CN102307222A - Intelligent greenhouse demonstration measurement and control system based on Internet of things technology - Google Patents

Intelligent greenhouse demonstration measurement and control system based on Internet of things technology Download PDF

Info

Publication number
CN102307222A
CN102307222A CN201110117123A CN201110117123A CN102307222A CN 102307222 A CN102307222 A CN 102307222A CN 201110117123 A CN201110117123 A CN 201110117123A CN 201110117123 A CN201110117123 A CN 201110117123A CN 102307222 A CN102307222 A CN 102307222A
Authority
CN
China
Prior art keywords
network
embedded
greenhouse
gateway
sensor
Prior art date
Application number
CN201110117123A
Other languages
Chinese (zh)
Other versions
CN102307222B (en
Inventor
刘磊
卫星
张建军
施洋洋
石雷
韩江洪
魏振春
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Priority to CN201110117123XA priority Critical patent/CN102307222B/en
Publication of CN102307222A publication Critical patent/CN102307222A/en
Application granted granted Critical
Publication of CN102307222B publication Critical patent/CN102307222B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

The invention discloses an intelligent greenhouse demonstration measurement and control system based on an Internet of things technology. The intelligent greenhouse demonstration measurement and control system comprises a plurality of field control station networks, a plurality of embedded gateways and a central server, wherein one field control station network is accessed into one embedded gateway; and the embedded gateways realize communication between the central server and the field control station networks. The intelligent greenhouse demonstration measurement and control system acquires parameters inside and outside a greenhouse and parameters of crop growth soil constitutes through a sensing network of the Internet of things; a network layer of the Internet of things combines various data transmission networks and communicates with the central server through an embedded Ethernet controller interface, so that communication among various nodes is realized; and an application layer, namely the central server, of the Internet of things realizes optimization control, page publish and short message inquiry control for the parameters.

Description

基于物联网技术的智能温室示范测控系统 Intelligent Control System Model-based networking technology greenhouse

技术领域 FIELD

[0001] 本发明涉及温室大棚系统领域,具体为一种基于物联网技术的智能温室示范测控系统。 [0001] The present invention relates to the field of the greenhouse system, in particular to an exemplary intelligent networking technology Control System Based on greenhouse.

背景技术 Background technique

[0002] 物联网是指通过各种信息传感设备,如传感器、射频识别(RFID)技术、全球定位系统、红外感应器、激光扫描器、气体感应器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集各种需要的信息,与互联网结合形成的一个巨大网络。 [0002] IOT refers to various information sensing apparatus, various devices and techniques such as sensors, radio frequency identification (RFID) technology, global positioning systems, infrared sensors, laser scanner, gas sensors, etc., any real-time acquisition need to monitor, access, interactive object or process, needs to collect information, a huge network formed in conjunction with the Internet. 其目的是实现物与物、物与人,所有的物品与网络的连接,方便识别、管理和控制。 The aim is to achieve the objects thereof, things and people, all the items connected to the network, to facilitate the identification, management and control.

[0003] 温室大棚是实现设施农业和工厂化农业的基础设施,是作物生长环境人工调节的基本设施。 [0003] greenhouse is to achieve agricultural facilities and infrastructure of industrialized agriculture, crop growth environment manual adjustment of basic facilities. 通过温室大棚可长期为作物创造最佳的生长条件,避免外界恶劣气候的影响,达到调节作物产期、促进作物生长发育、防治病虫害及提高产量和品质等目的。 It is created by long-term greenhouse optimum growing conditions for the crop, to avoid outside influence of bad weather, to regulate the production of crops and promote crop growth, control pests and diseases and increase yield and quality purposes. 温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。 Greenhouse cultivation brings great convenience to improve people's living standards has been rapid promotion and application. 种植环境中的温度、湿度、光照度、C02浓度等环境因子对作物的生产有很大的影响。 Temperature cultivation environment, humidity, light, and other environmental factors the concentration of C02 have a great effect on crop production. 传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。 Traditional manual control is difficult to achieve the required scientific and rational cultivation, currently the country can achieve the automatic monitoring system of the above environmental factors also rare, and the introduction of foreign multi-functional large-scale multi-span greenhouse control systems are expensive, unsuitable conditions.

发明内容 SUMMARY

[0004] 本发明的目的是提供一种基于物联网技术的智能温室示范测控系统,以实现对温室大棚更加优化的控制和管理。 [0004] The object of the present invention is to provide an exemplary Intelligent Greenhouse Control System based networking technology, in order to achieve a more optimal greenhouse control and management.

[0005] 为了达到上述目的,本发明所采用的技术方案为: [0005] To achieve the above object, the technical solution employed in the present invention are:

基于物联网技术的智能温室示范测控系统,其特征在于:包括多个现场控制站网络、多个嵌入式网关、中心服务器;一个现象控制站网络接入一个嵌入式网关,所述嵌入式网关实现中心服务器与现场控制站网络的通讯; Intelligent Control System exemplary networking technology based on greenhouse, characterized by: a network comprising a plurality of site controllers, embedded a plurality of gateways, the central server; a phenomenon embedded a network access station gateway, the gateway Embedded Center field station network and server communication;

所述现场控制站网络包括传感节点、执行节点、传输中继节点,其中: 所述传感节点分为两种,一种传感节点由多种对温室环境进行测量的传感器构成,另一种传感节点由多种对温室中植株进行测量的传感器构成,其中对温室环境进行测量的每个传感器网络配置有Zigbee无线传输模块,对植株进行测量的每个传感器网络配置有RFID射频读写器; The site controller includes a sensing network node, the node performs transmission relay node, wherein: the sensing nodes are divided into two kinds, one composed of a plurality of sensor nodes of the sensor measuring greenhouse, another a plurality of kinds of sensor nodes constituting the sensor of the greenhouse plants were measured greenhouse environment where each sensor is measured with a Zigbee wireless transmission network configuration module, the plants were measured for each sensor network is configured with a radio frequency RFID reader device;

所述执行节点为改变温室环境参数的各个执行装置,所述执行装置分别连接有继电器,通过继电器控制各个执行装置实现对温室环境参数的改变; The execution node for each execution means changes the parameters of the greenhouse environment, the performing means are respectively connected to a relay, affecting a change to the greenhouse environment parameters for each executing device through relay control;

