果,其样品为[Fe55tlMn5tZNia45Ζ%55^04]6。 [0015] FIG. 6 is a high-frequency magnetic measurement results of magnetic measurements and the current macro-M-ai multilayer film samples of ferrite method of the present invention prepared, which samples [Fe55tlMn5tZNia45Ζ% 55 ^ 04] 6.

具体实施方式 Detailed ways

[0016] 本发明以下结合实施例的Nia45Sia55Fe2O4薄膜的制备,及其软磁性能和微波磁性提高进行解说,在本实施例的制备过程中沉积薄膜所使用的设备为沈阳中科仪于2003年生产的FJI560-I型超高真空磁控与离子束溅射设备中的射频溅射部分。 [0016] The present invention was prepared in conjunction with the following film Nia45Sia55Fe2O4 embodiment, the microwave magnetic and soft magnetic properties and improved for explanation, the device manufacturing process in this embodiment is deposited film used for the production of Shenyang-Tech 2003 the FJI560-I ultrahigh vacuum magnetron RF sputtering portion of the ion beam sputtering apparatus. 溅射设备需要两个射频磁控靶为:商用高纯度(99.99% ) Wi^5ciMn5ci层的靶材,制备Ni-Si铁氧体薄膜的靶材采用传统的共沉淀法制备m-ai铁氧体粉末,并经压制烧结制备而成。 RF magnetron sputtering apparatus requires two targets are: commercial high purity (99.99%) Wi ^ 5ciMn5ci target layer, Ni-Si target prepared ferrite thin film prepared by using a conventional m-ai coprecipitated ferrite powder, prepared by the pressed and sintered. 薄膜沉积过程是:先把真空腔的真空度抽至5. 0X10_5以下,在射频电源功率为50W,溅射气体为高纯度Ar气,溅射气压为0. 2Pa的条件先在单晶Si (111)基底上面沉积一层25nm厚的!^e5ciMn5ci衬底层薄膜。 The thin film deposition process: first evacuated to a vacuum chamber 5. 0X10_5 less, RF source power is 50W, the sputtering gas is a high-purity Ar gas, the sputtering gas pressure of 0. 2Pa of first single crystal Si ( deposition 111) above the base layer 25nm thick! ^ e5ciMn5ci underlayer film. 再在射频电源功率为200W,溅射气体为Ar和&混合气体,氧分压为20%,溅射气压为2. OPa的制备条件下再沉积一层40nm厚的Ni-Si铁氧体薄膜,得到!^5tlMn5tl (25nm) / Ni0.45Zn0.55Fe204(40nm)的薄膜。 Under production conditions and then power is 200W RF power, sputtering gas to a mixed gas of Ar and & oxygen partial pressure of 20%, the sputtering gas pressure is 2. OPa then depositing a 40nm thick Ni-Si thin ferrite to give! ^ 5tlMn5tl (25nm) / Ni0.45Zn0.55Fe204 (40nm) film. 其测试结果如附图1_5所示。 The test results are as shown in the accompanying drawings 1_5.

[0017] 图1中,(a)表示的是单层Nia45Zna55Fe2O4薄膜,(b)表示的是加入了衬底层的!^e5ciMn5cZNia45Zna55Fe2O4双层薄膜,从图中可以看出Ni-^i铁氧体薄膜在加入!^eMn衬底层后晶体结构没有明显的变化,均为单相的尖晶石结构。 In [0017] FIG. 1, (a) represents the Nia45Zna55Fe2O4 monolayer film, (b) represents the addition of the substrate layer! ^ E5ciMn5cZNia45Zna55Fe2O4 two-layer film, it can be seen from FIG ferrite thin film Ni- ^ i the addition! ^ underlayer after eMn no significant change in the crystal structure, a spinel structure are single phase. 其中^5ciMn5ci层厚度为25nm, Ni0.45Zn0.55Fe204 层厚度为40nm。 ^ 5ciMn5ci wherein a layer thickness of 25nm, Ni0.45Zn0.55Fe204 a layer thickness of 40nm.

[0018] 从图2中可以看出,使用了!^Mn衬底层后,所得到的铁氧体薄膜的组成颗粒得到了细化和均勻化,形貌一致,颗粒减小约为15nm。 [0018] As can be seen from Figure 2, the! ^ Mn after the substrate layer, the composition of the ferrite particles of the obtained film was uniform and refined, uniform morphology, particle reduction is about 15nm.

[0019] 图3中,其中:图(a,c)为薄膜平面图,图(b,d)为薄膜三维图。 [0019] FIG. 3, in which: FIG. (A, c) is a plan view of a thin film, FIG. (B, d) is a three-dimensional film of FIG. 从图中也可以明显的看出,使用了ί^Μη衬底层后,铁氧体薄膜的组成颗粒得到了细化和均勻化,形貌变得一致,这一点与图2所示结果是一致的。 Can be clearly seen from the figure, after use ί ^ Μη substrate layer, a ferrite thin film composed of particles has been refined and homogenized, becomes uniform morphology, which is shown in FIG 2 results are consistent of.

