CN102311180B - 一种铜锌催化剂废水中铜锌的去除及回收方法 - Google Patents

一种铜锌催化剂废水中铜锌的去除及回收方法 Download PDF

Info

Publication number
CN102311180B
CN102311180B CN 201010212313 CN201010212313A CN102311180B CN 102311180 B CN102311180 B CN 102311180B CN 201010212313 CN201010212313 CN 201010212313 CN 201010212313 A CN201010212313 A CN 201010212313A CN 102311180 B CN102311180 B CN 102311180B
Authority
CN
China
Prior art keywords
copper
membrane
zinc
ultrafiltration
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010212313
Other languages
English (en)
Other versions
CN102311180A (zh
Inventor
李正琪
杨永强
谢梓峰
王娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Original Assignee
Sinopec Beijing Research Institute of Chemical Industry
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Beijing Research Institute of Chemical Industry, China Petroleum and Chemical Corp filed Critical Sinopec Beijing Research Institute of Chemical Industry
Priority to CN 201010212313 priority Critical patent/CN102311180B/zh
Publication of CN102311180A publication Critical patent/CN102311180A/zh
Application granted granted Critical
Publication of CN102311180B publication Critical patent/CN102311180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种以铜锌为活性组份的催化剂生产工艺废水中铜锌离子的去除及回收方法,该方法采用“调碱-超滤-沉淀”的工艺流程。采用该工艺流程可有效去除废水中的铜锌离子,同时可将废水中的铜锌离子进行浓缩或将铜锌胶体物质进行有效分离,经分离或浓缩后的铜锌化合物可再次用于铜锌催化剂的生产过程。本发明流程具有分离效率高、产水水质稳定、经济效益高、不污染环境和无毒害的工艺特点。

