CN102307017A - Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device - Google Patents
Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device Download PDFInfo
- Publication number
- CN102307017A CN102307017A CN201110276334A CN201110276334A CN102307017A CN 102307017 A CN102307017 A CN 102307017A CN 201110276334 A CN201110276334 A CN 201110276334A CN 201110276334 A CN201110276334 A CN 201110276334A CN 102307017 A CN102307017 A CN 102307017A
- Authority
- CN
- China
- Prior art keywords
- current
- former limit
- inverter device
- transformer
- conduction mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000003990 capacitor Substances 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 10
- 230000003071 parasitic effect Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 abstract description 16
- 230000005284 excitation Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Inverter Devices (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明涉及一种应用于有源箝位反激式微型光伏并网逆变器装置的控制方法,有源箝位反激式微型光伏并网逆变器装置包括反激变换器和工频极性转换电路。在该装置中,采用电流基准对反激的原边电流峰值进行控制,使其输出半波正弦电流,而其输出电压被电网电压钳位。当瞬时功率较小时,反激控制方法采用定频电流断续与变频电流临界连续相结合的方式。当反激变换器工作于变频电流临界断续模式时,辅助开关管在反激变换器副边电流到零后开通一段时间,该导通时间可由数字芯片精确控制,从而满足在宽范围输出电压以及不同瞬时功率下均能实现漏感能量回馈和主开关管的软开关。可以大大改善全载条件下的效率。
The invention relates to a control method applied to an active clamp flyback micro photovoltaic grid-connected inverter device. The active clamp flyback micro photovoltaic grid-connected inverter device includes a flyback converter and a power frequency pole gender conversion circuit. In this device, the current reference is used to control the peak current of the primary side of the flyback, so that it outputs a half-wave sinusoidal current, and its output voltage is clamped by the grid voltage. When the instantaneous power is small, the flyback control method adopts the combination of constant frequency current discontinuous and variable frequency current critical continuous. When the flyback converter works in the variable frequency current critical discontinuous mode, the auxiliary switch tube is turned on for a period of time after the secondary current of the flyback converter reaches zero. And it can realize leakage inductance energy feedback and soft switching of the main switching tube under different instantaneous powers. Efficiency at full load conditions can be greatly improved.
Description
技术领域 technical field
本发明一种应用于有源箝位反激式微型光伏并网逆变器装置的控制方法The present invention is a control method applied to an active clamp flyback miniature photovoltaic grid-connected inverter device
背景技术 Background technique
对于光伏发电系统,有两个潜在的市场:兆瓦级的大型光伏发电厂和小规模的建筑用和户用的光伏发电系统,微型光伏并网逆变器在后者有广泛的应用前景。For photovoltaic power generation systems, there are two potential markets: megawatt-level large-scale photovoltaic power plants and small-scale building and household photovoltaic power generation systems. Micro photovoltaic grid-connected inverters have broad application prospects in the latter.
直流侧采用反激拓扑的微型光伏并网逆变器,影响其效率的主要因素有变压器的漏感和主开关管的损耗,故需要对两者进行进一步优化。The main factors affecting the efficiency of the micro photovoltaic grid-connected inverter using flyback topology on the DC side are the leakage inductance of the transformer and the loss of the main switching tube, so further optimization of the two is required.
处理变压器的漏感能量,可采用无源缓冲电路和有源缓冲电路。而对于无源缓冲电路,例如RCD缓冲电路或LC缓冲电路,当反激变换器工作于变频控制的临界连续导通模式时,缓冲电路中的无源元件的参数很难整定。To deal with the leakage inductance energy of the transformer, passive snubber circuits and active snubber circuits can be used. For passive snubber circuits, such as RCD snubber circuits or LC snubber circuits, when the flyback converter works in the critical continuous conduction mode controlled by frequency conversion, the parameters of the passive components in the snubber circuit are difficult to tune.
当反激变换器输入输出均直流,且工作于定频模式时,传统的有源钳位技术既可以实现漏感能量的吸收回馈,又可以实现开关管的零电压开关。但是在反激式微型光伏并网逆变器,反激变换器的输出电压被电网电压钳位,故其具有宽范围的输出电压,且工作于变频模式。在这种情况下,模拟控制的钳位电路已很难达到所需要的效果。When the input and output of the flyback converter are both DC and work in the constant frequency mode, the traditional active clamping technology can not only realize the absorption and feedback of leakage inductance energy, but also realize the zero-voltage switching of the switching tube. However, in the flyback micro photovoltaic grid-connected inverter, the output voltage of the flyback converter is clamped by the grid voltage, so it has a wide range of output voltage and works in variable frequency mode. In this case, the clamping circuit controlled by analog has been difficult to achieve the required effect.
发明内容 Contents of the invention
本发明所要解决的技术问题是提供一种应用于有源箝位反激式微型光伏并网逆变器装置的控制方法,在宽范围输出电压以及瞬时功率不断变化的条件下均能实现有钳箝位反激式微型光伏并网逆变器装置的原边主开关管的零电压开关、变压器漏感能量回馈吸收和轻载时的效率提高。为此,本发明采用以下技术方案:The technical problem to be solved by the present invention is to provide a control method applied to an active-clamp flyback miniature photovoltaic grid-connected inverter device, which can realize clamping under the conditions of wide-range output voltage and instantaneous power changes. The zero-voltage switching of the main switching tube on the primary side of the clamp flyback micro-photovoltaic grid-connected inverter device, the energy feedback absorption of the transformer leakage inductance and the efficiency improvement at light load. For this reason, the present invention adopts following technical scheme:
所述有源箝位反激式微型光伏并网逆变器装置包括一个反激变换器和一个工频极性转换电路、控制器,所述控制器用于控制反激变换器和一个工频极性转换电路的工作;The active clamp flyback miniature photovoltaic grid-connected inverter device includes a flyback converter, a power frequency polarity conversion circuit, and a controller, and the controller is used to control the flyback converter and a power frequency pole the operation of sex switching circuits;
所述反激变换器包括:The flyback converter includes:
一个输入端口,接受光伏侧直流输入电压;An input port to accept the DC input voltage of the photovoltaic side;
一个输出端口,输出正弦半波电流,其输出电压被电网电压钳位;One output port, which outputs a sine half-wave current, and its output voltage is clamped by the grid voltage;
一个变压器,所述变压器的原边激磁电流采用峰值电流控制,其激磁电流峰值跟随所述电流基准,将变压器副边输出平均电流调制为正弦半波形状;A transformer, the excitation current of the primary side of the transformer is controlled by peak current, the peak value of the excitation current follows the current reference, and the output average current of the secondary side of the transformer is modulated into a sine half wave shape;
一个原边主开关管,所述原边主开关管与所述变压器的原边绕组串联,当所述原边主开关管导通时,所述变压器存储能量;当所述原边主开关管关断时,所述变压器存储的能量耦合到副边,通过所述工频极性转换电路释放给电网;A primary side main switch tube, the primary side main switch tube is connected in series with the primary winding of the transformer, when the primary side main switch tube is turned on, the transformer stores energy; when the primary side main switch tube When it is turned off, the energy stored in the transformer is coupled to the secondary side, and released to the power grid through the power frequency polarity conversion circuit;
所述反激变换器中设有一个有源钳位电路,所述有源箝位电路包括一个辅助开关管,一个辅助二极管和一个钳位电容,所述辅助开关管与所述辅助二极管并联后再与所述钳位电容构成串联支路,将所述串联支路并联在反激变换器中的变压器原边绕组两端或者原边主开关管两端;An active clamp circuit is provided in the flyback converter, and the active clamp circuit includes an auxiliary switch tube, an auxiliary diode and a clamp capacitor, and after the auxiliary switch tube is connected in parallel with the auxiliary diode Then form a series branch with the clamping capacitor, and connect the series branch in parallel at both ends of the primary side winding of the transformer in the flyback converter or at both ends of the primary side main switch tube;
工频极性转换电路,由四个开关管构成的全桥逆变电路,通过极性转换的方法处理所述反激变换器输出的正弦半波电流,并将其并入电网,实现输出正弦并网电流。Power frequency polarity conversion circuit, a full-bridge inverter circuit composed of four switching tubes, processes the sine half-wave current output by the flyback converter through polarity conversion, and incorporates it into the power grid to realize output sine wave grid current.
进一步,所述变压器的激磁电流在半个工频周期内工作于断续状态与临界连续状态相结合的方式,即所述反激变换器工作模式结合断续导通模式和临界连续导通模式。Further, the excitation current of the transformer works in the mode of combining discontinuous state and critical continuous state within half a power frequency cycle, that is, the working mode of the flyback converter combines discontinuous conduction mode and critical continuous conduction mode .
进一步,获取当前时刻的有源箝位反激式微型光伏并网逆变器装置的输出电压和输入电压的瞬时值、当前时刻电网电压的电角度和电网电压过零信号,结合所述电流基准的峰值,从而得到所述电流基准,包括断续导通模式和临界连续导通模式的电流基准:Further, the instantaneous value of the output voltage and input voltage of the active clamp flyback micro photovoltaic grid-connected inverter device at the current moment, the electrical angle of the grid voltage at the current moment, and the zero-crossing signal of the grid voltage are obtained, and combined with the current reference The peak value, thus obtaining the current reference, including the current reference of discontinuous conduction mode and critical continuous conduction mode:
其中,Io为电流基准的峰值,Vg为电网电压瞬时值(即零电压开关反激式微型光伏并网逆变器装置的输出电压的瞬时值),VPV为光伏侧电压顺时值(即零电压开关反激式微型光伏并网逆变器装置的输入电压的瞬时值),θ为当前时刻的电角度,N为所述变压器的变比,fD为断续导通模式下所述原边主开关管的开关频率。Among them, I o is the peak value of the current reference, V g is the instantaneous value of the grid voltage (that is, the instantaneous value of the output voltage of the zero-voltage switch flyback micro photovoltaic grid-connected inverter device), and V PV is the clockwise value of the photovoltaic side voltage (that is, the instantaneous value of the input voltage of the zero-voltage switch flyback micro photovoltaic grid-connected inverter device), θ is the electrical angle at the current moment, N is the transformation ratio of the transformer, and f D is the discontinuous conduction mode The switching frequency of the main switching tube on the primary side.
进一步,给定一个所述原边主开关管的开关频率阈值,当所述原边主开关管的开关频率高于阈值时,所述反激变换器进入断续导通模式,即所述变压器的激磁电流工作于断续状态,并采用所述断续导通模式的电流基准;当所述原边主开关管的开关频率低于阈值时,反激变换器进入临界连续导通模式,并采用所述断续导通模式的电流基准。Further, given a switching frequency threshold of the primary main switching transistor, when the switching frequency of the primary primary switching transistor is higher than the threshold, the flyback converter enters the discontinuous conduction mode, that is, the transformer The exciting current works in a discontinuous state, and adopts the current reference of the discontinuous conduction mode; when the switching frequency of the main switching tube of the primary side is lower than the threshold value, the flyback converter enters the critical continuous conduction mode, and current reference using the discontinuous conduction mode.
进一步,断续导通模式下,所述原边主开关管的开通由固定的开关周期决定,主开关管的关断由所述断续导通模式的电流基准决定;Further, in the discontinuous conduction mode, the turn-on of the main switch on the primary side is determined by a fixed switching period, and the turn-off of the main switch is determined by the current reference in the discontinuous conduction mode;
临界连续导通模式下,所述原边主开关管的开通由所述辅助开关管的关断决定,即当辅助开关管关断后,经过一个死区时间后开通原边主开关管,所述原边主开关管的关断由所述临界导通模式下的电流基准决定。In the critical continuous conduction mode, the turn-on of the main switch on the primary side is determined by the turn-off of the auxiliary switch, that is, after the auxiliary switch is turned off, the main switch on the primary side is turned on after a dead time. The turn-off of the primary primary switch is determined by the current reference in the critical conduction mode.
进一步,临界连续导通模式下,所述辅助开关管在反激变换器的副边电流到零后开通一段时间,该导通时间由以下公式计算:Further, in the critical continuous conduction mode, the auxiliary switching tube is turned on for a period of time after the secondary current of the flyback converter reaches zero, and the turn-on time is calculated by the following formula:
其中,Lk为所述变压器的原边漏感,Cr为所述原边主开关管的漏源极寄生电容,Kp为所述变压器原边激磁电感与原边漏感之比;Wherein, L k is the primary side leakage inductance of described transformer, C r is the drain-source parasitic capacitance of described primary side main switching tube, K p is the ratio of described transformer primary side excitation inductance and primary side leakage inductance;
控制器获取所述反激变换器的副边电流到零时刻,给出所述辅助开关管的开通信号,同时计算并计数所述导通时间,计数到所述导通时间后给出所述辅助开关管的关断信号。The controller obtains the moment when the secondary side current of the flyback converter reaches zero, gives the turn-on signal of the auxiliary switch tube, calculates and counts the conduction time at the same time, and gives the Auxiliary switch off signal.
进一步,控制器获取电网电压过零点,给出所述工频极性转换电路中四个开关管的工频驱动信号;对管驱动同相,上下管驱动反相。Further, the controller obtains the grid voltage zero-crossing point, and provides the power frequency driving signals of the four switch tubes in the power frequency polarity conversion circuit; the pair of tubes are driven in the same phase, and the upper and lower tubes are driven in reverse phase.
所述控制器可采用数字芯片及其外围电路,它控制反激变换器和工频极性转换电路,使反激变换器和工频极性转换电路按照上述方法工作。The controller can adopt a digital chip and its peripheral circuit, which controls the flyback converter and the power frequency polarity conversion circuit, so that the flyback converter and the power frequency polarity conversion circuit work according to the above method.
本发明的应用于有源钳位反激式微型光伏并网逆变器装置的控制方法,针对在宽范围输出电压以及瞬时功率不断变化的条件下的特殊应用。当瞬时功率较小时,原边主开关管的频率会变得很高,采用定频电流断续导通模式与变频电流临界连续导通模式相结合的方式,大大改善了轻载时的效率;当反激变换器工作于变频电流临界连续导通模式时,辅助开关管在反激变换器副边电流到零后开通一段时间,该导通时间可由数字芯片精确控制,从而满足在宽范围输出电压以及不同瞬时功率下均能实现漏感能量回馈和原边主开关管的软开关。可以大大改善全载条件下的效率。漏感引起的寄生振荡被抑制,电路的EMI特性也可以改善。The control method applied to the active-clamp flyback miniature photovoltaic grid-connected inverter device of the present invention is aimed at the special application under the condition of wide-range output voltage and constant change of instantaneous power. When the instantaneous power is small, the frequency of the main switching tube on the primary side will become very high, and the combination of the fixed frequency current discontinuous conduction mode and the variable frequency current critical continuous conduction mode greatly improves the efficiency at light load; When the flyback converter works in the variable frequency current critical continuous conduction mode, the auxiliary switch tube is turned on for a period of time after the secondary current of the flyback converter reaches zero. The leakage inductance energy feedback and the soft switching of the main switching tube of the primary side can be realized under different voltage and instantaneous power. Efficiency at full load conditions can be greatly improved. The parasitic oscillation caused by the leakage inductance is suppressed, and the EMI characteristics of the circuit can also be improved.
附图说明 Description of drawings
图1为应用本发明控制方法的有源钳位反激式微型光伏并网逆变器装置的结构示意图;Fig. 1 is the structural representation of the active clamp flyback miniature photovoltaic grid-connected inverter device applying the control method of the present invention;
图2为工频周期各信号波形图;Figure 2 is a waveform diagram of each signal in the power frequency cycle;
图3是高频周期各信号波形图;Fig. 3 is each signal wave diagram of high-frequency cycle;
具体实施方式 Detailed ways
以下结合附图对本发明做详细的描述。The present invention will be described in detail below in conjunction with the accompanying drawings.
如图1所示为一种应用本发明控制方法的有源钳位反激式微型光伏并网逆变器的结构示意图。10为有源钳位反激式光伏并网逆变器装置;101为太阳能电池板;102为反激变换器;1021为反激变换器中的有源钳位电路;图103为工频极性转换电路;图104为电网侧滤波电路;图105为FPGA控制电路,也即所述控制器,也即所述;VPV-光伏侧直流输入电压;Vg-电网侧电压;Tr-反激变换器的变压器;Sm-原边主开关管;Sa-辅助开关管;Da-辅助二极管;Cclamp-钳位电容;Ds-反激变换器副边输出整流二极管;S1~S4-极性转换电路的开关管;Gsm-FPGA输出的原边主开关管的驱动信号;Gsa-FPGA输出的辅助开关管的驱动信号;Gs1~Gs4-FPGA输出的极性转换电路中开关管的驱动信号。FIG. 1 is a schematic structural diagram of an active clamp flyback miniature photovoltaic grid-connected inverter applying the control method of the present invention. 10 is an active clamp flyback photovoltaic grid-connected inverter device; 101 is a solar panel; 102 is a flyback converter; 1021 is an active clamp circuit in a flyback converter; Figure 103 is a power frequency pole Figure 104 is the grid side filter circuit; Figure 105 is the FPGA control circuit, that is, the controller, that is, the above; V PV - photovoltaic side DC input voltage; V g - grid side voltage; T r - Transformer of the flyback converter; S m - primary switch tube; S a - auxiliary switch tube; D a - auxiliary diode; C clamp - clamping capacitor; D s - output rectifier diode on the secondary side of the flyback converter; S 1 ~ S 4 - the switch tube of the polarity conversion circuit; G sm - the drive signal of the primary switch tube output by FPGA; G sa - the drive signal of the auxiliary switch tube output by FPGA; G s1 ~ G s4 - the drive signal output by FPGA The driving signal of the switching tube in the polarity conversion circuit.
有源箝位反激式微型光伏并网逆变器装置主要包括太阳能光伏阵列101、反激变换器102、极性转换电路103、电网侧滤波电路104、FPGA控制电路105。The active clamp flyback miniature photovoltaic grid-connected inverter device mainly includes a solar
极性转换电路103中的开关管可以采用四个晶闸管,也可以采用两个晶闸管和两个半导体场效应管。The switch tubes in the
反激变换器102中变压器Tr的原边绕组的同名端与光伏侧直流输入电压的正极相连,变压器Tr的原边绕组的非同名端与原边主开关管Sa的漏极相连,原边主开关管Sa的源极与光伏侧直流输入电压的负极相连,变压器Tr的副边绕组的非同名端与副边输出整流二极管Ds的阳极相连,变压器Tr的副边绕组的同名端与电网侧滤波电路104的一个输入端相连,整流二极管Ds的阴极与电网侧滤波电路104的另一个输入端相连,辅助开关管Sa的源极与变压器Tr的原边绕组的同名端相连,辅助开关管Sa的漏极与钳位电容Cclamp的一端相连,钳位电容Cclamp的另一端与原边主开关管Sa的漏极相连。In the
FPGA控制电路105分别采集当前时刻的零电压开关反激式微型光伏并网逆变器装置的输出电压和输入电压的瞬时值、当前时刻电网电压的电角度和电网电压过零信号,结合由MPPT算法得到的电流基准的峰值,按照公式The
得到电流基准的数字信号,由FPGA控制电路105输出,并经数模转换后送给反激变换器,得到得电流基准波形如图2所示。电流基准与电网电压同步,从而确保并网电流能够与电网电压同相,省去了电流环,简化了控制。The obtained digital signal of the current reference is output by the
对原边电流采集,如图1所示,采集到的信号作为比较器的正输入,FPGA控制电路105输出的电流基准信号作为比较器的负输入,两者进行比较后得到原边主开关管Sm的关断信号,如图2所示波形图。原边主开关管Sm的开通由以下两种情况决定:For primary side current acquisition, as shown in Figure 1, the collected signal is used as the positive input of the comparator, and the current reference signal output by the
(1)FPGA控制电路105对原边主开关管的Sm的开关周期进行计数,当其开关频率超过最大允许开关频率(阈值)后,反激变换器102进入定频电流断续导通模式,此时,反激变换器102的开关周期被限定在固定值,FPGA控制器105对原边主开关管Sm的开关周期进行计数,计数到指定的开关周期,原边主开关管Sm导通。(1) The
(2)原边主开关管Sm的开关频率低于最大允许开关频率(阈值)时,反激变换器102工作于变频电流临界连续导通模式,在辅助开关管Sa关断后,延时一段死区时间后,开通主开关管Sm。(2) When the switching frequency of the main switching tube S m on the primary side is lower than the maximum allowable switching frequency (threshold), the
反激变换器102这两种工作模式的切换点随光伏侧输入功率变化而变化,这由FPGA控制器105编程实现。The switching point of the two working modes of the
当反激变换器102工作于变频电流临界连续模式时,辅助开关管Sa开始工作,采样副边电流与零比较,当副边电流到零,FPGA控制器105的相应输入信号置“1”,FPGA控制器105接收到置“1”信号后,开通辅助开关管Sa,辅助开关管Sa的开通时间由FPGA内部计算得到,计数其开通时间Tau,关断辅助开关管Sa。辅助开关管Sa的开通时间Tau的计算公式如下When the
FPGA控制电路105采集电网电压过零点,给出工频极性转换电路103中四个开关管的工频驱动信号,对管驱动同相,上下管驱动反相。The
反激变换器102工作于临界连续导通模式时,有源钳位电路开始工作用来抑制寄生参数引起的漏极电压尖峰、吸收并回馈漏感能量以及实现主开关管的零电压开关,从而提高系统的效率,同时电路的EMI特性也可以改善。具体工作过程如图3所示。When the
t0时刻,主开关管Sm导通,辅助开关管Sa处于关断状态,原边电流上升,能量存储在变压器的励磁电感中。At time t 0 , the main switching tube S m is turned on, the auxiliary switching tube S a is in the off state, the primary current rises, and the energy is stored in the excitation inductance of the transformer.
t1时刻,原边电流到达电流基准,主开关管Sm关断,此时,原边电流给谐振电容Cr充电,因为谐振电容很小,主开关管的漏源极电压线性增长。At time t1 , the primary current reaches the current reference, and the main switch S m is turned off. At this time, the primary current charges the resonant capacitor C r . Because the resonant capacitor is small, the drain-source voltage of the main switch increases linearly.
t2~t3时间段,辅助开关管Sa的反并二极管导通,储存在漏感Lk中的能量,被钳位电容Cclamp吸收,抑制了漏极电压尖峰,改善了电路的EMI特性。当励磁电感Lm两端电压达到副边电压耦合到原边的电压Vgsin(ωt)/N时,副边整流二极管Ds导通。During the period from t 2 to t 3 , the anti-parallel diode of the auxiliary switch tube S a is turned on, and the energy stored in the leakage inductance L k is absorbed by the clamp capacitor C clamp , which suppresses the drain voltage spike and improves the EMI of the circuit characteristic. When the voltage at both ends of the excitation inductance L m reaches the voltage V g sin(ωt)/N that the secondary side voltage is coupled to the primary side, the secondary side rectifier diode D s is turned on.
t3时刻,原边电流下降至零,变压器中存储的能量充分耦合到反激变换器的副边。At time t3 , the primary current drops to zero, and the energy stored in the transformer is fully coupled to the secondary side of the flyback converter.
t4时刻,反激变换器的副边电流下降至零,此时,开通辅助开关管,钳位电容电压对漏感进行反向励磁,而次级绕组正向偏置,副边整流二极管持续导通,钳位电容之前吸收的漏感能量耦合到副边。在该阶段,漏感电流和励磁电感电流均反向增长,为实现主开关管的零电压开通做好准备。At time t 4 , the secondary current of the flyback converter drops to zero. At this time, the auxiliary switch is turned on, the clamp capacitor voltage reversely excites the leakage inductance, and the secondary winding is forward biased, and the secondary rectifier diode continues When it is turned on, the leakage inductance energy absorbed by the clamp capacitor is coupled to the secondary side. At this stage, both the leakage inductance current and the excitation inductance current increase in reverse, making preparations for the zero-voltage turn-on of the main switch.
t5时刻,关断辅助开关管,谐振电容Cr借助负的漏感电流放电,该阶段,漏感电流小于励磁电感电流,故副边整流二极管仍然处于导通状态。At time t5 , the auxiliary switching tube is turned off, and the resonant capacitor C r is discharged with the help of the negative leakage inductance current. At this stage, the leakage inductance current is smaller than the excitation inductance current, so the secondary rectifier diode is still in the conduction state.
t6~t7阶段,由于漏感很小,漏感电流上升至励磁电感电流,副边整流二极管关断,谐振电容通过漏感和励磁电感放电。From t 6 to t 7 , because the leakage inductance is very small, the leakage inductance current rises to the excitation inductance current, the secondary rectifier diode is turned off, and the resonant capacitor is discharged through the leakage inductance and excitation inductance.
t7时刻,漏源极电压下降至零,主开关管的反并二极管导通,在励磁电感电流变换极性之前开通主开关管即可实现主开关管的零电压开通。At time t7 , the drain-source voltage drops to zero, and the anti-parallel diode of the main switch is turned on, and the zero-voltage turn-on of the main switch can be realized by turning on the main switch before the polarity of the excitation inductor current changes.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110276334.8A CN102307017B (en) | 2011-09-16 | 2011-09-16 | Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110276334.8A CN102307017B (en) | 2011-09-16 | 2011-09-16 | Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102307017A true CN102307017A (en) | 2012-01-04 |
CN102307017B CN102307017B (en) | 2014-09-10 |
Family
ID=45380839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110276334.8A Active CN102307017B (en) | 2011-09-16 | 2011-09-16 | Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102307017B (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102437743A (en) * | 2012-01-06 | 2012-05-02 | 无锡联动太阳能科技有限公司 | Boost conversion circuit, solar inverter and control method thereof |
CN102447396A (en) * | 2012-01-06 | 2012-05-09 | 无锡联动太阳能科技有限公司 | Transformer with high set-up ratio, solar inverter and solar battery system |
CN102545194A (en) * | 2012-02-21 | 2012-07-04 | 浙江昱能光伏科技集成有限公司 | Protection circuit and protection method of power frequency full-bridge circuit of grid-connected photovoltaic inverter |
CN102570891A (en) * | 2012-01-16 | 2012-07-11 | 浙江大学 | Flyback photovoltaic grid-connected inverter adopting interleaving parallel-connection active clamping technology |
CN102594180A (en) * | 2012-01-21 | 2012-07-18 | 浙江昱能光伏科技集成有限公司 | Control method for switch tube of photovoltaic grid-connected staggered shunt-wound flyback inverter |
CN102638164A (en) * | 2012-05-03 | 2012-08-15 | 无锡联动太阳能科技有限公司 | High boost circuit, solar inverter and solar cell system |
CN102739101A (en) * | 2012-06-20 | 2012-10-17 | 东南大学 | Forward-flyback inverter |
CN102904454A (en) * | 2012-10-11 | 2013-01-30 | 南京航空航天大学 | High Efficiency Isolated DC Converter System in Photovoltaic Power Generation System |
CN103236780A (en) * | 2013-05-03 | 2013-08-07 | 顾选祥 | PWM (pulse-width modulation) module capable of alternatively generating interruption mode and critical mode in flyback topology |
CN103327681A (en) * | 2012-03-21 | 2013-09-25 | 株式会社动运 | Light driving apparatus and method thereof |
CN103326602A (en) * | 2013-06-05 | 2013-09-25 | 无锡天惠塑机有限公司 | Inverter |
CN103346677A (en) * | 2013-06-05 | 2013-10-09 | 无锡天惠塑机有限公司 | Dynamic duty cycle compensation device |
CN103401463A (en) * | 2013-07-25 | 2013-11-20 | 天津大学 | Miniature photovoltaic grid-connected inverter with optimized DC (Direct Current) bus capacitor and control method |
CN104393744A (en) * | 2014-12-05 | 2015-03-04 | 郭智峰 | Digitalized peak current control device |
CN104506066A (en) * | 2015-01-05 | 2015-04-08 | 中国人民解放军国防科学技术大学 | New miniature optical storage converter |
CN104796022A (en) * | 2015-05-08 | 2015-07-22 | 阳光电源股份有限公司 | Power generation system and control method thereof |
CN105140908A (en) * | 2015-09-29 | 2015-12-09 | 中国科学院电工研究所 | Zero-voltage soft-switching control method for photovoltaic high-voltage DC transmission system |
CN105141137A (en) * | 2015-09-17 | 2015-12-09 | 无锡硅动力微电子股份有限公司 | Control circuit used for switch power supply converter |
CN105553281A (en) * | 2016-02-04 | 2016-05-04 | 盐城工学院 | Peak current digital control system and method for flyback photovoltaic grid connected micro-inverter |
CN105896991A (en) * | 2016-05-25 | 2016-08-24 | 广州金升阳科技有限公司 | Bidirectional converter |
TWI552502B (en) * | 2015-07-03 | 2016-10-01 | 台達電子工業股份有限公司 | Control method of inverter circuit |
CN106059313A (en) * | 2016-07-19 | 2016-10-26 | 深圳南云微电子有限公司 | Active clamp flyback circuit and control method thereof |
CN106169871A (en) * | 2015-05-20 | 2016-11-30 | 半导体元件工业有限责任公司 | Switched-mode power supply |
CN106877724A (en) * | 2017-03-20 | 2017-06-20 | 南京航空航天大学 | A Method of Inverter Delay Compensation Based on Critical Current Control |
CN107147296A (en) * | 2017-05-31 | 2017-09-08 | 青岛大学 | An isolated DC‑DC boost converter with pull-down active clamping branch |
CN107565838A (en) * | 2017-08-25 | 2018-01-09 | 国网江苏省电力公司电力科学研究院 | A kind of change switching frequency control method for flyback inverter |
CN107749716A (en) * | 2017-10-27 | 2018-03-02 | 杰华特微电子(杭州)有限公司 | A kind of flyback active clamp circuit and its control method |
CN107786092A (en) * | 2016-08-31 | 2018-03-09 | 台达电子工业股份有限公司 | Converter and control method thereof |
CN108282087A (en) * | 2017-01-06 | 2018-07-13 | 康舒科技股份有限公司 | Active clamping converter and control method thereof |
CN108736730A (en) * | 2017-04-18 | 2018-11-02 | 立锜科技股份有限公司 | Flyback power conversion circuit and conversion control circuit therein |
CN109391129A (en) * | 2018-09-25 | 2019-02-26 | 安克创新科技股份有限公司 | Active-clamp transformation system |
US10277137B1 (en) | 2018-02-12 | 2019-04-30 | Chicony Power Technology Co., Ltd. | Power conversion control circuit |
CN109713904A (en) * | 2017-10-26 | 2019-05-03 | 立锜科技股份有限公司 | Flyback power-switching circuit and conversion control circuit therein and control method |
CN110365214A (en) * | 2018-04-09 | 2019-10-22 | 意法半导体股份有限公司 | The control of active clamp flyback converter is carried out using reduced electric current |
CN110601253A (en) * | 2019-08-12 | 2019-12-20 | 南通大学 | DCM flyback photovoltaic micro-inverter grid-connected current harmonic suppression method |
US10651746B2 (en) | 2016-11-07 | 2020-05-12 | Delta Electronics, Inc. | Synchronous rectifier control for a flyback converter with an active clamp |
US10651749B2 (en) | 2016-11-07 | 2020-05-12 | Delta Electronics, Inc. | Flyback converter with a passive clamp |
CN111525662A (en) * | 2020-04-10 | 2020-08-11 | 华为技术有限公司 | Charging device, control method thereof and charging system |
EP3734821A4 (en) * | 2017-12-29 | 2020-12-09 | Vertiv Corporation | Power factor correction circuit control method and device |
CN112086970A (en) * | 2020-09-21 | 2020-12-15 | 广东电网有限责任公司 | Configuration method and device of energy storage power station, electronic equipment and storage medium |
CN112886836A (en) * | 2021-01-18 | 2021-06-01 | 浙江大学 | Flyback micro inverter analog control circuit and peak current control method |
CN112928925A (en) * | 2021-02-01 | 2021-06-08 | 杭州电子科技大学 | Active clamping flyback converter and implementation method thereof |
CN112953266A (en) * | 2021-03-23 | 2021-06-11 | 山东大学 | Method and system for controlling running state of asymmetric isolated AC-DC converter |
CN113078825A (en) * | 2021-05-20 | 2021-07-06 | 国网湖南省电力有限公司 | Switching tube resonant circuit capable of improving efficiency of flyback power supply and flyback power supply |
CN113852289A (en) * | 2021-09-16 | 2021-12-28 | 中北大学 | Multi-tap transformer inductor sectional configuration and control method of BCM flyback inverter |
CN114785168A (en) * | 2022-05-10 | 2022-07-22 | 西南交通大学 | A Maximum Power Tracking Method for Inductive Energy Harvesting System Based on Impedance Matching |
CN118381360A (en) * | 2024-06-26 | 2024-07-23 | 威胜能源技术股份有限公司 | Staggered flyback micro-inverter power limiting method, medium and terminal |
CN118759420A (en) * | 2024-09-09 | 2024-10-11 | 浙江大学 | A method for diagnosing open-circuit faults in converters based on current half-wave characteristics |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001275350A (en) * | 2000-03-24 | 2001-10-05 | Sony Corp | Switching power circuit |
CN101841165A (en) * | 2010-05-11 | 2010-09-22 | 英伟力新能源科技(上海)有限公司 | Soft switching control method for flyback single-stage photovoltaic grid-connected inverter |
CN201937281U (en) * | 2010-12-12 | 2011-08-17 | 珠海兴业新能源科技有限公司 | Active clamp-type solar micro inverter |
-
2011
- 2011-09-16 CN CN201110276334.8A patent/CN102307017B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001275350A (en) * | 2000-03-24 | 2001-10-05 | Sony Corp | Switching power circuit |
CN101841165A (en) * | 2010-05-11 | 2010-09-22 | 英伟力新能源科技(上海)有限公司 | Soft switching control method for flyback single-stage photovoltaic grid-connected inverter |
CN201937281U (en) * | 2010-12-12 | 2011-08-17 | 珠海兴业新能源科技有限公司 | Active clamp-type solar micro inverter |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102447396A (en) * | 2012-01-06 | 2012-05-09 | 无锡联动太阳能科技有限公司 | Transformer with high set-up ratio, solar inverter and solar battery system |
CN102437743B (en) * | 2012-01-06 | 2015-03-11 | 无锡联动太阳能科技有限公司 | Boost conversion circuit, solar inverter and control method thereof |
CN102437743A (en) * | 2012-01-06 | 2012-05-02 | 无锡联动太阳能科技有限公司 | Boost conversion circuit, solar inverter and control method thereof |
CN102570891A (en) * | 2012-01-16 | 2012-07-11 | 浙江大学 | Flyback photovoltaic grid-connected inverter adopting interleaving parallel-connection active clamping technology |
CN102570891B (en) * | 2012-01-16 | 2014-08-13 | 浙江昱能光伏科技集成有限公司 | Flyback photovoltaic grid-connected inverter adopting interleaving parallel-connection active clamping technology |
CN102594180A (en) * | 2012-01-21 | 2012-07-18 | 浙江昱能光伏科技集成有限公司 | Control method for switch tube of photovoltaic grid-connected staggered shunt-wound flyback inverter |
CN102594180B (en) * | 2012-01-21 | 2014-05-21 | 浙江昱能科技有限公司 | Control method for switch tube of photovoltaic grid-connected staggered shunt-wound flyback inverter |
CN102545194A (en) * | 2012-02-21 | 2012-07-04 | 浙江昱能光伏科技集成有限公司 | Protection circuit and protection method of power frequency full-bridge circuit of grid-connected photovoltaic inverter |
CN103327681A (en) * | 2012-03-21 | 2013-09-25 | 株式会社动运 | Light driving apparatus and method thereof |
CN102638164B (en) * | 2012-05-03 | 2015-01-21 | 无锡联动太阳能科技有限公司 | High boost circuit, solar inverter and solar cell system |
CN102638164A (en) * | 2012-05-03 | 2012-08-15 | 无锡联动太阳能科技有限公司 | High boost circuit, solar inverter and solar cell system |
CN102739101A (en) * | 2012-06-20 | 2012-10-17 | 东南大学 | Forward-flyback inverter |
CN102904454A (en) * | 2012-10-11 | 2013-01-30 | 南京航空航天大学 | High Efficiency Isolated DC Converter System in Photovoltaic Power Generation System |
CN102904454B (en) * | 2012-10-11 | 2015-03-25 | 南京航空航天大学 | Efficient insulation DC (direct-current) converter system in photovoltaic power generation system |
CN103236780A (en) * | 2013-05-03 | 2013-08-07 | 顾选祥 | PWM (pulse-width modulation) module capable of alternatively generating interruption mode and critical mode in flyback topology |
CN103326602A (en) * | 2013-06-05 | 2013-09-25 | 无锡天惠塑机有限公司 | Inverter |
CN103346677A (en) * | 2013-06-05 | 2013-10-09 | 无锡天惠塑机有限公司 | Dynamic duty cycle compensation device |
CN103326602B (en) * | 2013-06-05 | 2015-12-23 | 江苏高博智融科技有限公司 | A kind of inverter |
CN103346677B (en) * | 2013-06-05 | 2016-05-25 | 江苏高博智融科技有限公司 | A kind of Dynamic Duty Cycle compensation arrangement |
CN103401463A (en) * | 2013-07-25 | 2013-11-20 | 天津大学 | Miniature photovoltaic grid-connected inverter with optimized DC (Direct Current) bus capacitor and control method |
CN104393744A (en) * | 2014-12-05 | 2015-03-04 | 郭智峰 | Digitalized peak current control device |
CN104393744B (en) * | 2014-12-05 | 2017-09-29 | 郭智峰 | Digitize peak current control device |
CN104506066B (en) * | 2015-01-05 | 2016-03-30 | 中国人民解放军国防科学技术大学 | A miniature optical-storage converter |
CN104506066A (en) * | 2015-01-05 | 2015-04-08 | 中国人民解放军国防科学技术大学 | New miniature optical storage converter |
CN104796022A (en) * | 2015-05-08 | 2015-07-22 | 阳光电源股份有限公司 | Power generation system and control method thereof |
CN104796022B (en) * | 2015-05-08 | 2017-10-17 | 阳光电源股份有限公司 | A kind of electricity generation system and its control method |
CN106169871B (en) * | 2015-05-20 | 2020-11-03 | 半导体元件工业有限责任公司 | Switched mode power supply |
CN106169871A (en) * | 2015-05-20 | 2016-11-30 | 半导体元件工业有限责任公司 | Switched-mode power supply |
TWI552502B (en) * | 2015-07-03 | 2016-10-01 | 台達電子工業股份有限公司 | Control method of inverter circuit |
CN105141137A (en) * | 2015-09-17 | 2015-12-09 | 无锡硅动力微电子股份有限公司 | Control circuit used for switch power supply converter |
CN105141137B (en) * | 2015-09-17 | 2017-10-31 | 无锡硅动力微电子股份有限公司 | Control circuit for switching power converters |
CN105140908A (en) * | 2015-09-29 | 2015-12-09 | 中国科学院电工研究所 | Zero-voltage soft-switching control method for photovoltaic high-voltage DC transmission system |
CN105553281B (en) * | 2016-02-04 | 2018-01-19 | 盐城工学院 | The peak point current numerical control system and method for the grid-connected micro- inverter of inverse-excitation type |
CN105553281A (en) * | 2016-02-04 | 2016-05-04 | 盐城工学院 | Peak current digital control system and method for flyback photovoltaic grid connected micro-inverter |
CN105896991B (en) * | 2016-05-25 | 2018-05-29 | 广州金升阳科技有限公司 | A kind of reversible transducer |
CN105896991A (en) * | 2016-05-25 | 2016-08-24 | 广州金升阳科技有限公司 | Bidirectional converter |
CN106059313A (en) * | 2016-07-19 | 2016-10-26 | 深圳南云微电子有限公司 | Active clamp flyback circuit and control method thereof |
CN106059313B (en) * | 2016-07-19 | 2018-05-29 | 深圳南云微电子有限公司 | The circuit of reversed excitation and its control method of active clamp |
CN107786092A (en) * | 2016-08-31 | 2018-03-09 | 台达电子工业股份有限公司 | Converter and control method thereof |
US10651746B2 (en) | 2016-11-07 | 2020-05-12 | Delta Electronics, Inc. | Synchronous rectifier control for a flyback converter with an active clamp |
US10651749B2 (en) | 2016-11-07 | 2020-05-12 | Delta Electronics, Inc. | Flyback converter with a passive clamp |
CN108282087B (en) * | 2017-01-06 | 2019-07-12 | 康舒科技股份有限公司 | Active clamping converter and control method thereof |
CN108282087A (en) * | 2017-01-06 | 2018-07-13 | 康舒科技股份有限公司 | Active clamping converter and control method thereof |
CN106877724A (en) * | 2017-03-20 | 2017-06-20 | 南京航空航天大学 | A Method of Inverter Delay Compensation Based on Critical Current Control |
CN108736730A (en) * | 2017-04-18 | 2018-11-02 | 立锜科技股份有限公司 | Flyback power conversion circuit and conversion control circuit therein |
CN108736730B (en) * | 2017-04-18 | 2020-09-01 | 立锜科技股份有限公司 | Flyback power conversion circuit and conversion control circuit therein |
CN107147296A (en) * | 2017-05-31 | 2017-09-08 | 青岛大学 | An isolated DC‑DC boost converter with pull-down active clamping branch |
CN107565838B (en) * | 2017-08-25 | 2019-08-23 | 国网江苏省电力公司电力科学研究院 | A kind of change switching frequency control method for flyback inverter |
CN107565838A (en) * | 2017-08-25 | 2018-01-09 | 国网江苏省电力公司电力科学研究院 | A kind of change switching frequency control method for flyback inverter |
CN109713904A (en) * | 2017-10-26 | 2019-05-03 | 立锜科技股份有限公司 | Flyback power-switching circuit and conversion control circuit therein and control method |
CN109713904B (en) * | 2017-10-26 | 2020-11-24 | 立锜科技股份有限公司 | Flyback power conversion circuit and conversion control circuit and control method therein |
CN107749716A (en) * | 2017-10-27 | 2018-03-02 | 杰华特微电子(杭州)有限公司 | A kind of flyback active clamp circuit and its control method |
CN107749716B (en) * | 2017-10-27 | 2023-06-23 | 杰华特微电子股份有限公司 | Flyback active clamp circuit and control method thereof |
EP3734821A4 (en) * | 2017-12-29 | 2020-12-09 | Vertiv Corporation | Power factor correction circuit control method and device |
US10277137B1 (en) | 2018-02-12 | 2019-04-30 | Chicony Power Technology Co., Ltd. | Power conversion control circuit |
CN110365214A (en) * | 2018-04-09 | 2019-10-22 | 意法半导体股份有限公司 | The control of active clamp flyback converter is carried out using reduced electric current |
CN110365214B (en) * | 2018-04-09 | 2023-11-10 | 意法半导体股份有限公司 | Active clamp flyback converter control with reduced current |
CN109391129A (en) * | 2018-09-25 | 2019-02-26 | 安克创新科技股份有限公司 | Active-clamp transformation system |
CN110601253A (en) * | 2019-08-12 | 2019-12-20 | 南通大学 | DCM flyback photovoltaic micro-inverter grid-connected current harmonic suppression method |
CN111525662A (en) * | 2020-04-10 | 2020-08-11 | 华为技术有限公司 | Charging device, control method thereof and charging system |
EP4102677A4 (en) * | 2020-04-10 | 2023-07-26 | Huawei Digital Power Technologies Co., Ltd. | CHARGING APPARATUS, ITS CONTROL METHOD AND CHARGING SYSTEM |
CN112086970A (en) * | 2020-09-21 | 2020-12-15 | 广东电网有限责任公司 | Configuration method and device of energy storage power station, electronic equipment and storage medium |
CN112886836B (en) * | 2021-01-18 | 2022-04-12 | 浙江大学 | Flyback micro inverter analog control circuit and peak current control method |
CN112886836A (en) * | 2021-01-18 | 2021-06-01 | 浙江大学 | Flyback micro inverter analog control circuit and peak current control method |
CN112928925B (en) * | 2021-02-01 | 2022-05-17 | 杭州电子科技大学 | An active clamp flyback converter and its realization method |
CN112928925A (en) * | 2021-02-01 | 2021-06-08 | 杭州电子科技大学 | Active clamping flyback converter and implementation method thereof |
CN112953266B (en) * | 2021-03-23 | 2022-04-08 | 山东大学 | Method and system for controlling running state of asymmetric isolated AC-DC converter |
CN112953266A (en) * | 2021-03-23 | 2021-06-11 | 山东大学 | Method and system for controlling running state of asymmetric isolated AC-DC converter |
CN113078825A (en) * | 2021-05-20 | 2021-07-06 | 国网湖南省电力有限公司 | Switching tube resonant circuit capable of improving efficiency of flyback power supply and flyback power supply |
CN113852289B (en) * | 2021-09-16 | 2023-05-23 | 中北大学 | Multi-tap transformer inductance sectional configuration and control method of BCM flyback inverter |
CN113852289A (en) * | 2021-09-16 | 2021-12-28 | 中北大学 | Multi-tap transformer inductor sectional configuration and control method of BCM flyback inverter |
CN114785168A (en) * | 2022-05-10 | 2022-07-22 | 西南交通大学 | A Maximum Power Tracking Method for Inductive Energy Harvesting System Based on Impedance Matching |
CN118381360A (en) * | 2024-06-26 | 2024-07-23 | 威胜能源技术股份有限公司 | Staggered flyback micro-inverter power limiting method, medium and terminal |
CN118759420A (en) * | 2024-09-09 | 2024-10-11 | 浙江大学 | A method for diagnosing open-circuit faults in converters based on current half-wave characteristics |
CN118759420B (en) * | 2024-09-09 | 2024-11-12 | 浙江大学 | A method for diagnosing open-circuit faults in converters based on current half-wave characteristics |
Also Published As
Publication number | Publication date |
---|---|
CN102307017B (en) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102307017B (en) | Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device | |
CN110768549B (en) | A single-phase zero-voltage soft-switching charger topology and its modulation method | |
CN108900100B (en) | A kind of single-phase high efficiency high frequency isolated form rectifier | |
CN204696926U (en) | A kind of adjustable compression set LLC resonant converter frequently | |
CN109921653B (en) | A single-phase power electronic transformer topology structure and its control method | |
CN106849673B (en) | A kind of zero current combined type resonance three-level DC converter and its control method | |
CN102570891A (en) | Flyback photovoltaic grid-connected inverter adopting interleaving parallel-connection active clamping technology | |
CN104980037B (en) | A kind of secondary adjusting type determines frequency controlled resonant converter and its control method | |
CN101847936B (en) | Soft switching full-bridge direct-current converter with lag leg connected with auxiliary network in parallel | |
CN103501109B (en) | There is converter bridge arm circuit and the converter of energy active feedback absorption loop | |
CN105048490A (en) | Low current stress photovoltaic micro inverter and digital control device associated with the same | |
CN105896993A (en) | High-gain isolation type direct-current converter for multi-unit diode capacitor network | |
CN114285286B (en) | A single-stage zero-current switching full-bridge step-up DC converter and its control method | |
CN102447396A (en) | Transformer with high set-up ratio, solar inverter and solar battery system | |
CN106230264A (en) | A kind of high-efficient single direction LLC resonance DC DC translation circuit topological structure | |
CN107979283A (en) | cascade boost converter based on asymmetric boosting unit | |
CN107086785A (en) | A Soft-switching Implementation Method of Single-phase High-Gain Boost Converter | |
CN116885968A (en) | A microinverter topology based on a novel bidirectional active clamp flyback converter | |
CN110233575A (en) | Five element resonance networks of one kind and converter | |
CN109698627B (en) | Full-bridge DC/DC converter based on switched capacitor and modulation strategy thereof | |
CN106505869A (en) | A hybrid resonant full-bridge converter and control method for new energy DC grid-connected | |
CN105871219B (en) | A kind of auxiliary tube voltage clamp bit-type Sofe Switch recommends DC converter | |
CN105281569A (en) | Single-phase high-gain boost converter | |
CN101604916A (en) | Zero-Voltage Switching Full-Bridge DC Converter Based on π-type Auxiliary Network | |
CN103888013A (en) | Minitype inverter based on high-frequency alternating-current voltage reduction theory and digital control device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190214 Address after: 314006 Building 3, No. 1, Asia-Pacific Road (Jiaxing Science and Technology City), Nanhu District, Jiaxing City, Zhejiang Province Patentee after: Zhejiang Yuneng Technology Co.,Ltd. Address before: 310027 No. 38, Zhejiang Road, Hangzhou, Zhejiang, Xihu District Patentee before: Zhejiang University |
|
TR01 | Transfer of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device Effective date of registration: 20191014 Granted publication date: 20140910 Pledgee: Bank of Jiaxing science and technology branch of Limited by Share Ltd. Pledgor: Zhejiang Yuneng Technology Co.,Ltd. Registration number: Y2019330000114 |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 3 / F, building 1, No. 1, Asia Pacific Road (Jiaxing Science and technology city), Nanhu District, Jiaxing City, Zhejiang Province Patentee after: Yuneng Technology Co.,Ltd. Address before: 314006 Building 3, No. 1, Asia-Pacific Road (Jiaxing Science and Technology City), Nanhu District, Jiaxing City, Zhejiang Province Patentee before: Zhejiang Yuneng Technology Co.,Ltd. |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20140910 Pledgee: Bank of Jiaxing science and technology branch of Limited by Share Ltd. Pledgor: Zhejiang Yuneng Technology Co.,Ltd. Registration number: Y2019330000114 |