所述传输中继节点由传感节点和嵌入式网关组成的通讯网络构成,其中对温室环境进行测量的传感器构成的传感节点通过Zigbee无线传输模块与对应的嵌入式网关构成Zigbee网络,对温室中植株进行测量的传感器构成的传感节点通过RFID射频读写器与对应的嵌入式网关构成RFID通信网,每个Zigbee无线传输模块、RFID射频读写器还分别配置有数据处理单元,所述数据处理单元对数据格式处理,所述现场控制站网络的传感节点各个传感器通过传输中继节点向嵌入式网关传输信息,以实现汇聚数据的协调和与网关之间的传输; The transmitting node and the relay node by the sensing of embedded communication network of gateways, wherein the greenhouse environment measured by the sensor nodes constituting the sensor constituting the Zigbee network by wireless transmission module embedded gateway Zigbee and corresponding greenhouse in plants measuring sensor nodes constituting the sensor network constituted by the embedded RFID communication RFID reader and RFID gateway corresponding to each Zigbee wireless transmission module, a radio frequency RFID reader are disposed further data processing unit, said the data processing unit for processing the data format, each of the sensor field sensor node network control station via a transmission relay node to the gateway information is embedded, in order to achieve convergence of the data transmission between the gateway and coordination;

所述嵌入式网关包括单片机系统、接入单片机系统的嵌入式以太网控制器接口,其中对应于对温室环境进行测量的传感节点的嵌入式网关中设置有Zigbee无线网络接口,所述嵌入式网关通过Zigbee无线网络接口与现场控制站网络中对应的Zigbee无线传输模块通讯,对应于对植株进行测量的传感节点的嵌入式网关中设置有RFID无线网络接口,所述嵌入式网关通过RFID无线网络接口与现场控制站网络中对应的RFID射频读写器通讯, 所述嵌入式网关负责现场控制站网络与中心服务器的互联互通、协议栈换和局部控制,其中: The embedded Ethernet controller interface gateway includes an embedded microcontroller system, access to the SCM system, which corresponds to the sensor nodes embedded gateway greenhouse is provided with a measuring Zigbee wireless network interface, the embedded gateway Zigbee wireless transmission module Zigbee wireless communication with the network interface corresponding to the network control station field, corresponding to the sensor nodes measuring the plants embedded gateway is provided with an RFID wireless network interface, the embedded RFID wireless gateway field control station network and the network interface corresponding RFID reader RF communications, said transducer stack and local embedded control network gateway is responsible for on-site central server station interconnection agreement, wherein:

所述单片机系统上外接有E2PR0M存储器、实时时钟芯片、A/D转换器接口、扩展I/O接口、电源供电模块,用于控制对应的传感节点对现场参数数据采集和处理,并将参数传输至中心服务器,同时接受中心服务器下达的命令监控温室内的参数; There the external E2PR0M SCM system memory, real time clock chip, A / D converter interface, expansion I / O interface, a power supply module, for controlling the corresponding sensor node field of data acquisition and processing parameters, and the parameters transmitted to the central server, the central server while receiving a command issued monitoring parameters within the greenhouse;

所述Zigbee无线网络接口包括Zigbee芯片,Zigbee芯片与单片机系统通过UART接口相连,以IEEE 802.15.4规范、Zigbee 2006协议构建现场无线通信网络,实现嵌入式网关中单片机系统与所述传输中继节点进行通信,传输监控现场的信息; The Zigbee wireless network interface comprises a Zigbee chip, Zigbee chip microcontroller system via the UART interface is connected to the IEEE 802.15.4 specification, Zigbee protocol 2006 Construction field wireless communication network, implementation of embedded gateway SCM transmission system and the relay node communicates monitoring information transmission site;

所述RFID无线网络接口包括RFID无线射频芯片、单片机控制模块,RFID无线射频芯片以14443A协议规范对植株上的RFID射频读写器进行读写操作; The RFID wireless network interface comprises a radio frequency RFID chip, SCM control module, radio frequency RFID chip to the RFID protocol specification 14443A RFID reader to read and write on the plants;

所述嵌入式以太网控制器接口包括带SPI接口的独立以太网控制器,所述嵌入式网关中单片机系统通过嵌入式以太网控制器与所述中心服务器通讯,所述以太网控制器符合IEEE 802.3的全部规范,采用了一系列包过滤机制以对传入数据包进行限制,以太网控制器还提供了一个内部DMA模块,以实现快速数据吞吐和硬件支持的IP校验和计算; 所述中心服务器包括工控PC、带USB接口的GSM模块、交换机; 所述工控PC通过交换机与嵌入式网关通讯连接,用于web界面的发布控制,GSM查询服务,工控PC中写入有对温室参数优化控制算法; The embedded Ethernet controller interface comprises a SPI interface independent Ethernet controller, the embedded microcontroller system via gateway controller embedded Ethernet communications with the central server, the Ethernet controller conforms to the IEEE all specifications 802.3, uses a series of packet filtering schemes to limit incoming packets, the Ethernet controller also provides an internal DMA module, IP checksum calculation in order to achieve fast data throughput and hardware support; the central server includes industrial PC, GSM module with USB interface, switch; the industrial PC via a gateway switch and embedded communications connection for web publishing interface control, GSM tracking, industrial PC has written on greenhouse parameter optimization control algorithm;

所述GSM模块通过USB接口接入工控PC,GSM模块通过GSM网络与外部手机通讯,手机通过GSM模块发送固定格式的短信到中心服务器可以查询、控制温室的环境参数; The GSM module via the PC USB interface access industrial, GSM module sending a message to the fixed format via the GSM module can query the central server, the control greenhouse environmental parameters through the GSM network and the outside mobile communications, mobile phones;

所述交换机负责将各个嵌入式网关与中心服务器中工控PC通讯连接,实现多个现场控制站网络的网关数据的传输。 The switch is responsible for various embedded gateway to the central industrial PC server communications connectivity for transmitting multiple field station network gateway data.

[0006] 所述的基于物联网技术的智能温室示范测控系统,其特征在于:对应于对温室环境进行测量的传感器构成传感节点的现场控制站网络中,传感节点中各个传感器通过Zigbee无线传输模块构成温室无线数据采集传感网。 [0006] Control System exemplary intelligent networking technology based on greenhouse, characterized in that said: corresponds to a greenhouse environment measured by the sensor nodes constituting the sensor network site controller, the sensing by the respective sensor node Zigbee wireless greenhouse wireless transmission module data acquisition sensor network.