Description

一种铜锌催化剂废水中铜锌的去除及回收方法
技术领域
[0001] 本发明涉及一种利用膜分离技术进行含铜锌废水处理及回收的方法,尤其是涉及一种回收铜锌催化剂制备过程中的工业废水中铜和锌的方法,属于工业废水处理领域。
背景技术
[0002] 大量工业过程,如含铜含锌催化剂生产、金属冶炼、电子、仪表等行业中容易产生大量的含铜、锌金属离子废水,这种废水排入水体中,会严重影响水的质量,对环境造成污染,水中铜含量达O. 01mg/L时,对水体自净有明显的抑制作用;超过3. Omg/L,会产生异味;超过15mg/L,就无法饮用。重金属元素在水体中以化合态或离子态存在,难以被生物降解,该种工业废水常用的处理方法主要包括:化学沉淀法、电解法、化学置换法、吸附法、离子交 换法、及生物处理技术等。
[0003] 化学沉淀法是铜和大多数重金属的常规处理方法,即在碱性条件下使其形成不溶性的氢氧化物。一般酸性含铜废水经调整pH值后,再经沉淀过滤,能达到出水含铜< O. 5mg/L。采用该方法具有技术成熟、处理成本低、投资少、操作简便等优点,至今仍为世界各国所采用,不足之处在于产生含重金属污泥,若污泥没有得到妥善处置还会产生二次污染。采用该方法处理必须具备以下条件:用化学法处理含铜废水,首先必须破除络合剂,使铜以离子形式存在于清洗废水中,否则会形成铜络合物,处理后的出水铜含量依然很高。其次固液分离效果对出水铜含量影响较大,所以设计处理工艺时要加重力澄清池和砂滤,这样占地面积就很大。此外,只有PH值控制适宜,澄清池设计合理,沉渣沉淀性能良好或用过滤进行三级处理,出水铜含量才能稳定达到O. 5mg/L以下。
[0004] 电解法由于设备复杂,处理量较小,工厂很少采用,电解法流程简单,占地面积小,回收的金属纯度也高,在处理含铜废水时,可在阴极上回收铜,但要求废水中含量不小于2g/L-3g/L。铜离子的去除率在99%以上。其不足之处在于耗电量大,废水处理量小。
[0005] 化学置换法由于置换不完全等问题也很少采用,吸附法处理含铜废水,吸附剂来源广泛,成本低,操作方便,吸附效果好,但吸附剂的使用寿命短,再生困难,难以回收铜离子。离子交换法的除铜效果较好,尤其是对低浓度废水。离子螯合法,即利用重金属螯合剂直接投加到废水中,使重金属螯合剂去捕集金属离子,从而形成螯合物。该法形成的螯合物稳定性高,污泥沉淀快,且捕集效果不受碱金属和碱土金属共存的影响,也不受PH值变化的影响。其不足之处与化学沉淀法相似,最终会产生含重金属污泥,若处理不当,会产生二次污染。采用离子交换树脂对含络合铜废水处理时,可做到浓缩回收Cu-EDTA和游离EDTA,净化后水中铜离子浓度低于O. I μ g/L。虽然离子交换过程很简单,设备也不复杂,选择性提取金属离子有很好的效果,但由于树脂交换容量有限,树脂成本较高等。
[0006] 传统的超滤技术能耗低、渗透通量高,但不能有效去除离子和部分小分子,但采用络合-超滤技术即水溶性聚合物键合金属离子超滤法,通过聚合物对金属离子的选择性络合,虽然可实现络合-超滤技术对不同金属离子的分离,但由于添加了水溶性聚合物使得金属回收造成了一定的困难。[0007] 不同于以上专利所述催化剂废水中金属铜锌的去除方法,本发明针对催化剂废水中铜锌离子及废水的特点,采用超滤或纳滤技术分离催化剂废水中的铜锌离子,本发明具有过滤精度高,滤液中铜锌含量稳定、铜锌易回收的特点。
发明内容
[0008] 本发明要解决的技术问题:
[0009] 针对现有技术的不足,本发明提供了一种利用超滤膜过滤技术进行催化剂废水中铜锌处理及回收的方法,目的主要在于解决现有的无机催化剂废水排放过程中的铜锌超标排放问题,同时回收含铜锌催化剂废水中的铜锌资源。采用该发明的方法,可使得排放废水中的铜锌含量稳定达标,回收的铜锌可用于催化剂生产过程,降低了重金属对水体的污染。该工艺技术具有操作简单、占地面积小、投资少等优点。
[0010] 本发明的工艺技术方案: [0011] 针对铜锌催化剂废水的水质特点,本发明提供了一种采用超滤膜分离技术处理铜锌催化剂废水及回收铜锌的方法。首先,将铜锌催化剂废水经过PH调节确保废水中的铜锌离子以胶体形式存在,然后泵入超滤膜过滤系统将废水中的铜锌胶体进行有效去除并浓缩,超滤产水直接进入达标排放系统,浓缩液进行沉降分离后,上层清液返回超滤系统入口,下层胶体物质回收后用于催化剂的制备过程,例如与中国专利CN100556545C (2009年11月4日公开)中膜循环的浓缩液一起回用于催化剂的制备。