[0020] 从图4结果来看,加入!^Mn衬底层后Ni-Si铁氧体薄膜的软磁性能得到了明显的提高,矫顽力Hc从890e降低到390e,剩磁比Mr/Ms从0. 22增加到0. 60。 [0020] From the results of FIG. 4 view, join! ^ Mn underlayer soft magnetic properties after the Ni-Si ferrite thin film has been significantly improved, the coercive force Hc decreases from 890e to 390e, remanence Mr / Ms increased to 0.60 from 0.22.

[0021] 从图5结果显示出使用!^Mn衬底层的Ni-Si铁氧体薄膜的磁谱中出现了明显的自然共振峰,且在GHz范围,约为1. 65GHz,同时具有较高的转动初始磁导率。 [0021] Figure 5 show the results from the use! ^ Mn spectrum magnetic underlayer Ni-Si in ferrite thin film natural resonance there is a clear peak in the GHz range and about 1. 65GHz, while having a higher initial permeability of rotation.

[0022] 经多次实验研究结果发现=Fe5tlMn5tl衬底层厚度在15〜35nm之间时,都可以有效的提高NixSi1Je2O4 (0 < χ < 1)薄膜(10〜50nm)的软磁和微波性能。 [0022] The results of several experiments was found = Fe5tlMn5tl backing layer thickness is between 15~35nm, can effectively improve NixSi1Je2O4 (0 <χ <1) film (10~50nm) microwave and soft magnetic properties.

[0023] 利用本发明的方法还可制备出[Fe5ciMn5cZNixZrvxFi52O4]n的多层薄膜,从而实现提高较厚的(大于50nm)Ni-Si铁氧体薄膜磁性能的目的。 [0023] With the method of the invention may also be prepared [Fe5ciMn5cZNixZrvxFi52O4] n multilayer film, and thus improved magnetic ferrite thin film Ni-Si purpose of energy (greater than 50nm) thick.

[0024]以 n = 6 的[Fe50Mn50/NixZni_xFe204]6 为例,按照前面介绍Fe50Mn50(25nm)/ Ni0.45Zn0.55Fe204(40nm)薄膜的制备过程和条件,依次重复实验做6遍即可,在此过程中需要注意的是在沉积完每层薄膜后,都需要将真空腔的真空度重新抽至5. 0 X ΙΟ"5以下,然后再沉积新的薄膜层。当η = 6 时,即复合薄膜为[Fe50Mn50(25nm) /Ni0.45Zn0.55Fe204(40nm) ]6, 时铁氧体厚度总的厚度为MOnm,其宏观直流磁性和高频磁性如图6所示,结果表明铁氧体薄膜的软磁性能和微波磁性也得到了有效的提高。由此可见,按照本发明的方法同样可以提高较厚的铁氧体薄膜的磁性能。 [0024] In n = [Fe50Mn50 / NixZni_xFe204] 6 6 for example, as previously described Fe50Mn50 (25nm) / Ni0.45Zn0.55Fe204 (40nm) and preparation conditions for the film are sequentially repeated 6 times to do the experiment, in Note that this process is finished after the deposition of each film, the degree of vacuum needs to be re-evacuated to the vacuum chamber 5. 0 X ΙΟ "5 or less, then deposition of a new film layers. when η = 6, i.e., the composite film is a [Fe50Mn50 (25nm) /Ni0.45Zn0.55Fe204(40nm)] 6, when the total thickness of the thickness of the ferrite MOnm, its macroscopic magnetic and high-frequency magnetic DC shown in Figure 6, the results showed that the ferrite soft magnetic properties and microwave magnetic thin film has been effectively improved. Thus, the method according to the present invention can also improve thicker magnetic ferrite thin film.

Claims (3)

