CN102305923A - 微型机器人集群的相对定位方法 - Google Patents

微型机器人集群的相对定位方法 Download PDF

Info

Publication number
CN102305923A
CN102305923A CN201110215363A CN201110215363A CN102305923A CN 102305923 A CN102305923 A CN 102305923A CN 201110215363 A CN201110215363 A CN 201110215363A CN 201110215363 A CN201110215363 A CN 201110215363A CN 102305923 A CN102305923 A CN 102305923A
Authority
CN
China
Prior art keywords
microrobot
robot
cluster
minitype
relative positioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110215363A
Other languages
English (en)
Inventor
陈佳品
毛玲
张大伟
李振波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201110215363A priority Critical patent/CN102305923A/zh
Publication of CN102305923A publication Critical patent/CN102305923A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

一种微型机器人集群的相对定位方法,集群中每一微型机器人均安装有信号发送器和接收器以及角度测量器,集群中任一微型机器人Ri通过自身发送信号被邻居机器人Rj接收到,从而搜索到邻居机器人Rj,并通过调整自身方向至邻居机器人Rj接收到的信号最强;然后微行机器人Ri保持原地不动,邻居机器人Rj重复微型机器人Ri前述的动作;当微型机器人Ri和邻居机器人Rj互相搜索到对方且均调整至彼此接收到的信号最强的位置,此时,通过读取两个微型机器人Ri、Rj的接收器上的值获得彼此之间的距离,通过读取角度测量器获得彼此的方向角,完成定位。该方法针对微型机器人的特点进行定位,精度高、没有积累误差、分布式、快速和可扩展等。