[0012] 本发明所述的无机催化剂高盐度废水主要水质特征为:pH5-13,C0Dcr0-80mg/L, SS20-100mg/L, Cu2 〜200mg/L, Zn 2 〜50mg/L, NH+4_N2 〜I Omg/L。其中 Cu、Zn 在 pH 值 5 〜6之间为Cu2+和Zn2+形态,pH值6〜11之间为Cu (OH) 2和Zn (OH) 2沉淀状态,pH值11以上211(0!1)2变为 ZnO22-离子,Cu(OH)2 会形成络合离子[Cu(Oh)4]2' [Cu(NH3)4]'
[0013] 本发明所述的超滤膜系统主要特征如下:
[0014] I、本发明所述的超滤膜过滤系统中的膜组件主要包括中空纤维膜组件、管式膜组件、卷式膜组件、帘式膜组件和板框式膜组件,最优为中空纤维超滤膜组件、管式膜组件和帘式膜组件;
[0015] 2、(I)中所述膜组件的无机膜材料主要包括无机陶瓷膜类(Al203、Ti02、Zr02以及无机有机复合膜等)、金属膜(不锈钢膜等),最优为Al2O3JiO2陶瓷膜;膜孔径大小为10〜30nm,最优为15〜20nm ;
[0016] 3、(I)中所述膜组件的有机膜材料主要包括聚砜类(主要包括双酚A型聚砜、聚醚砜、酚酞型聚醚砜和聚醚酮、含二氮杂萘酮联苯结构聚芳醚砜酮、聚芳醚腈酮及共聚聚醚砜)、聚酰亚胺、聚醚酰亚胺、聚偏氟乙烯类以及聚烯烃类(主要包括聚乙烯PE、聚丙烯PP及其二者的衍生物等),最优为聚芳醚砜酮、聚四氟乙烯、聚烯烃、聚醚砜、聚偏氟乙烯;有机超滤膜孔径为5〜20nm,最优为10〜15nm ;
[0017] 4、超滤膜组件的运行方式包括错流过滤工艺和死端过滤工艺,最优为错流过滤工艺;其中死端过滤工艺能实现两端间隔交替进水;
[0018] 5、超滤膜组件为中空纤维膜过滤的形式时的运行方式主要包括外压式和内压式,最优为内压式错流过滤工艺;
[0019] 6、在超滤膜组件的自动运行过程中可实现分散洗、加强洗和浸泡洗的周期性操作,其中分散洗可实现两端交替进水,进水周期分别为30-120分钟,最优为45-90分钟;反冲洗时间为5-30秒;超滤运行过程中的运行通量为50-1000L/m2h,最优为150_600L/m2h ;
[0020] 7、超滤膜的加强洗和浸泡洗过程中主要以酸洗为主(酸主要包括:HC1、草酸、柠檬酸、硝酸、硫酸及其与EDTA的复配清洗剂等),该发明所述的超滤膜清洗方式包含了在线和离线清洗操作,并可以进行气擦洗、汽水混合洗等操作,最优为汽水混合洗工艺过程。
[0021] 本发明的有益效果:
[0022] I、本发明所述工艺针对不同水质特征的催化剂废水可以通过选用不同的膜材料以及更改不同的操作参数达到最优的分离回收效果,适用水质范围广泛。
[0023] 2、本发明所述工艺对含铜锌催化剂废水进行超滤后的产水水质稳定且满足GB8978-1996《污水综合排放标准》(主要水质包括:Cu < O. 05mg/L、Zn < O. 04mg/L、SS检不出等指标);
[0024] 3、本发明所述工艺经超滤膜系统回收的铜、锌纯度高,回收后可用于含铜、锌催化剂的制备过程。
[0025] 4、本发明所述工艺自动运行过程中的在线加强洗工艺有效延长了系统的清洗周期,避免了长时间连续运行中超滤膜污堵所造成的频繁停机清洗。
附图说明
[0026] 图I是本发明的工艺流程示意图;
[0027] 图2是铜锌催化剂废水处理装置流程示意图,其中:
[0028] A、铜锌催化剂废水;B、压缩空气;C、待调节废水;D、无需调节废水;E、超滤浓水回流;F、超滤膜系统给水;G、澄清池出水;H、微孔曝气;K、达标排放水源;L、铜锌胶体沉淀物;M、澄清分离池
[0029] I、中和沉淀池;2、超滤给水泵;3、超滤膜系统;4、超滤膜反洗泵具体实施方式
[0030] 下面结合附图I和附图2具体说明该工艺流程的具体步骤。
[0031] 本发明所述含铜锌催化剂废水经在线pH检测后,根据pH大小选择C路线(pH< 7或pH > 11)或D路线(pH为7-11)进入中和沉淀池1,废水经pH调节稳定后进入澄清分离池,上清液经G路线进入超滤给水泵增压后经路线F进入超滤膜系统3,超滤产水经K路线排放,超滤浓水经路线E进入澄清分离池M,在澄清分离池M池底进行沉淀物的排出,回收后可以用于以铜锌为活性组份的催化剂的生产。具体回用方法的描述为采用经超滤膜分离、浓缩和沉淀物与专利CN100556545C中描述的膜循环洗涤过滤浓缩液均匀混合在一起后、经喷雾干燥造粒及远红外干燥煅烧后获得催化剂产品。