1. 一种制备Ni-ai铁氧体薄膜的方法,其特征在于首先在基底材料上沉积一层反铁磁材料!^e5ciMn5ci,然后再在!^5ciMn5ci层上沉积Ni-Si铁氧体薄膜。 A method for preparing a Ni-ai ferrite film, characterized in that the material is first deposited on the substrate layer of antiferromagnetic material! ^ E5ciMn5ci, then the! ^ Ferrite thin film is deposited on the Ni-Si layer 5ciMn5ci .
2.权利要求1所述的制备Ni-Si铁氧体薄膜的方法,其特征在于先在基底材料上沉积厚度为15〜35nm的^J5tlMn5tl层,然后再沉积制备Ni-Si铁氧体薄膜层,其厚度为10〜50nm。 Ni-Si process for preparing a ferrite thin film according to claim 1, characterized in that the first deposited on a substrate having a thickness of ^ J5tlMn5tl 15~35nm layer, and then depositing a Ni-Si prepared ferrite thin film layer a thickness of 10~50nm.
3.制备多层Ni-ai铁氧体薄膜的方法,其特征在于首先在基底材料上沉积一层反铁磁材料!^5tlMn5tl,再在!^e5ciMn5ci层上沉积Ni-Si铁氧体薄膜,然后再在Ni-Si铁氧体薄膜层上沉积一层R5ciMn5ci,再在这一!^e5ciMn5ci层上沉积Ni-Si铁氧体薄膜层,依次重复这一过程,得到多层Ni-Si铁氧体薄膜。 3. The method of producing the multilayer film of Ni-ai ferrite, characterized in that the material is first deposited on the substrate layer of antiferromagnetic material! ^ 5tlMn5tl, then the! ^ Ferrite thin film is deposited on the Ni-Si layer e5ciMn5ci, R5ciMn5ci then deposited a layer on the ferrite Ni-Si thin-film layer, then in this! ^ Ni-Si deposited film layer e5ciMn5ci ferrite layer, this process is sequentially repeated to obtain a multilayer ferrite Ni-Si thin film.
CN201110112982A 2011-04-28 2011-04-28 Method for preparing Ni-Zn ferrite film CN102321863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110112982A CN102321863A (en) 2011-04-28 2011-04-28 Method for preparing Ni-Zn ferrite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110112982A CN102321863A (en) 2011-04-28 2011-04-28 Method for preparing Ni-Zn ferrite film

Publications (1)

Publication Number Publication Date
CN102321863A true CN102321863A (en) 2012-01-18

Family

ID=45449691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110112982A CN102321863A (en) 2011-04-28 2011-04-28 Method for preparing Ni-Zn ferrite film

Country Status (1)

Country Link
CN (1) CN102321863A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777074A (en) * 1985-08-12 1988-10-11 Sumitomo Special Metals Co., Ltd. Grooved magnetic substrates and method for producing the same
JPH01102758A (en) * 1987-10-14 1989-04-20 Ricoh Co Ltd Magneto-optical recording medium
CN1340867A (en) * 2000-08-21 2002-03-20 松下电器产业株式会社 Magnetoresistive element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777074A (en) * 1985-08-12 1988-10-11 Sumitomo Special Metals Co., Ltd. Grooved magnetic substrates and method for producing the same
JPH01102758A (en) * 1987-10-14 1989-04-20 Ricoh Co Ltd Magneto-optical recording medium
CN1340867A (en) * 2000-08-21 2002-03-20 松下电器产业株式会社 Magnetoresistive element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭党委: "高频用Ni_Zn铁氧体薄膜的结构与磁性", <<中国博士学位论文全文数据库>> *

Similar Documents

Publication Publication Date Title
Kim et al. Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density
Yamaguchi et al. Sandwich-type ferromagnetic RF integrated inductor
Rellinghaus et al. Magnetic properties of FePt nanoparticles
Ranno et al. Production and magnetotransport properties of CrO 2 films
US20080297292A1 (en) Radio Frequency Device with Magnetic Element, Method for Making Such a Magnetic Element
Shindo et al. Magnetic properties of exchange-coupled α-Fe/Nd–Fe–B multilayer thin-film magnets
Chen et al. High coercivity L 1 0 FePt films with perpendicular anisotropy deposited on glass substrate at reduced temperature
Casoli et al. Strong coercivity reduction in perpendicular Fe Pt∕ Fe bilayers due to hard/soft coupling
Perumal et al. Particulate structure of L 1 0 ordered ultrathin FePt films for perpendicular recording
Mosendz et al. Ultra-high coercivity small-grain FePt media for thermally assisted recording
Shimada et al. Granular thin films with high RF permeability
JPH07220922A (en) Flat magnetic element and amorphous magnetic thin film
Jin et al. High frequency properties of Fe–Cr–Ta–N soft magnetic films
Zhang et al. Pt layer thickness dependence of magnetic properties in Co/Pt multilayers
Feng et al. Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy
Ha et al. Novel nanostructure and magnetic properties of Co–Fe–Hf–O films
CN1126126C (en) Magnetic film, production of same and magnetic head
Morikawa et al. Soft magnetic properties of Co–Cr–O granular films
Niu et al. Magnetic properties of nanocrystalline Co–Ni ferrite
Gilbert et al. Tuning magnetic anisotropy in (001) oriented L10 (Fe1− xCux) 55Pt45 films
Sayama et al. Origin of perpendicular magnetic anisotropy of SmCo5 thin films with Cu underlayer
Kang et al. (001) oriented FePt–Ag composite nanogranular films on amorphous substrate
Gao et al. The magnetic properties of NixZn1− xFe2O4 films fabricated by alternative sputtering technology
US20120171519A1 (en) MULTILAYER STRUCTURE WITH HIGH ORDERED FePt LAYER
Xu et al. The effect of Ag and Cu underlayer on the L10 ordering FePt thin films

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)