Description

微型机器人集群的相对定位方法
技术领域
本发明涉及一种微型机器人集群,更具体的说,涉及一种微型机器人集群相对定位的方法。 
背景技术
随着微机电系统(MEMS)技术、计算机技术、无线通信等技术的进步,尤其是MEMS技术的发展,推动着微型机器人发展和应用。但机器人微型化以后,个体移动微型机器人执行复杂任务的能力大大降低,人们受到自然界生物如蜜蜂、蚂蚁等群体的启发,为保证微型移动机器人具有执行复杂任务的能力,可以采用微型机器人集群共同完成复杂的任务。由于集群机器人个体成员的空间分布性,要求集群机器人在协作执行特定任务时对社会成员同时进行定位。从个体层面上说,机器人不仅要具备完备的关于自身的位置知识,而且要求具备关于时变集群邻居机器人的位置信息即邻居机器人之间的相对定位。具有相对定位能力对集群机器人完成一些任务是必须的,例如机器人共同搬运一个物体、搜索营救、覆盖任务等。对微型集群机器人而言,相对定位方法是其关键技术之一。 
对现有技术的文献检索发现,当前存在很少的集群机器人相对定位方法,文献Jim Puge等人在IEEE TRANSACTIONS ON MECHATRONICS(IEEE的机械会刊杂志)2009年发表的《A Fast Onboard Relative Positioning Module for Multirobot Systems》(一种快速多机器人板上相对定位系统)和Rivard等人在Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on Digital Object Identifier(机器人和自动化、IEEE2008关于数字目标识别会议) 发表的《Ultrasonic Relative Positioning for Multi-Robot Systems》(多机器人的超声相对定位系统)。以上两文所涉及的对象都是相对比较大机器人集群,所采用的是多个尺寸比较大红外传感定位和超声定位方法都很难应用到尺寸在数十个立方厘米之内的微型机器人机器上。 
发明内容
本发明针对现有技术存在的上述不足,提供一种微型机器人集群的相对定位方法。该方法针对微型机器人的特点进行定位,精度高、没有积累误差、分布式、快速和可扩展等。 
本发明是通过如下技术方案实现的: 
一种微型机器人集群的相对定位方法,其特征在于:集群中每一微型机器人均安装有信号发送器和接收器以及角度测量器,集群中任一微型机器人Ri通过自身发送信号被邻居机器人Rj接收到,从而搜索到邻居机器人Rj,并通过调整自身方向至邻居机器人Rj接收到的信号最强;然后微型机器人Ri保持原地不动,邻居机器人Rj重复微型机器人Ri前述的动作;当微型机器人Ri和邻居机器人Rj互相搜索到对方且均调整至彼此接收到的信号最强的位置,此时,通过读取两个微型机器人Ri、Rj的接收器上的值获得彼此之间的距离,通过读取角度测量器获得彼此的方向角,完成定位。
所述信号为红外信号,所述信号发送器和接收器为红外传感器,其中红外接收传感器安装在微型机器人的旋转中心以防止在微型机器人旋转过程中发生移位。 
所述角度测量器是采用双轴磁阻传感器,所述双轴磁阻传感器的Y方向与所述红外发送传感器的中心轴以及所述红外接收传感器的中心轴位于同一直线上。 
所述微型机器人Ri通过在原地±180°自身旋转去搜索微型机器人Rj,直到微型机器人Rj接收到了微型机器人Ri的红外发送信号。 
通过读取两个微型机器人Ri、Rj上的接收器的最大信号强度值,并对照信号强度值与距离表,得到两个微型机器人Ri、Rj各自测量的彼此之间的相对距离,然后取该两个相对距离的平均值,即得到两个微型机器人Ri、Rj之间的距离。 
两个微型机器人Ri、Rj分别读取各自磁阻传感器上的值,其中,微型机器人Ri上的磁阻传感器的值是微型机器人Rj相对于微型机器人Ri的方向,微型机器人Rj上的磁阻传感器的值是微型机器人Ri相对于微型机器人Rj的方向。 
所述磁阻传感器在测量之前需进行校验,排除干扰磁场的存在,提高测量精度。 
与现有技术相比,本发明具有如下有益效果: 
1、没有积累误差,微型机器人没有利用存储的历史信息来定位;
2、定位是分布的,微型机器人依靠自身上的传感器定位,在机器人系统外不存在集中的单元;
3、精度高,只是传感器本身测量存在的绝对误差;
4、复杂度低,只需很少量的数据处理,复杂度很低;
5、可扩展性,增大集群机器人数量并不影响机器人之间的相对的定位。
附图说明
图1 为本发明所公开的红外传感器与磁阻传感器在微型机器人本体上的位置排列示意图; 
图2 为定位开始阶段所处状态示意图;
图3 为定位搜索阶段和调整阶段所处状态示意图;
图4 为测距阶段、计算阶段以及修正阶段所处状态示意图。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。 
本发明实施例采用红外传感器和磁阻传感器相配合的相对定位方法,我们假设微型机器人在平面内作业,尺寸在数十个立方厘米之内,传感器的安装位置示意图如图1所示。为了适应更小尺寸的机器人,我们只选用一个红外发送传感器1和一个全向红外接收传感器2,此红外接收传感器2放置在了微型机器人的旋转中心,以防止在微型机器人旋转过程中移动。双轴磁阻传感器3的Y方向与红外发送传感器1的中心轴对齐且三者的中心轴在同一条直线上。 
本实施例采用两个微型机器人R1、R2相互定位,其开始阶段状态如图2所示。 
两者实现定位的过程和具体步骤如下: 
第一步:搜索阶段
    微型机器人R1想确定邻居机器人R2相对于自己位置的方向和距离。首先微型机器人R1通过在原地 ±180°自身旋转去搜索微型机器人R2,直到微型机器人R2接收到了微型机器人R1发出的红外发送信号。如图2所示。
第二步:调整阶段 
    微型机器人R1在原地调整自己的方向,直到微型机器人R2接收到了微型机器人R1最大的信号强度。因为红外发送传感器有红外发送角且在0°(即光轴方向的光)是最强的,可确保我们定位精度很高,误差很小。如图3所示。 
第三步:测距阶段 
    微型机器人R2在原地调整自己的方向,直到微型机器人R1接收到了微型机器人R2最大的信号强度。微型机器人R1记录接收到微型机器人R2最大的信号强度值,通过查找信号强度值与距离表,可得到微型机器人R1和微型机器人R2之间的相对距离。如图4所示。
第四步:计算阶段 
    测距结束后, 微型机器人R1和微型机器人R2分别读取各自磁阻传感器的的值,微型机器人R1的值是微型机器人R2相对于微型机器人R1的方向,微型机器人R2的值是微型机器人R1相对于微型机器人R2的方向。由于磁阻传感器周围存在磁干扰,使得所测的当地磁场是当地的地磁场和当地的干扰磁场的矢量和。为了提取所要测量的当地的地磁场,在测量之前需要做校验工作。这样可以提高其测量精度。
第五步:修正阶段 
   微型机器人R1和微型机器人R2相互发送各自测量的彼此之间的距离,即r1和r2,然后取两者的平均值r,即微型机器人R1和微型机器人R2间的距离。
本实施例中,红外发送传感器采用的是BPW17N,此传感器的半角为12°、直径为5mm,红外接收传感器为SFH203P,半角为75°,磁阻传感器为MMC2120MG。在实际的测试中对该两个微型机器人相互定位,角度误差均值为1° ,距离误差均值2.3cm。 

Claims (7)

1.一种微型机器人集群的相对定位方法,其特征在于:集群中每一微型机器人均安装有信号发送器和接收器以及角度测量器,集群中任一微型机器人Ri通过自身发送信号被邻居机器人Rj接收到,从而搜索到邻居机器人Rj,并通过调整自身方向至邻居机器人Rj接收到的信号最强;然后微行机器人Ri保持原地不动,邻居机器人Rj重复微型机器人Ri前述的动作;当微型机器人Ri和邻居机器人Rj互相搜索到对方且均调整至彼此接收到的信号最强的位置,此时,通过读取两个微型机器人Ri、Rj的接收器上的值获得彼此之间的距离,通过读取角度测量器获得彼此的方向角,完成定位。
2.如权利要求1所述的微型机器人集群的相对定位方法,其特征在于:所述信号为红外信号,所述信号发送器和接收器为红外传感器,其中红外接收传感器安装在微型机器人的旋转中心以防止在微型机器人旋转过程中发生移位。
3.如权利要求2所述的微型机器人集群的相对定位方法,其特征在于:所述角度测量器是采用双轴磁阻传感器,所述双轴磁阻传感器的Y方向与所述红外发送传感器的中心轴以及所述红外接收传感器的中心轴位于同一直线上。
4.如权利要求3所述的微型机器人集群的相对定位方法,其特征在于:所述微型机器人Ri通过在原地±180°自身旋转去搜索微型机器人Rj,直到微型机器人Rj接收到了微型机器人Ri的红外发送信号。
5.如权利要求4所述的微型机器人集群的相对定位方法,其特征在于:通过读取两个微型机器人Ri、Rj上的接收器的最大信号强度值,并对照信号强度值与距离表,得到两个微型机器人Ri、Rj各自测量的彼此之间的相对距离,然后取该两个相对距离的平均值,即得到两个微型机器人Ri、Rj之间的距离。
6.如权利要求5所述的微型机器人集群的相对定位方法,其特征在于:两个微型机器人Ri、Rj分别读取各自磁阻传感器上的值,其中,微型机器人Ri上的磁阻传感器的值是微型机器人Rj相对于微型机器人Ri的方向,微型机器人Rj上的磁阻传感器的值是微型机器人Ri相对于微型机器人Rj的方向。
7.如权利要求6所述的微型机器人集群的相对定位方法,其特征在于:所述磁阻传感器在测量之前需进行校验,排除干扰磁场的存在,提高测量精度。
CN201110215363A 2011-07-29 2011-07-29 微型机器人集群的相对定位方法 Pending CN102305923A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110215363A CN102305923A (zh) 2011-07-29 2011-07-29 微型机器人集群的相对定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110215363A CN102305923A (zh) 2011-07-29 2011-07-29 微型机器人集群的相对定位方法

Publications (1)

Publication Number Publication Date
CN102305923A true CN102305923A (zh) 2012-01-04

Family

ID=45379799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110215363A Pending CN102305923A (zh) 2011-07-29 2011-07-29 微型机器人集群的相对定位方法

Country Status (1)

Country Link
CN (1) CN102305923A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981172A (zh) * 2012-12-05 2013-03-20 西安航空电子科技有限公司 一种可识别队友的双模定位方法
CN104407622A (zh) * 2014-06-24 2015-03-11 嘉兴市德宝威微电子有限公司 机器人跟踪方法和系统
CN107791280A (zh) * 2016-09-05 2018-03-13 深圳光启合众科技有限公司 智能个体的行进控制方法及装置、机器人
US20180216941A1 (en) * 2015-07-31 2018-08-02 Tianjin University Indoor mobile robot position and posture measurement system based on photoelectric scanning and measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143599A (zh) * 2007-11-01 2008-03-19 上海交通大学 全向移动无回转半径轮式小型机器人

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101143599A (zh) * 2007-11-01 2008-03-19 上海交通大学 全向移动无回转半径轮式小型机器人

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAWEI ZHANG 等: "A Mobile Self-reconfigurable Microrobot with Power and Communication Relays", 《INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS》, vol. 7, no. 4, 31 December 2010 (2010-12-31) *
FREDERIC RIVARD 等: "Ultrasonic Relative Positioning for Multi-Robot Systems", 《2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION》, 23 May 2008 (2008-05-23), pages 323 - 328 *
JIM PUGH 等: "A Fast Onboard Relative Positioning Module for Multirobot Systems", 《IEEE/ASME TRANSACTIONS ON MECHATRONICS》, vol. 14, no. 2, 30 April 2009 (2009-04-30), pages 151 - 162 *
王建中 等: "微小型多机器人自重构的红外定位及对接方法", 《北京理工大学学报》, vol. 26, no. 10, 31 October 2006 (2006-10-31), pages 879 - 882 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102981172A (zh) * 2012-12-05 2013-03-20 西安航空电子科技有限公司 一种可识别队友的双模定位方法
CN104407622A (zh) * 2014-06-24 2015-03-11 嘉兴市德宝威微电子有限公司 机器人跟踪方法和系统
CN104407622B (zh) * 2014-06-24 2017-05-03 杭州德宝威智能科技有限公司 机器人跟踪方法和系统
US20180216941A1 (en) * 2015-07-31 2018-08-02 Tianjin University Indoor mobile robot position and posture measurement system based on photoelectric scanning and measurement method
US10801843B2 (en) * 2015-07-31 2020-10-13 Tianjin University Indoor mobile robot position and posture measurement system based on photoelectric scanning and measurement method
CN107791280A (zh) * 2016-09-05 2018-03-13 深圳光启合众科技有限公司 智能个体的行进控制方法及装置、机器人

Similar Documents

Publication Publication Date Title
CN105116378B (zh) 一种无线、超声波复合定位系统及其定位方法
CN105157697B (zh) 基于光电扫描的室内移动机器人位姿测量系统及测量方法
EP1932012B1 (en) Localization for low cost sensor network
EP2643794B1 (en) Radio frequency identification system and related operating methods
CN106646380B (zh) 一种多基站空间定位方法和系统
WO2007044352A1 (en) Localization identification system for wirless devices
US20090304374A1 (en) Device for tracking a moving object
JP2008292491A (ja) 測位用タグ及びその随伴先物品の測位方法及びシステム
US11106837B2 (en) Method and apparatus for enhanced position and orientation based information display
CN102305923A (zh) 微型机器人集群的相对定位方法
KR101193950B1 (ko) 군집 로봇 및 그를 위한 대형 구성 방법
US20180239351A1 (en) Autonomous mobile device
CN106375937A (zh) 一种基于感应式的室内定位控制系统
CN111722623A (zh) 一种基于蓝牙阵列天线定位的自动跟随系统
CN105305083A (zh) 一种车载静中通天线的自动对星方法
CN103454661A (zh) 一种基于gps与测距测角技术的定位系统
CN205981223U (zh) 一种基于压力感应的室内定位自动控制系统
Tran et al. Intelligent robotic iot system (iris) testbed
KR102618865B1 (ko) 3d 지도 작성 시스템
CN107314766B (zh) 基于超声和磁力计的机器人室内定位系统及方法
JP2011180737A (ja) 地図作成方法とロボットの移動経路決定方法
US20230236283A1 (en) Improved Method and System for Positioning
JP7061933B2 (ja) 相互位置取得システム
CN103163502A (zh) 一种大孔径水声柔性阵阵形自校准装置及方法
JP6070339B2 (ja) 音解析装置、音解析システムおよびプログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120104