[0032] 实施例I
[0033]铜锌催化剂废水水质特点为:废水 pH 8, CODcr 40mg/L, SS 20mg/L, Cu 20mg/L, Zn30mg/L, NH4-N2mg/Lo处理流程如附图I所示。·
[0034] 铜锌催化剂废水A经D路线直接进入澄清分离池,上层澄清液经路线G进入超滤泵2增压后进行超滤膜系统3进行错流过滤分离铜锌胶体,产水达到排放标准,浓缩后的含铜锌胶体返回至清澄分离单元进行沉降分离后进行铜锌的回收。该过程中采用孔径为O. Ol μ m的PPESK中空纤维超滤膜,超滤膜的运行通量大小为300L/m2h,两端交替进水时间间隔为30分钟后,采用产水进行冲洗5秒后,进行酸洗分散操作,加酸清洗时间为10秒,之后进行5秒的冲洗操作后继续进行正常运行;该过程重复运行10次后进行酸浸泡加强清洗操作;酸碱浸泡时间为10分钟,之后进行5秒的冲洗操作。该超滤系统连续运行10天后,进行一次汽水混合清洗操作,混合强度可根据膜污染程度和所使用的膜材料强度来调节、汽水混合清洗时间为10分钟。
[0035] 经澄清分离池M沉降分离的含铜锌胶体的池底物中Cu (OH)2、Zn(OH)2的质量百分比分别达到31. 1%和42. 2%,回收率达到98. 3%以上。与专利CN100556545C中描述的膜循环洗涤过滤浓缩液均匀混合后、经喷雾干燥造粒及远红外干燥煅烧后获得以铜锌为活性组份的催化剂产品。
[0036] 实施例2 [0037] 含铜锌催化剂废水水质特点:废水pH5,CODcr 15mg/L, Cu 200mg/L, Zn 50mg/L,NH4-N 10mg/L,处理流程如附图I所示。
[0038] 铜锌催化剂废水A经C路线进入pH调节池调节废水pH至9直接进入澄清分离池,上层澄清液经路线G进入超滤泵2增压后进行超滤膜系统3进行错流过滤分离铜锌胶体,产水达到排放标准,浓缩后的含铜锌胶体返回至清澄分离单元进行沉降分离后进行铜锌的回收。该过程中采用孔径为O. 01 μ m的PTFE中空纤维超滤膜,超滤膜的运行通量大小为500L/m2h,两端交替进水时间间隔为20分钟后,采用产水进行冲洗5秒后,进行酸洗分散操作,加酸清洗时间为10秒,之后进行5秒的冲洗操作后继续进行正常运行;该过程重复运行8次后进行酸浸泡加强清洗操作;酸碱浸泡时间为10分钟,之后进行5秒的冲洗操作。该超滤系统连续运行15天后,进行一次汽水混合清洗操作,混合强度可根据膜污染程度和所使用的膜材料强度来调节、汽水混合清洗时间为20分钟。
[0039] 经澄清分离池M沉降分离的含铜锌胶体的池底物中Cu (OH)2、Zn(OH)2的质量百分比分别达到61. 1%和18. 7%,回收率达到99. 2%以上。与专利CN100556545C中描述的膜循环洗涤过滤浓缩液均匀混合后、经喷雾干燥造粒及远红外干燥煅烧后获得以铜锌为活性组份的催化剂产品。
[0040] 实施例3
[0041]含铜锌催化剂废水水质特点:废水 pH 12,C0Dcr60mg/L, Cu 200mg/L, Zn 50mg/L,NH4-N 5mg/L,处理流程如附图I所示。
[0042] 铜锌催化剂废水A经C路线进入pH调节池调节废水pH至7-11直接进入澄清分离池,上层澄清液经路线G进入超滤泵2增压后进行超滤膜系统3进行错流过滤分离铜锌胶体,产水达到排放标准,浓缩后的含铜锌胶体返回至清澄分离单元进行沉降分离后进行铜锌的回收。该过程中采用孔径为O. 015 μ m的PVDF中空纤维超滤膜,超滤膜的运行通量大小为600L/m2h,两端交替进水时间间隔为60分钟后,采用产水进行冲洗15秒后,进行酸洗分散操作,加酸清洗时间为30秒,之后进行10秒的冲洗操作后继续进行正常运行;该过程重复运行8次后进行酸浸泡加强清洗操作;酸碱浸泡时间为10分钟,之后进行5秒的冲洗操作。该超滤系统连续运行10天后,进行一次汽水混合清洗操作,混合强度可根据膜污染程度和所使用的膜材料强度来调节、汽水混合清洗时间为15分钟。
[0043] 经澄清分离池M沉降分离的含铜锌胶体的池底物中Cu (OH)2、Zn(OH)2的质量百分比分别达到59. 7%和16. 3%,回收率达到98. 7 %以上。与专利CN100556545C中描述的膜循环洗涤过滤浓缩液均匀混合后、经喷雾干燥造粒及远红外干燥煅烧后获得以铜锌为活性组份的催化剂产品。