[0007] 所述的基于物联网技术的智能温室示范测控系统,其特征在于:所述传感节点、执行节点对应物联网的感知层;所述传输中继节点、嵌入式网关对应物联网的网络层;所述中心服务器对应物联网应用层。 [0007] Control System exemplary intelligent networking technology based on greenhouse, characterized in that said: said sensing node, the node performs the corresponding layer perception of things; the transmission relay node corresponding to the gateway embedded IOT a network layer; IOT corresponding to the central server application layer.

[0008] 本发明通过物联网的传感网来采集温室内外、作物生长土壤成分参数;物联网的网络层对多种数据传输网络融合,最后以嵌入式以太网控制器接口与中心服务器通信,实现各个节点之间互相通信;物联网应用层即中心服务器实现对参数的优化控制、页面发布、 短信查询控制。 [0008] The present invention is collected by the sensor network and outside of Things greenhouse crop soil composition parameters; IOT network layer of several data transmission network convergence, and finally embedded Ethernet controller interface communicating with the central server, respective nodes communicate with each other; i.e., the application layer things center server control parameters to achieve the optimization, page publishing, query control message.

[0009] 与现有技术相比,本发明有益效果体现在:1、基于多层网络结构 [0009] Compared with the prior art, the beneficial effects of the present invention is embodied in: 1, based on the multi-layer network structure

本发明系统包括各种数据传输网=Zigbee传输网、RFID传输网、以太网。 The system of the present invention include various data transmission network = Zigbee transmission network, the RFID transmission network, Ethernet. Zigbee是一种专注于低功耗、低成本、低复杂度、低速率的近程无线网络通信技术;RFID具有读写速度快、批量识别、存储量大、使用寿命长、安全性高、实时动态通信等优势;故由Zigbee和RFID 构建的现场无线传感网具有上述优势。 Zigbee is a focused low-power, low cost, low complexity, low-speed short-range wireless network communications technologies; having the RFID read and write speed, batch identification, storage capacity, long life, high safety, real-time dynamic communication and other advantages; and it is constructed by the Zigbee wireless sensor network RFID field having the above advantages. 以太网成本低廉和传输高速提高了系统的通信性能。 Low cost Ethernet and high-speed transmission improves the communication performance of the system.

[0010] 2、多种数据信息融合 [0010] 2, more data fusion

由于物联网温室大棚丰富的感知特性,本系统的各个网络包含各自的采集和传输数据,针对不同网络之间数据传输的格式差异,采用了基于TCP/IP协议嵌入式网关实现了多种网络之间数据传输的融合和协同。 Since things rich greenhouse perceptual characteristics, each network system comprising a respective data collection and transmission, for the transfer of difference data formats between different networks, using a variety of networks implemented on TCP / IP protocol embedded gateway and the fusion between the cooperative data transmission.

[0011] 3、多种控制方式实现更便捷合理的管理 [0011] 3, a variety of control methods to achieve a more convenient and rational management

本发明系统中中心服务器通过页面发布参数信息,可在互联网中通过管理用户实现实时调节;内含优化算法可实现传感节点与动作节点之间的自动调节;中心服务器有GSM查询平台,提供手机查询控制,使调节没有时间和空间上的限制;同时系统还提供人工手动的调节控制,真正实现全方位的控制。 The present invention released by the central server page parameter information, real-time adjustment can be achieved by managing users on the Internet; contains optimization algorithm can automatically adjust between the sensor nodes and the action nodes; there is a central server query GSM platform, providing mobile phone access control, the regulation does not restrict the time and space; at the same time the system also provides manually adjustment control, truly all-round control.

[0012] 4、具备智能化和云计算技术的物联网温室系统 [0012] 4, and includes a intelligent cloud computing system of greenhouse Things

本发明系统基于物联网体系,包含了物联网云计算技术特征,实现不同技术平台之间的资源共享,提升了物联网信息处理能力。 The system of the present invention is based on the IOT system comprising the technical features of the cloud things, the sharing of resources between different technology platforms, to enhance the processing capability information of things. 各个子系统之间的互相感知、智能化调节增加了系统的便捷灵活性。 Mutual perception between the various subsystems, intelligent regulation increases the flexibility of the system convenient.

附图说明 BRIEF DESCRIPTION

[0013] 图1为本发明的系统组成框图。 The system of the present invention [0013] FIG 1 block diagram.

[0014] 图2为本发明所涉及中心服务器软件流程图。 [0014] FIG 2 is a flowchart directed to the center server software of the present invention.

[0015] 图3为本发明与物联网和OSI模型对应关系图。 [0015] FIG. 3 is a schematic of the OSI model and the IOT corresponding relation invention FIG.

具体实施方式 Detailed ways

[0016] 如图1所示,本发明系统组成包括现场控制站网、嵌入式网关、中心服务器; 现场控制站网络安置于温室大棚内外,包括室外气象传感器、室内参数传感器、作物溯 [0016] As shown, the system of the present invention consists of a field control station network, embedded gateway, the central server; network control station is disposed inside and outside the field greenhouse, including outdoor weather sensor, the indoor sensor parameters, crop traceability

源的培育土壤检测传感器、风机和加热器动作节点、及相应的Zigbee、RFID无线传感网,在种植的作物相应地方安装室内及土壤检测传感器,室外安装风速、风向、雨量传感器来采集相应的环境参数,提供控制温室的依据,动作节点在收到指令后相应开合环流风机、加热器设备进行参数调节,为了避免数据传输的距离和流量限制在每个传感网中增设了若干中继节点实现数据协调传输; Soil detection sensor, the operation of the fan and heater incubated source node, and the corresponding Zigbee, RFID wireless sensor networks, and indoor soil detection sensor mounted in a respective local crop cultivation, outdoor installation speed, wind direction, rain sensor corresponding to collect environmental parameters, a control greenhouse basis, after receiving the operation instruction node corresponding closure circulation fan, heater parameter adjusting device, in order to avoid data transmission distance and flow limits the addition of several relays each sensor network node implements a data transmission coordination;

嵌入式网关包括单片机系统、Zigbee无线网络接口、RFID无线网络接口、嵌入式以太网控制器接口与交换机相连接,实现多种传感网融合最终以以太网控制接口与中心服务器相连接提供参数并传输控制指令,嵌入式网关负责现场控制站网络与中心服务器的互联互通、协议栈换和局部控制,其中: Gateway comprises embedded microcontroller system, Zigbee wireless network interface, the RFID wireless network interface, the embedded Ethernet switch is connected to the controller interface, to achieve a variety of sensor networks and ultimately to fusion Ethernet control interface is connected to the center server and provided parameters transmission control instruction, the embedded gateway is responsible for site control station interconnection network with a central server, change the protocol stack and local control, where:

单片机系统采用型号为STC12C5A60S2的嵌入式微处理器、E2PR0M存储器、实时时钟芯片、A/D转换器接口和扩展I/O接口、电源供电模块,用于控制现场参数数据采集和处理并传输到中心管理服务器,同时接受服务器命令下达的命令监控温室内的参数; Model SCM system uses the embedded microprocessor STC12C5A60S2, E2PR0M memory, real time clock chip, A / D converter interface, and expansion I / O interface, a power supply module, for controlling the field parameter data acquisition and processing and transmitted to the management center server, while the server accepts the order was given command of the monitoring parameters in the greenhouse;

Zigbee无线网络接口包括型号为CCM30的Zigbee芯片,Zigbee芯片与单片机系统通过UART接口相连,以IEEE 802.15.4规范、Zigbee 2006协议构建现场无线通信网络,实现与现场Zigbee网络进行通信,传输监控现场的信息; Zigbee wireless network interface is connected to the model comprises a Zigbee chip, Zigbee chip microcontroller system CCM30 via UART interface to the IEEE 802.15.4 specification, Zigbee protocol 2006 Construction field wireless communication network, communication, transmission control field and field Zigbee network information;

RFID无线网络接口包括型号为FM1702NL的RFID无线射频芯片、单片机控制模块,RFID 无线射频芯片以14443A协议规范对植株溯源上的Mifare 1 S50RFID射频读写器进行读写操作,读写内容是土壤检测传感器检测到的培育的土壤信息、种植时间和出圃时间; RFID is a wireless network interface comprises a radio frequency RFID type chip FM1702NL, the SCM control module, radio frequency RFID chip to the protocol specification 14443A Mifare read and write operations on the plants traceability 1 S50RFID RFID reader, the reader soil content detection sensor detected information cultivated soil, nursery cultivation time and time;

嵌入式以太网控制器接口包括带SPI接口的型号为EN(^8J60的独立以太网控制器。以太网控制器符合IEEE 802.3的全部规范,采用了一系列包过滤机制以对传入数据包进行限制。它还提供了一个内部DMA模块,以实现快速数据吞吐和硬件支持的IP校验和计算; 中心服务器包括工控PC、带有USB接口的GSM模块、交换机,实现温室控制的页面发布, 通过管理者用户名和密码登陆控制温室参数的调节,GSM模块通过USB接口接入工控PC,用户通过手机通过GSM模块向工控PC发送固定格式的短信进行查询,可以查询服务器对AT 指令进行解析,根据指令要求控制温室大棚的环境参数。工控PC用于web界面的发布控制、GSM查询服务、与嵌入式网关的通信,含有对温室参数优化控制算法。除此之外,可以在现场人工手动调节。 Embedded Ethernet controller interface comprises a SPI interface, Model EN (^ 8J60 independent Ethernet controller Ethernet controller meets all IEEE 802.3 specifications, using a range of packet filtering schemes to incoming data packets restrictions it also provides an internal DMA module for fast data throughput and hardware support IP checksum calculation; the central server includes industrial PC, GSM module with a USB interface, switches, control greenhouse pages published by managers user name and password control to adjust the parameters of the greenhouse, GSM module through the USB interface to access industrial PC, mobile phone users to query GSM module to send SMS industrial PC fixed format, can query the server to parse through AT commands, according to the instructions environmental parameters required to control the greenhouse. industrial PC control for web publishing interface, GSM tracking, communications and embedded gateway, contain greenhouse parameter optimization control algorithm. in addition, you can adjust manually in the field.

[0017] 具体实施中,各种温室内外带Zigbee无线网络接口的传感器通过Zigbee无线网络接口构成了现场Zigbee通信网络,各个传感器和相应的Zigbee无线网络接口可以根据温室的实际的需要进行任意数量的扩展,温室大棚内可以由Zigbee通信网络完全覆盖,其中设立传输中继节点,使大量网络的数据传输协调。 [0017] In particular embodiments, various internal and external conservatory Zigbee wireless sensor network interfaces constitute a communication network through a field Zigbee Zigbee wireless network interface, various sensors and the respective Zigbee wireless network interface may be any number according to actual needs of the greenhouse expansion, may be covered entirely by the greenhouse Zigbee communication network, wherein the relay node to establish transmission, data transmission of a large number of network coordination. 嵌入式网关与每个传感网设立传输中继节点,实现多种网络的融合和协同。 Embedded Sensor Network gateway and each relay node to establish transmission, and to achieve synergistic integration of multiple networks. 嵌入式网关通过以太网接口与在互联网中的中心服务器连接,将现场检测的数据发送到中心服务器来提供各种控制方法,包括在互联网上页面发布、GSM短信查询、内部优化算法的自动调节等。 Embedded gateway via the Ethernet interface with the central server in the Internet to send data to a central site testing server to provide various control methods, including page posted on the Internet, GSM SMS query, automatically adjust the internal optimization algorithms, etc. . 这种基于物联网技术的温室大棚系统结构,扩展性好,便于控制,可以降低系统建设成本,提高网络覆盖率和扩展性。 Such a system configuration Greenhouse Greenhouse networking technology based, scalable, easy to control, the system can reduce the construction cost, and improve the scalability of network coverage.

[0018] 如图2所示,本实系统中心服务器软件工作流程图,其步骤如下: [0018] As shown in FIG. 2, the solid center server software flow chart of the system, the following steps:

中心服务器通过socket模块和嵌入式网关之间建立通信,将现场测得的环境、植物生长参数传输过来,通过Mysql技术存储到数据库,并通过XML和PHP语言在互联网上进行页面发布,用户可以通过web浏览器,随时随地查询被监控设备的所有信息。 Established between the central server through socket module and embedded gateway communication, the site measured ambient, plant growth parameters are transmitted over, through technology Mysql stored in the database, and page posted on the Internet via XML and PHP language, users can web browser, the query all the information monitoring device anytime, anywhere. 同时,服务器通过web服务接收用户提交的指令,原路返回,对动作节点进行控制;另外通过MSCOMM控件用C++编写短信查询控制部分,对AT指令解析,当收到查询短信指令时,解析命令,可以将当前环境参数和土壤信息会发给指定手机,当收到控制命令时,对动作节点进行控制;数据库中可以写入各个参数的阈值,鉴于各个参数之间的关系,通过优化算法可以实现无人参与的闭环自动调节。 Meanwhile, the server via a web service receives the instruction submitted by the user, backtrack, the operation control nodes; write additional SMS query control section in C ++ by MSCOMM control, the AT command analysis, when it receives a query SMS commands, parse command, can the current environmental parameters and soil information will be sent to the designated mobile phone, when receiving the control command, the operation control nodes; the database can be written to a threshold value for each parameter, in view of the relationship between the various parameters, can be achieved by optimizing algorithm unattended closed loop automatic adjustment.

[0019] 如图3所示,本系统与物联网和OSI模型之间的关系: [0019] The relationship between FIG. 3, the present system of things and the OSI model:

现场的数据采集和参数处理对应于物联网的感知层,即OSI七层模型中的物理层和数据链路层;各种Zigbee、RFID、GSM、以太网传输网对应于物联网的网络层,即OSI七层模型中的物理层和传输层;温室参数的GSM查询、页面发布、优化算法对应于物联网的应用层, 即OSI模型中应用层和应用程序。 Field data acquisition and processing parameters corresponding to the perception of things layer, i.e. OSI physical layer and the data link layer of the seven layer model; various Zigbee, RFID, GSM, Ethernet transport network corresponds to the network layer of the Internet of Things i.e. OSI physical layer and the transport layer of the seven layer model; greenhouse query the GSM parameters, page publishing, optimization algorithm corresponding to an application layer of things, namely the application layer in the OSI model and application. 发明系统不含有OSI模型中的表示层和会话层,其功能何以在物联网的网络层实现,也可以在应用层实现。 Inventive system does not contain a session layer and a presentation layer of the OSI model, which is why the function of the network layer of things, may also be implemented at the application layer.

Claims (3)

1.基于物联网技术的智能温室示范测控系统,其特征在于:包括多个现场控制站网络、多个嵌入式网关、中心服务器;一个现象控制站网络接入一个嵌入式网关,所述嵌入式网关实现中心服务器与现场控制站网络的通讯;所述现场控制站网络包括传感节点、执行节点、传输中继节点,其中: 所述传感节点分为两种,一种传感节点由多种对温室环境进行测量的传感器构成,另一种传感节点由多种对温室中植株进行测量的传感器构成,其中对温室环境进行测量的每个传感器网络配置有Zigbee无线传输模块,对植株进行测量的每个传感器网络配置有RFID射频读写器;所述执行节点为改变温室环境参数的各个执行装置,所述执行装置分别连接有继电器,通过继电器控制各个执行装置实现对温室环境参数的改变;所述传输中继节点由传感节点和嵌入式网关组成的 1. Intelligent Control System exemplary networking technology based on greenhouse, wherein: the network comprises a plurality of site controllers, embedded a plurality of gateways, the central server; a phenomenon embedded a network access gateway station, said embedded communication with the central server gateway implementations scene control station network; the site controller includes a sensing network node, the node performs transmission relay node, wherein: the sensing nodes are divided into two types, one sensor node of a plurality species greenhouse environment measured by the sensor configuration of another sensor node consists of a variety of sensors for measuring the greenhouse the plants, wherein each sensor network measuring greenhouse Zigbee wireless transmission module is arranged, plants were each measured sensor network RFID reader RFID is disposed; each node to change the execution means the execution parameters of the greenhouse environment, the execution means are connected to a relay, affecting a change to the greenhouse environment parameters for each executing device through relay control ; the transmission node and the relay node by the sensing of embedded gateways 通讯网络构成,其中对温室环境进行测量的传感器构成的传感节点通过Zigbee无线传输模块与对应的嵌入式网关构成Zigbee网络,对温室中植株进行测量的传感器构成的传感节点通过RFID射频读写器与对应的嵌入式网关构成RFID通信网,每个Zigbee无线传输模块、RFID射频读写器还分别配置有数据处理单元,所述数据处理单元对数据格式处理,所述现场控制站网络的传感节点各个传感器通过传输中继节点向嵌入式网关传输信息,以实现汇聚数据的协调和与网关之间的传输;所述嵌入式网关包括单片机系统、接入单片机系统的嵌入式以太网控制器接口,其中对应于对温室环境进行测量的传感节点的嵌入式网关中设置有Zigbee无线网络接口,所述嵌入式网关通过Zigbee无线网络接口与现场控制站网络中对应的Zigbee无线传输模块通讯,对应于对植株进行测量的传感节点 Constituting the communication network, wherein the sensor node of the sensor configuration for measuring greenhouse constituting the Zigbee network by wireless transmission module embedded gateway Zigbee and corresponding sensor node of a sensor measuring the greenhouse plants constituted by a radio frequency RFID reader with embedded gateway configuration corresponding RFID communication network, each Zigbee wireless transmission module, a radio frequency RFID reader are disposed further data processing unit, the data processing unit for processing the data format, the field of network transmission station each sensor sense node information by transmitting the embedded relay node to the gateway, in order to achieve convergence of the data transmission between the gateway and coordination; the embedded Ethernet controller includes an embedded gateway SCM system, the SCM system access interfaces, which corresponds to a gateway embedded greenhouse measuring sensor node in Zigbee wireless network interface is provided, the embedded gateway Zigbee wireless network interface and the network control station field corresponding Zigbee wireless communication transmission module, corresponding to the sensor nodes measuring the plants 嵌入式网关中设置有RFID无线网络接口,所述嵌入式网关通过RFID无线网络接口与现场控制站网络中对应的RFID射频读写器通讯, 所述嵌入式网关负责现场控制站网络与中心服务器的互联互通、协议栈换和局部控制,其中:所述单片机系统上外接有E2PR0M存储器、实时时钟芯片、A/D转换器接口、扩展I/O接口、电源供电模块,用于控制对应的传感节点对现场参数数据采集和处理,并将参数传输至中心服务器,同时接受中心服务器下达的命令监控温室内的参数;所述Zigbee无线网络接口包括Zigbee芯片,Zigbee芯片与单片机系统通过UART接口相连,以IEEE 802.15.4规范、Zigbee 2006协议构建现场无线通信网络,实现嵌入式网关中单片机系统与所述传输中继节点进行通信,传输监控现场的信息;所述RFID无线网络接口包括RFID无线射频芯片、单片机控制模块,RFID无线射频芯片 Embedded gateway is provided with an RFID wireless network interface, the embedded RFID gateway through the wireless network interface to the field corresponding to the network control station RF RFID reader communication, the gateway is responsible for the embedded field control station network and central server interconnection, and changing local control protocol stack, wherein: said external memory has E2PR0M microcontroller system, real time clock chip, a / D converter interface, expansion I / O interface, a power supply module, for controlling the corresponding sensor node data acquisition and processing parameters on site, and the parameters are transmitted to the central server, the central server while receiving a command issued monitoring parameters of the greenhouse; Zigbee wireless network interface comprises a Zigbee chip, Zigbee chip connected to the microcontroller system via UART interface, in the IEEE 802.15.4 specification, Zigbee 2006 constructs the protocol field wireless communication network, communication between SCM system, transmission control information embedded gateway field in the transmission relay node; the wireless network interface comprises a RFID radio frequency RFID chip , SCM control module, the RFID chip radio frequency 以14443A协议规范对植株上的RFID射频读写器进行读写操作;所述嵌入式以太网控制器接口包括带SPI接口的独立以太网控制器,所述嵌入式网关中单片机系统通过嵌入式以太网控制器与所述中心服务器通讯,所述以太网控制器符合IEEE 802.3的全部规范,采用了一系列包过滤机制以对传入数据包进行限制,以太网控制器还提供了一个内部DMA模块,以实现快速数据吞吐和硬件支持的IP校验和计算; 所述中心服务器包括工控PC、带USB接口的GSM模块、交换机; 所述工控PC通过交换机与嵌入式网关通讯连接,用于web界面的发布控制,GSM查询服务,工控PC中写入有对温室参数优化控制算法;所述GSM模块通过USB接口接入工控PC,GSM模块通过GSM网络与外部手机通讯,手机通过GSM模块发送固定格式的短信到中心服务器可以查询、控制温室的环境参数;所述交换机负责将各个 14443A protocol specification to be read and written on the RFID reader RFID plants; the embedded Ethernet controller interface comprises a separate Ethernet controller with SPI interface, the embedded microcontroller gateway system via the embedded Ethernet network server communications with the central controller, the Ethernet controller meets all IEEE 802.3 specifications, using a range of packet filtering schemes to limit incoming packets, the Ethernet controller also provides an internal DMA module , IP checksum calculation in order to achieve fast data throughput and hardware support; industrial PC comprises the central server, the GSM module with the USB interface of the switch; the industrial PC embedded communications gateway through the switch connected to the web interface the release of control, GSM tracking, industrial PC has written optimal control algorithm for greenhouse parameters; the GSM module sends a fixed format via the GSM module via USB interface to access industrial PC, GSM module through the GSM network and the outside mobile communications, mobile phones message to a central server can query the control greenhouse environmental parameters; responsible for the respective switch 入式网关与中心服务器中工控PC通讯连接,实现多个现场控制站网络的网关数据的传输。 Transfer into the central gateway server type industrial PC communication connection, the control station to achieve a plurality of field data network gateway.
2.根据权利要求1所述的基于物联网技术的智能温室示范测控系统,其特征在于:对应于对温室环境进行测量的传感器构成传感节点的现场控制站网络中,传感节点中各个传感器通过Zigbee无线传输模块构成温室无线数据采集传感网。 1 according to the exemplary intelligent monitoring and control system of greenhouse networking technology based on claim wherein: the sensor corresponding to the greenhouse environment measuring site controllers constituting the sensor network nodes, each sensor node in the sensor greenhouse constituting the sensor network through the wireless data acquisition Zigbee wireless transmission module.
3.根据权利要求1所述的基于物联网技术的智能温室示范测控系统,其特征在于:所述传感节点、执行节点对应物联网的感知层;所述传输中继节点、嵌入式网关对应物联网的网络层;所述中心服务器对应物联网应用层。 3. Intelligent Control System exemplary networking technology based on greenhouse, characterized according to claim 1: the sensing node, the node performs the corresponding layer perception of things; the transmission relay node corresponding to the embedded gateway things network layer; IOT corresponding to the central server application layer.
CN201110117123XA 2011-05-07 2011-05-07 Intelligent greenhouse demonstration measurement and control system based on Internet of things technology CN102307222B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110117123XA CN102307222B (en) 2011-05-07 2011-05-07 Intelligent greenhouse demonstration measurement and control system based on Internet of things technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110117123XA CN102307222B (en) 2011-05-07 2011-05-07 Intelligent greenhouse demonstration measurement and control system based on Internet of things technology

Publications (2)

Publication Number Publication Date
CN102307222A true CN102307222A (en) 2012-01-04
CN102307222B CN102307222B (en) 2013-08-14

Family

ID=45381026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110117123XA CN102307222B (en) 2011-05-07 2011-05-07 Intelligent greenhouse demonstration measurement and control system based on Internet of things technology

Country Status (1)

Country Link
CN (1) CN102307222B (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438336A (en) * 2012-01-12 2012-05-02 刘硕 Novel IOT (internet of things) system
CN102592423A (en) * 2012-02-24 2012-07-18 中国矿业大学 Multi-sensor perception node in complicated environmental condition
CN102685212A (en) * 2012-04-09 2012-09-19 南京龙渊微电子科技有限公司 Internet of things based temperature and humidity monitoring system for mine and implementation method thereof
CN102789222A (en) * 2012-08-30 2012-11-21 健雄职业技术学院 Intelligent measurement and control system of greenhouse based on internet of things
CN102868749A (en) * 2012-09-20 2013-01-09 张晋 Agricultural planting and breeding-based Internet of things cloud service system and service flow method
CN102882896A (en) * 2012-11-01 2013-01-16 山东大学 Data information access system and method based on internet of things
CN102881139A (en) * 2012-09-28 2013-01-16 陈广义 Data collection communication system for numerical control machine tool based on Internet of things
CN102981484A (en) * 2012-11-29 2013-03-20 中农先飞(北京)农业工程技术有限公司 Greenhouse intelligent control system based on internet of things
CN103049552A (en) * 2012-12-28 2013-04-17 中国人民解放军信息工程大学 Method, device and system for multi-user man-machine interaction based on item identification
CN103112477A (en) * 2013-01-17 2013-05-22 苏州鼎汗传感网技术有限公司 Rail safety monitoring automatically warning system based on wireless sensor network
CN103200235A (en) * 2013-03-07 2013-07-10 哈耐龙(杭州)物联网科技有限公司 Remote data collecting and remote controlling method based on emails
CN103268107A (en) * 2013-05-10 2013-08-28 河西学院 System and method for greenhouse remote automatic monitoring and control
CN103631162A (en) * 2013-09-29 2014-03-12 吴忠市利通区瑞派电脑器材销售部 Software for greenhouse control system terminal
CN103777612A (en) * 2014-01-27 2014-05-07 苏州科技学院 Agriculture greenhouse environment monitoring system and method based on Zigbee
CN103905505A (en) * 2012-12-30 2014-07-02 青岛海尔软件有限公司 Mobile phone application system monitoring plant growth
CN104035755A (en) * 2013-03-06 2014-09-10 中农先飞(北京)农业工程技术有限公司 General development platform and development method for greenhouse remote intelligent control system
CN104076788A (en) * 2014-06-27 2014-10-01 清华大学 Intelligent relay control method and network based on sensors
CN104571032A (en) * 2014-12-26 2015-04-29 无锡清华信息科学与技术国家实验室物联网技术中心 Intelligent greenhouse
CN104601947A (en) * 2014-12-22 2015-05-06 中国石油天然气股份有限公司 Web technology based movable oil field water shut-off and profile control remote monitoring system
CN104717306A (en) * 2015-04-02 2015-06-17 江苏大学 Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof
CN104754027A (en) * 2015-01-27 2015-07-01 中国石油天然气集团公司 Cross-network communication method and communication system
CN104834291A (en) * 2015-04-24 2015-08-12 中山弘博企业管理咨询有限公司 Agricultural greenhouse based on Internet of Things
WO2015135333A1 (en) * 2014-03-10 2015-09-17 深圳市大雅新科技有限公司 Intelligent agriculture management system and management method
CN105511429A (en) * 2015-12-01 2016-04-20 上海斐讯数据通信技术有限公司 Household IOT (Internet of Things) control system, application method, and building method
CN105549566A (en) * 2016-01-20 2016-05-04 刘圣德 Remote agricultural information intelligent analysis system and agricultural environment regulation and control method
CN105610900A (en) * 2015-12-11 2016-05-25 中国农业科学院果树研究所 Embedded Internet of things gateway-based agricultural greenhouse indoor environment monitoring system
CN105676925A (en) * 2016-04-02 2016-06-15 西北农林科技大学 Mushroom greenhouse environment factor adjustment system
CN105786067A (en) * 2016-05-27 2016-07-20 扬州大学 Intelligent greenhouse environment regulating and controlling method based on Internet of Things
CN105823509A (en) * 2016-02-29 2016-08-03 西北农林科技大学 Mushroom greenhouse environment monitoring system
CN105843301A (en) * 2016-04-19 2016-08-10 柳州名品科技有限公司 Vegetable greenhouse intelligent management platform having self-learning function
CN106131201A (en) * 2016-07-20 2016-11-16 安徽朗坤物联网有限公司 Inter net remote access method in agricultural Internet of Things
CN106371383A (en) * 2016-08-30 2017-02-01 上海大学 Greenhouse remote monitoring system and method
CN106843174A (en) * 2017-01-17 2017-06-13 伯恩太阳能科技有限公司 Tobacco flue-curing house baking room warmhouse booth remote internet of things control system
CN107278708A (en) * 2017-06-05 2017-10-24 安徽福讯信息技术有限公司 A kind of Internet of Things rare plant is cultivated selects excellent experimental system with growth of cereal crop seedlings growing environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013321A (en) * 2007-02-07 2007-08-08 浙江大学 Intelligent actuator of greenhouse based on Ethernet and wireless sensor network
CN201004177Y (en) * 2007-01-16 2008-01-09 浙江大学 A conservatory parameter measurement and monitoring system based on embedded technology
WO2010046939A1 (en) * 2008-10-25 2010-04-29 Microlaben S.R.L. Wireless system for greenhouse monitoring and control
CN101827007A (en) * 2010-04-19 2010-09-08 中兴通讯股份有限公司 Method and device for interconnecting sensor network and mobile terminal and network connection equipment
CN201750562U (en) * 2010-07-31 2011-02-16 大连工业大学 Device for interconnecting the wireless sensor network with the internet and the mobile communication net
CN102045896A (en) * 2010-11-22 2011-05-04 中山爱科数字科技有限公司 Virtual Internet-of-things gateway system capable of realizing multiprotocol and network self-adapting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201004177Y (en) * 2007-01-16 2008-01-09 浙江大学 A conservatory parameter measurement and monitoring system based on embedded technology
CN101013321A (en) * 2007-02-07 2007-08-08 浙江大学 Intelligent actuator of greenhouse based on Ethernet and wireless sensor network
WO2010046939A1 (en) * 2008-10-25 2010-04-29 Microlaben S.R.L. Wireless system for greenhouse monitoring and control
CN101827007A (en) * 2010-04-19 2010-09-08 中兴通讯股份有限公司 Method and device for interconnecting sensor network and mobile terminal and network connection equipment
CN201750562U (en) * 2010-07-31 2011-02-16 大连工业大学 Device for interconnecting the wireless sensor network with the internet and the mobile communication net
CN102045896A (en) * 2010-11-22 2011-05-04 中山爱科数字科技有限公司 Virtual Internet-of-things gateway system capable of realizing multiprotocol and network self-adapting

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438336A (en) * 2012-01-12 2012-05-02 刘硕 Novel IOT (internet of things) system
CN102592423A (en) * 2012-02-24 2012-07-18 中国矿业大学 Multi-sensor perception node in complicated environmental condition
CN102685212A (en) * 2012-04-09 2012-09-19 南京龙渊微电子科技有限公司 Internet of things based temperature and humidity monitoring system for mine and implementation method thereof
CN102789222A (en) * 2012-08-30 2012-11-21 健雄职业技术学院 Intelligent measurement and control system of greenhouse based on internet of things
CN102868749A (en) * 2012-09-20 2013-01-09 张晋 Agricultural planting and breeding-based Internet of things cloud service system and service flow method
CN102881139A (en) * 2012-09-28 2013-01-16 陈广义 Data collection communication system for numerical control machine tool based on Internet of things
CN102882896A (en) * 2012-11-01 2013-01-16 山东大学 Data information access system and method based on internet of things
CN102981484A (en) * 2012-11-29 2013-03-20 中农先飞(北京)农业工程技术有限公司 Greenhouse intelligent control system based on internet of things
CN103049552A (en) * 2012-12-28 2013-04-17 中国人民解放军信息工程大学 Method, device and system for multi-user man-machine interaction based on item identification
CN103905505A (en) * 2012-12-30 2014-07-02 青岛海尔软件有限公司 Mobile phone application system monitoring plant growth
CN103112477A (en) * 2013-01-17 2013-05-22 苏州鼎汗传感网技术有限公司 Rail safety monitoring automatically warning system based on wireless sensor network
CN104035755A (en) * 2013-03-06 2014-09-10 中农先飞(北京)农业工程技术有限公司 General development platform and development method for greenhouse remote intelligent control system
CN103200235A (en) * 2013-03-07 2013-07-10 哈耐龙(杭州)物联网科技有限公司 Remote data collecting and remote controlling method based on emails
CN103268107A (en) * 2013-05-10 2013-08-28 河西学院 System and method for greenhouse remote automatic monitoring and control
CN103631162A (en) * 2013-09-29 2014-03-12 吴忠市利通区瑞派电脑器材销售部 Software for greenhouse control system terminal
CN103777612A (en) * 2014-01-27 2014-05-07 苏州科技学院 Agriculture greenhouse environment monitoring system and method based on Zigbee
WO2015135333A1 (en) * 2014-03-10 2015-09-17 深圳市大雅新科技有限公司 Intelligent agriculture management system and management method
CN104076788A (en) * 2014-06-27 2014-10-01 清华大学 Intelligent relay control method and network based on sensors
CN104076788B (en) * 2014-06-27 2017-01-04 清华大学 The control method of sensor-based intelligent relay and network
CN104601947A (en) * 2014-12-22 2015-05-06 中国石油天然气股份有限公司 Web technology based movable oil field water shut-off and profile control remote monitoring system
CN104571032A (en) * 2014-12-26 2015-04-29 无锡清华信息科学与技术国家实验室物联网技术中心 Intelligent greenhouse
CN104754027B (en) * 2015-01-27 2018-05-04 中国石油天然气集团公司 The communication means and communication system of a kind of across a network
CN104754027A (en) * 2015-01-27 2015-07-01 中国石油天然气集团公司 Cross-network communication method and communication system
CN104717306A (en) * 2015-04-02 2015-06-17 江苏大学 Greenhouse Internet-of-Things measurement and control system, and data synchronization method thereof
CN104834291A (en) * 2015-04-24 2015-08-12 中山弘博企业管理咨询有限公司 Agricultural greenhouse based on Internet of Things
CN105511429A (en) * 2015-12-01 2016-04-20 上海斐讯数据通信技术有限公司 Household IOT (Internet of Things) control system, application method, and building method
CN105610900A (en) * 2015-12-11 2016-05-25 中国农业科学院果树研究所 Embedded Internet of things gateway-based agricultural greenhouse indoor environment monitoring system
CN105610900B (en) * 2015-12-11 2018-10-16 中国农业科学院果树研究所 A kind of agricultural greenhouse indoor environment monitoring system based on embedded Internet of Things gateway
CN105549566A (en) * 2016-01-20 2016-05-04 刘圣德 Remote agricultural information intelligent analysis system and agricultural environment regulation and control method
CN105823509A (en) * 2016-02-29 2016-08-03 西北农林科技大学 Mushroom greenhouse environment monitoring system
CN105676925A (en) * 2016-04-02 2016-06-15 西北农林科技大学 Mushroom greenhouse environment factor adjustment system
CN105843301A (en) * 2016-04-19 2016-08-10 柳州名品科技有限公司 Vegetable greenhouse intelligent management platform having self-learning function
CN105786067A (en) * 2016-05-27 2016-07-20 扬州大学 Intelligent greenhouse environment regulating and controlling method based on Internet of Things
CN106131201A (en) * 2016-07-20 2016-11-16 安徽朗坤物联网有限公司 Inter net remote access method in agricultural Internet of Things
CN106371383A (en) * 2016-08-30 2017-02-01 上海大学 Greenhouse remote monitoring system and method
CN106843174A (en) * 2017-01-17 2017-06-13 伯恩太阳能科技有限公司 Tobacco flue-curing house baking room warmhouse booth remote internet of things control system
CN107278708A (en) * 2017-06-05 2017-10-24 安徽福讯信息技术有限公司 A kind of Internet of Things rare plant is cultivated selects excellent experimental system with growth of cereal crop seedlings growing environment

Also Published As

Publication number Publication date
CN102307222B (en) 2013-08-14

Similar Documents

Publication Publication Date Title
Yoo et al. A 2 S: automated agriculture system based on WSN
CN101339179B (en) Water quality remote dynamic monitoring system and method for aquiculture
CN101261261B (en) Water environment monitoring system based on ZigBee wireless technology
CN101458518A (en) Remote control system for edible fungus industrialized planting environment
CN102445933A (en) System for monitoring, alarming and managing farmland greenhouses based on Internet of things
CN100493212C (en) Intelligent early warning system for field crop pest and disease disasters
CN101827007A (en) Method and device for interconnecting sensor network and mobile terminal and network connection equipment
CN102647475A (en) Internet of things system and internet of things method for intellectualization of livestock farm
CN202602714U (en) Intelligent greenhouse monitoring system based on internet of things and cloud computing technology
CN201556283U (en) Remote acquisition system structural frame for farmland on-site information
CN101399734A (en) Farm land soil information collecting system and method
CN102981484B (en) Greenhouse intelligent control system based on internet of things
CN204347593U (en) A kind of intelligent greenhouse supervisory system based on technology of Internet of things
CN103048985B (en) Agriculture feelings information integral harvester
CN101661664A (en) Orchard planting monitoring system based on wireless sensor networks and monitoring method thereof
CN103268105A (en) Aquaculture remote-monitoring system based on internet-of-things Android platform
CN101968649B (en) Network type control system for live pig culturing environment and intelligent environment factor control method
CN105830870B (en) A kind of long distance wireless farmland monitoring system and method
CN103905558A (en) Dairy farm wireless monitoring system based on internet of things
CN204731612U (en) A kind of agricultural monitoring system based on cloud platform
CN101969613A (en) Wireless sensor network-based greenhouse group control system and control method thereof
CN102307222B (en) Intelligent greenhouse demonstration measurement and control system based on Internet of things technology
CN203416688U (en) Orchard drop irrigation automatic control device based on ZigBee transmission technology
CN101290238A (en) Agricultural land information monitoring system based on ZigBee network and embedded 3S technology
CN102271422B (en) WSN-based photovoltaic greenhouse monitoring system and construction method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01