Claims (8)

1. 一种采用超滤膜分离技术处理铜锌催化剂废水及回收铜锌的方法,首先,将铜锌催化剂废水经过PH调节确保废水中的铜锌离子以胶体形式存在,然后泵入超滤膜过滤系统将废水中的铜锌胶体进行有效去除并浓缩,超滤产水直接进入达标排放系统,浓缩液进行沉降分离后,上层清液返回超滤系统入口,下层胶体物质回收后用于催化剂的制备过程。
2.根据权利要求I所述的方法,其中所述废水主要水质特征为:pH 5-13,C0Dcr0-80mg/L, SS 20-100mg/L, Cu2 〜200mg/L, Zn 2 〜50mg/L, NH+4_N2 〜10mg/L。
3.根据权利要求I或2所述的方法,其中所述的超滤膜系统中的膜组件包括中空纤维膜组件、管式膜组件、卷式膜组件、帘式膜组件和板框式膜组件。
4.根据权利要求3所述的方法,其中所述的超滤膜系统中的膜组件为中空纤维超滤膜组件、管式膜组件和帘式膜组件。
5.根据权利要求3所述的方法,其中所述的超滤膜系统中膜组件的无机膜材料包括无机陶瓷膜类、金属膜;膜孔径大小为10〜30nm。
6.根据权利要求5所述的方法,其中所述的超滤膜系统中膜组件的无机膜材料为Al2O3^TiO2陶瓷膜,膜孔径大小为15〜20nm。
7.根据权利要求3所述的方法,其中所述的超滤膜系统中膜组件的有机膜材料包括聚砜类、聚酰亚胺、聚醚酰亚胺、聚偏氟乙烯类以及聚烯烃类,有机超滤膜孔径为5〜20nm。
8.根据权利要求7所述的方法,其中所述的超滤膜系统中膜组件的有机膜材料为聚芳醚砜酮、聚四氟乙烯、聚烯烃、聚醚砜、聚偏氟乙烯,膜孔径为10〜15nm。
CN 201010212313 2010-06-29 2010-06-29 一种铜锌催化剂废水中铜锌的去除及回收方法 Active CN102311180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010212313 CN102311180B (zh) 2010-06-29 2010-06-29 一种铜锌催化剂废水中铜锌的去除及回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010212313 CN102311180B (zh) 2010-06-29 2010-06-29 一种铜锌催化剂废水中铜锌的去除及回收方法

Publications (2)

Publication Number Publication Date
CN102311180A CN102311180A (zh) 2012-01-11
CN102311180B true CN102311180B (zh) 2013-02-06

Family

ID=45424792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010212313 Active CN102311180B (zh) 2010-06-29 2010-06-29 一种铜锌催化剂废水中铜锌的去除及回收方法

Country Status (1)

Country Link
CN (1) CN102311180B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466843A (zh) * 2013-10-08 2013-12-25 宜兴市欧瑞特环保科技有限公司 重金属离子废水处理的工艺与设备
CN107117726B (zh) * 2016-02-25 2020-09-11 中国石油化工股份有限公司 催化剂生产废水中含铜锌铝的固体悬浮物的回收处理方法
CN106277647A (zh) * 2016-09-28 2017-01-04 大冶有色金属有限责任公司 采矿冶炼行业重金属废水深度处理的工艺方法
WO2020130686A1 (ko) * 2018-12-19 2020-06-25 주식회사 엘지화학 여과막을 이용한 유기 아연 촉매의 분리 방법
CN109516784A (zh) * 2018-12-26 2019-03-26 高化学(江苏)化工新材料有限责任公司 一种处理催化剂生产废水微滤膜的制备方法
CN113104925B (zh) * 2021-04-21 2022-07-19 北京中科康仑环境科技研究院有限公司 一种膜吸附深度除氟处理系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1110457C (zh) * 1999-08-18 2003-06-04 中国人民解放军军事医学科学院卫生装备研究所 一种制药用水的生产工艺及设备
US7470369B2 (en) * 2004-07-16 2008-12-30 California Institute Of Technology Water treatment by dendrimer enhanced filtration
CN100400432C (zh) * 2004-10-29 2008-07-09 中国石油化工股份有限公司 一种对苯二甲酸生产废水的处理方法
CN100577584C (zh) * 2006-07-10 2010-01-06 三达膜科技(厦门)有限公司 一种含重金属的电镀废液处理和重金属回收利用方法

Also Published As

Publication number Publication date
CN102311180A (zh) 2012-01-11

Similar Documents

Publication Publication Date Title
CN102311180B (zh) 一种铜锌催化剂废水中铜锌的去除及回收方法
US6162361A (en) Plating waste water treatment and metals recovery system
JP3909793B2 (ja) 高濃度の塩類を含有する有機性廃水の処理方法及びその装置
CN106495403A (zh) 一种电镀废水零排放处理方法
CN105152271B (zh) 一种钛白粉白水回用工艺及系统
CN104176857B (zh) 湿法电解锰生产过程中含锰废水的处理工艺
CN106315939B (zh) 一种电镀废水处理系统及其处理方法
CN101786734A (zh) 膜法处理含铜、镍等酸性废水处理工艺
CN109516629A (zh) 电镀废水零排放处理工艺
CN103539294A (zh) 回收镀银废水和银的方法
CN101402496A (zh) 纳滤法处理电镀漂洗水的清洁生产方法
CN101565248A (zh) 电镀废水处理的方法
CN103466844A (zh) 含铅废水处理与回用的工艺与设备
RU2589139C2 (ru) Способ очистки дренажных вод полигонов твердых бытовых отходов
CN205347081U (zh) 氰化镀镉废水零排放处理系统
CN105366838A (zh) 三价铬钝化废水零排放处理方法
CN102070280A (zh) 造纸废水深度处理回用装置及方法
CN105776670A (zh) 废水分流分离分质处理利用工艺方法
CN104071925A (zh) 一种钢铁车间的镀镍废水的零排放处理系统及方法
CN204384985U (zh) 一种钢铁车间的镀镍废水的零排放处理系统
CN205662404U (zh) 一种零排放水处理装置
CN205662395U (zh) 一种循环水处理装置
CN201610402U (zh) 电子电镀废水回用深度处理装置
CN105884093A (zh) 一种高碱度pta中水回用工艺
CN211170226U (zh) 一种含镍废水处理系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant