CN102303988A - Method for preparing garden and park nutrient soil by adopting dewatered sludge through fermentation - Google Patents
Method for preparing garden and park nutrient soil by adopting dewatered sludge through fermentation Download PDFInfo
- Publication number
- CN102303988A CN102303988A CN201110239273A CN201110239273A CN102303988A CN 102303988 A CN102303988 A CN 102303988A CN 201110239273 A CN201110239273 A CN 201110239273A CN 201110239273 A CN201110239273 A CN 201110239273A CN 102303988 A CN102303988 A CN 102303988A
- Authority
- CN
- China
- Prior art keywords
- fermentation
- aerobic
- sludge
- days
- soil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 125
- 238000000855 fermentation Methods 0.000 title claims abstract description 110
- 230000004151 fermentation Effects 0.000 title claims abstract description 108
- 239000010802 sludge Substances 0.000 title claims abstract description 74
- 239000002689 soil Substances 0.000 title claims abstract description 73
- 235000015097 nutrients Nutrition 0.000 title abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 35
- 241000894006 Bacteria Species 0.000 claims abstract description 31
- 235000016709 nutrition Nutrition 0.000 claims abstract description 15
- 230000035764 nutrition Effects 0.000 claims abstract description 14
- 239000002699 waste material Substances 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 35
- 239000001301 oxygen Substances 0.000 claims description 35
- 229910052760 oxygen Inorganic materials 0.000 claims description 35
- 238000009423 ventilation Methods 0.000 claims description 31
- 239000007789 gas Substances 0.000 claims description 22
- 235000001674 Agaricus brunnescens Nutrition 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 9
- 230000001580 bacterial effect Effects 0.000 claims description 8
- 239000010865 sewage Substances 0.000 claims description 7
- 238000010564 aerobic fermentation Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 241000186361 Actinobacteria <class> Species 0.000 claims description 3
- 241000233866 Fungi Species 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000007921 spray Substances 0.000 claims description 3
- 230000003203 everyday effect Effects 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 claims 3
- 239000011159 matrix material Substances 0.000 claims 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 60
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 30
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 29
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 29
- 239000011574 phosphorus Substances 0.000 abstract description 29
- 239000003864 humus Substances 0.000 abstract description 28
- 230000000694 effects Effects 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 59
- 238000005273 aeration Methods 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 238000009413 insulation Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 6
- 230000001954 sterilising effect Effects 0.000 description 6
- 238000004659 sterilization and disinfection Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 235000008935 nutritious Nutrition 0.000 description 4
- 241000244203 Caenorhabditis elegans Species 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000033558 biomineral tissue development Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- -1 moisture content Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 241000222519 Agaricus bisporus Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/40—Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
Landscapes
- Treatment Of Sludge (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明提供一种用脱水污泥酵制园林营养土的方法,该方法解决了脱水污泥酵制园林营养土的无害化、营养化、腐殖化的问题。所述方法将配制好的发酵物料采用好氧-厌氧交替发酵方式,好氧段≥5d,产生50℃以上的具有杀灭大肠菌群作用的发酵温度,(好氧5d-厌氧3d)×3的交替方法可使污泥发酵后达到园林营养土无害化标准,同时,三次交替发酵可促进发酵污泥的有效氮、有效磷、腐殖质的形成,提高发酵污泥的营养化和腐殖化,从而达到规模化利用城市垃圾,实现废物再利用的目的。
The invention provides a method for fermenting garden nutrient soil with dewatered sludge, which solves the problems of harmlessness, nutrition and humification of garden nutrient soil fermented with dewatered sludge. In the method, the prepared fermentation material adopts an aerobic-anaerobic alternate fermentation method, the aerobic period is ≥ 5 days, and a fermentation temperature above 50°C with the effect of killing coliform bacteria is generated (aerobic 5d-anaerobic 3d) The alternate method of ×3 can make the sludge fermented reach the harmless standard of garden nutrient soil. At the same time, the three alternate fermentations can promote the formation of available nitrogen, available phosphorus and humus in the fermented sludge, and improve the nutrient and putrefaction of the fermented sludge. Colonization, so as to achieve large-scale utilization of urban waste and realize the purpose of waste reuse.
Description
技术领域 technical field
本发明涉及城市生活垃圾的处理技术,具体涉及一种采用脱水污泥进行好氧-厌氧交替法酵制园林营养土的方法。 The invention relates to a treatment technology of municipal domestic garbage, in particular to a method for fermenting garden nutrient soil by using dewatered sludge to carry out an aerobic-anaerobic alternating method.
the
背景技术 Background technique
脱水污泥主要是指污水厂中经过脱水设备处理的、含水率80%左右的污泥,含有大量有机物、微生物和致病菌等,并有臭味。现有技术中,处理脱水污泥的方法主要有以下几种:填埋法、焚烧法、好氧发酵法、厌氧好氧法、热干化法等,但其存在的问题是填埋法占地大、场地技术要求高、造成二次污染;焚烧法产生有毒有害气体污染大气、投资大、能耗高;热干化法成本较高;发酵法可用于污泥堆肥生产,但处理规模有限。现有的污泥发酵过程通常采用菇包、粉碎的秸秆,粉碎的枯枝落叶、木屑等与污泥进行混合后,然后进行发酵。将脱水污泥用来酵制园林营养土,需要达到无害化、营养化、腐殖化(简称三化)的要求;其无害化是指发酵后的污泥中大肠菌群低于100个/g,营养化是指发酵后的污泥中有效氮≥0.12g·kg-1、有效磷≥0.03g·kg-1,腐殖化是指发酵后的污泥中腐殖质含量≥10g·kg-1。常规的污泥发酵有好氧、厌氧两种方法,好氧法污泥升温高、升温快,杀灭大肠菌群效果好,但有机质矿化程度高,难以保证发酵污泥的营养化和腐殖化;厌氧法升温低、升温慢,杀灭大肠菌群效果差,但有机质矿化程度低,较之好氧法发酵污泥营养化和腐殖化程度较高。但是,单纯的好氧法和厌氧法均难以实现污泥酵制园林营养土满足“三化”的目标。 Dewatered sludge mainly refers to sludge that has been treated by dehydration equipment in sewage plants and has a water content of about 80%. It contains a large amount of organic matter, microorganisms and pathogenic bacteria, and has an odor. In the prior art, there are mainly the following methods for treating dewatered sludge: landfill method, incineration method, aerobic fermentation method, anaerobic aerobic method, thermal drying method, etc., but the existing problem is that landfill method It occupies a large area, requires high site technology, and causes secondary pollution; the incineration method produces toxic and harmful gases that pollute the atmosphere, requires a large investment, and consumes high energy; the thermal drying method has a high cost; the fermentation method can be used for sludge composting, but the scale limited. In the existing sludge fermentation process, mushroom bags, crushed straw, crushed litter, sawdust, etc. are usually mixed with sludge, and then fermented. The use of dewatered sludge to ferment garden nutrient soil needs to meet the requirements of harmlessness, nutrition, and humification (referred to as three transformations); its harmlessness means that the coliform bacteria in the fermented sludge are less than 100 per g, trophication refers to the available nitrogen ≥ 0.12g·kg -1 and available phosphorus ≥ 0.03g·kg -1 in the fermented sludge, and humification refers to the content of humus in the fermented sludge ≥ 10g· kg -1 . Conventional sludge fermentation has two methods: aerobic and anaerobic. The aerobic method has a high and fast temperature rise in sludge and is effective in killing coliform bacteria. However, the degree of organic matter mineralization is high, and it is difficult to ensure the nutrient and Humification: The anaerobic method has low temperature rise and slow temperature rise, and the effect of killing coliform bacteria is poor, but the degree of mineralization of organic matter is low, and the degree of nutrition and humification of fermented sludge is higher than that of aerobic method. However, the simple aerobic method and anaerobic method are difficult to achieve the goal of "three modernizations" of the sludge fermentation garden nutrient soil.
目前,国内外虽有污泥交替发酵研究,但以通气、停气的控制,而非氧浓度的控制来实现好、厌氧的交替发酵,更没有有针对性的解决污泥酵制园林营养土的无害化、营养化、腐殖化的问题,因此,急需一种更好的发酵方法来解决现有技术存在的问题。 At present, although there are researches on sludge alternate fermentation at home and abroad, the control of aeration and gas stop rather than the control of oxygen concentration is used to achieve good and anaerobic alternate fermentation, and there is no targeted solution to the sludge fermentation garden nutrition. Therefore, a better fermentation method is urgently needed to solve the problems in the prior art.
发明内容 Contents of the invention
针对现有技术存在的上述不足,本发明的目的是解决了脱水污泥酵制园林营养土的无害化、营养化、腐殖化的问题,而提供一种操作简单、酵制效果好的利用好氧-厌氧交替法将脱水污泥酵制成园林营养土的方法。 Aiming at the above-mentioned deficiencies in the prior art, the purpose of the present invention is to solve the problems of harmless, nutritious and humifying garden nutrient soil produced by fermenting dewatered sludge, and to provide a kind of simple operation and good fermenting effect. The invention discloses a method for fermenting dehydrated sludge into garden nutrient soil by using an aerobic-anaerobic alternating method.
本发明采用的技术手段是:一种用脱水污泥酵制园林营养土的方法,其特征在于,所述方法包括如下步骤: The technical means used in the present invention is: a method for fermenting garden nutrient soil with dewatered sludge, characterized in that the method comprises the following steps:
1)脱水污泥的发酵: 1) Fermentation of dewatered sludge:
A、污泥处理:取污水处理厂的污泥通过自然摊晾的方式使含水率下降为75%; A. Sludge treatment: Take the sludge from the sewage treatment plant and reduce the moisture content to 75% by natural drying;
B、菇包处理:将蘑菇种植后剩下的袋状基质废料进行粉碎,得到粉碎菇包; B. Mushroom package treatment: crush the remaining bag-shaped substrate waste after the mushrooms are planted to obtain crushed mushroom packages;
C、制备菌种土:将上述A步处理的污泥与上述B步处理的的粉碎菇包按体积比1:1的方式进行混合后,喷洒复合发酵菌种液,混匀后进行好氧发酵,发酵温度50℃~70℃,时间维持5~7天,得到菌种土; C. Preparation of seed soil: Mix the sludge treated in step A above with the crushed mushroom bag treated in step B above in a volume ratio of 1:1, spray the compound fermentation seed liquid, mix well and carry out aerobic Fermentation, the fermentation temperature is 50°C-70°C, and the time is maintained for 5-7 days to obtain the seed soil;
D、配制发酵物料:将上述A步处理的污泥与上述B步处理的粉碎菇包和C步得到的菌种土按体积比为1:1:1的方式混匀,得到含水率为60~65%发酵物料; D. Preparation of fermentation materials: Mix the sludge treated in the above-mentioned step A with the pulverized mushroom bag processed in the above-mentioned step B and the strain soil obtained in the step C in a volume ratio of 1:1:1 to obtain a moisture content of 60 ~65% fermented material;
2)装发酵物料: 2) Pack fermentation materials:
将步骤1)中配制的发酵物料装入发酵装置中,松紧自然,当所装发酵物料的的体积为发酵装置容积的4/5~5/6时,停止装料,盖上发酵装置的桶盖; Put the fermented material prepared in step 1) into the fermenter, the tightness is natural, when the volume of fermented material is 4/5-5/6 of the volume of the fermenter, stop loading, and cover the lid of the fermenter ;
3)酵制园林营养土: 3) Fermented garden nutrient soil:
采用好氧-厌氧交替法将步骤2)的发酵物料酵制成园林营养土,所述好氧-厌氧交替法中好氧-厌氧交替的次数为三次,每次好氧-厌氧交替的步骤为: Using the aerobic-anaerobic alternating method to ferment the fermented material in step 2) into garden nutrient soil, the number of aerobic-anaerobic alternating in the aerobic-anaerobic alternating method is three times, each time The alternate steps are:
①好氧,即先通气,时间为5min,通气量为1.4~2.8m3·(h·t)-1;再停气,时间为30min;重复上述操作5天; ①Aerobic, that is, ventilate first for 5 minutes, and the ventilation volume is 1.4~2.8m 3 ·(h·t) -1 ; then stop the gas for 30 minutes; repeat the above operation for 5 days;
再厌氧:停止通气3天。 Re-anaerobic: Stop ventilation for 3 days.
进一步,步骤1)C步中,所述复合发酵菌种液为放线菌、细菌、真菌中的两种或两种以上的复合发酵菌种液。 Further, in Step 1) C, the composite fermentation seed liquid is two or more compound fermentation seed liquids of actinomycetes, bacteria, and fungi.
进一步,步骤1)C步中,所述好氧发酵采用在发酵槽内用机器翻堆的方式在空气中进行发酵,按照发酵温度的不同,每天翻堆1~4次,发酵温度50~70℃维持5~7天。 Further, in step 1) step C, the aerobic fermentation is carried out in the air by machine turning in the fermentation tank. According to the difference of fermentation temperature, turn the pile 1 to 4 times a day, and the fermentation temperature is 50-70 ℃ for 5 to 7 days.
进一步,所述步骤3)中的好氧期的气态氧的体积百分浓度为5%~21%;厌氧期的气态氧的体积百分浓度为<5%。 Further, the volume percent concentration of gaseous oxygen in the aerobic period in the step 3) is 5%-21%; the volume percent concentration of gaseous oxygen in the anaerobic period is <5%.
相比现有技术,本发明具有如下优点: Compared with the prior art, the present invention has the following advantages:
1、本发明采用三次好氧-厌氧交替的使用,使得酵制的营养土达到了无害化、营养化、腐殖化的园林用土要求,其不仅满足了我国园林用土得巨大市场需求,而且有助于城市污泥资源的规模化处理,实现废物的再利用,从而对三峡库区水环境保护产生了积极作用。 1, the present invention adopts the alternate use of aerobic-anaerobic three times, makes the fermented nutrient soil reach the garden soil requirement of harmless, nutrientization, humification, and it not only satisfies the huge market demand of my country's garden soil, Moreover, it is helpful for the large-scale treatment of urban sludge resources and realizes the reuse of waste, thereby playing a positive role in the protection of the water environment in the Three Gorges Reservoir area.
2、本发明采用三次好氧-厌氧交替法将脱水污泥酵制成营养土,其中,三次好氧-厌氧交替方法为:第一次好氧-厌氧交替过程为强力杀菌,使发酵污泥中大肠菌群存活率大幅下降;第二次好-厌氧交替过程为达标杀菌期,使发酵污泥中大肠菌群低于100个/g,使发酵污泥达到园林绿化用土标准;同时,其有效氮磷含量达到园林用土优质土壤有效氮磷含量有效氮≥0.12g·kg-1,有效磷≥0.03g·kg-1;第三次好-厌氧交替过程为稳定杀菌期,使发酵污泥中大肠菌群得到控制,并使发酵物料的腐殖质含量≥10g·kg-1。 2. The present invention adopts three aerobic-anaerobic alternation methods to ferment dewatered sludge into nutrient soil, wherein the three aerobic-anaerobic alternation methods are: the first aerobic-anaerobic alternation process is strong sterilization, so that The survival rate of coliforms in the fermented sludge has dropped significantly; the second good-anaerobic alternating process is the standard sterilization period, so that the coliforms in the fermented sludge are less than 100/g, so that the fermented sludge can reach the landscaping soil standard ; At the same time, its available nitrogen and phosphorus content reaches the level of high-quality garden soil, effective nitrogen and phosphorus content, effective nitrogen ≥ 0.12g·kg -1 , and available phosphorus ≥ 0.03g·kg -1 ; the third good-anaerobic alternation process is a stable sterilization period , to control the coliform bacteria in the fermented sludge, and to make the humus content of the fermented material ≥10g·kg -1 .
3、本发明采用好氧-厌氧交替法将脱水污泥酵制成营养土,其中好氧期控制氧浓度是为保证好氧微生物的呼吸作用,以维持其生命活动,微生物分解污泥中的有机质同时释放热量,从而使污泥温度升高,达到无害化温度;且在好氧期实行通气、停气有规律重复一方面保证了微生物所需的氧气浓度,另一方面与持续通气相比节约能源消耗,而且冬季还有利于桶内发酵温度的保持;厌氧期不通气,发酵物料中氧浓度低于5%,有利于厌氧微生物分解难降解的木质素、纤维素等,有利于腐殖质的形成。从而保证了本发明方法能够使脱水污泥酵制成达到园林用土的无害化、营养化、腐殖化要求。 3. The present invention adopts the aerobic-anaerobic alternating method to ferment the dewatered sludge into nutrient soil, wherein controlling the oxygen concentration in the aerobic period is to ensure the respiration of aerobic microorganisms to maintain their life activities, and the microorganisms decompose the sludge The organic matter releases heat at the same time, so that the temperature of the sludge rises to reach the harmless temperature; and in the aerobic period, the aeration and stoppage are regularly repeated, on the one hand, to ensure the oxygen concentration required by the microorganisms, on the other hand, it is consistent with continuous aeration. Compared with gas, it saves energy consumption, and it is also beneficial to maintain the fermentation temperature in the barrel in winter; the anaerobic period is not ventilated, and the oxygen concentration in the fermentation material is lower than 5%, which is conducive to the decomposition of refractory lignin and cellulose by anaerobic microorganisms. Conducive to the formation of humus. Therefore, it is ensured that the method of the present invention can make the dewatered sludge fermented to meet the requirements of harmless, nutritious and humic garden soil.
4、本发明方法酵制园林营养土,方法节约能源,可减少酵制中的CO2、CH4等排放,节约电能消耗35%。 4. The method of the present invention ferments garden nutrient soil, which saves energy, can reduce emissions of CO 2 , CH 4 , etc. during fermentation, and saves 35% of power consumption.
5、本发明方法酵制园林营养土,方法简单、投资小、便于推广。 5. The method of the present invention ferments garden nutrient soil, the method is simple, the investment is small, and it is easy to popularize.
本发明获得国家水体污染控制与治理科技重大专项(2009ZX07315-002), 三峡库区城市污水处理厂污泥减量与资源化关键技术研究与示范(2009ZX07315-002-02)基金项目的支持。 This invention has been supported by the National Water Pollution Control and Treatment Science and Technology Major Project (2009ZX07315-002), and the Key Technology Research and Demonstration of Sludge Reduction and Recycling of Urban Sewage Treatment Plants in the Three Gorges Reservoir Area (2009ZX07315-002-02).
the
附图说明 Description of drawings
图1是污泥交替发酵装置;其中 Fig. 1 is the alternate fermentation device of sludge; Wherein
1-试验桶、2-保温层、3-布气板、4-支墩、5-发酵物料、6-出气口、7-进气管、8-电源、9-时间继电器、10-电箱、11-电磁阀、12-气体流量计、13、空气泵; 1-Test barrel, 2-Insulation layer, 3-Air distribution board, 4-Pier, 5-Fermentation material, 6-Air outlet, 7-Intake pipe, 8-Power supply, 9-Time relay, 10-Electric box, 11-solenoid valve, 12-gas flow meter, 13, air pump;
图2是停气前后平均氧浓度变化; Figure 2 is the change of average oxygen concentration before and after gas stop;
图3是不同交替方式的温度变化。 Fig. 3 is the temperature variation of different alternating ways.
具体实施方式:Detailed ways:
下面结合附图和具体实施例对本发明作进一步的说明。 The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
为确定好-厌氧交替法酵制园林营养土满足无害化、营养化、腐殖化要求的控制参数,在用脱水污泥酵制园林营养土的过程中,先进行可行性试验,再进行验证性试验,测试污泥交替发酵的温度、大肠菌群、蛔虫卵、有效氮、有效磷、腐殖质、气态氧浓度等指标,从而获得好氧-厌氧交替法的最优控制参数,分析所得最优控制参数的发酵污泥的综合效果。 In order to determine the control parameters for fermenting garden nutrient soil with good-anaerobic alternating method to meet the requirements of harmlessness, nutrition and humification, in the process of fermenting garden nutrient soil with dewatered sludge, a feasibility test was first carried out, and then Carry out a confirmatory test to test indicators such as the temperature of sludge alternate fermentation, coliform bacteria, roundworm eggs, available nitrogen, available phosphorus, humus, gaseous oxygen concentration, etc., so as to obtain the optimal control parameters of the aerobic-anaerobic alternate method, analyze The comprehensive effect of the obtained optimal control parameters on the fermented sludge.
一、可行性试验1. Feasibility test
1材料与方法 1 Materials and methods
1.1发酵装置 1.1 Fermentation device
发酵装置的规格、配置等见图1,发酵装置的主体部分包括试验桶1、布气板3、支墩4和保温层2;试验桶1内部放置三个支墩4,支墩4位于布气板3的下方,用于支撑布气板3;布气板3上垫一层棕垫,棕垫上堆放发酵物料5;所述布气板3的下方与进气管7连通,进气管7通过布气板3下方由下向上给发酵物料5通气;所述试验桶1外部还包裹有保温层2,保温层2用于保持试验桶内的发酵温度。发酵装置的自动控制部分包括电箱10、电磁阀11和空气泵13;电箱10内设置有时间继电器9,时间继电器9与电磁阀11连接,电磁阀11与空气泵13连接;当接通电源时,通过在时间继电器9上设置时间来控制电磁阀11的开或闭,电磁阀11的开或闭控制空气泵13的开或停,从而控制试验桶内的通气或停气;所述空气泵13与气体流量计12相连,气体流量计12用于调节空气泵13的通气量。所述保温层2为橡塑保温棉,厚5cm。
The specifications and configuration of the fermentation device are shown in Figure 1. The main part of the fermentation device includes a test tank 1, an air distribution plate 3, a buttress 4 and an
1.2试验仪器 1.2 Test equipment
ACO-012空气泵(150L·min-1、0.042Mpa),CY-12CB测氧仪,EST温度计,TU-1900紫外分光光度计,PHS-3C型数显酸度计,DDS-11A型数显电导率仪,便携式土壤重金属测试仪,马弗炉,LDZX-40B1型灭菌器,LRH-250A型恒温培养箱,数码显微镜。 ACO-012 air pump (150L min -1 , 0.042Mpa), CY-12CB oxygen meter, EST thermometer, TU-1900 ultraviolet spectrophotometer, PHS-3C digital display acidity meter, DDS-11A digital display conductivity Rate meter, portable soil heavy metal tester, muffle furnace, LDZX-40B1 sterilizer, LRH-250A constant temperature incubator, digital microscope.
1.3试验材料 1.3 Test material
脱水污泥:重庆李家沱污水处理厂提供。 Dewatered sludge: provided by Chongqing Lijiatuo Sewage Treatment Plant.
污泥处理:脱水污泥摊晾后含水率由80%降至75%时用于配料。 Sludge treatment: The dewatered sludge is used for batching when the moisture content drops from 80% to 75% after spreading.
菇包:蘑菇种植后剩下的袋状基质废料(含水率30%),由重庆市园林科学研究所提供。
Mushroom bag: the bag-shaped substrate waste left after mushroom planting (
菌种土:按体积比1份污泥(含水率75%)+1份粉碎菇包,喷洒复合发酵菌种液混匀后于发酵装置中好氧发酵,该好氧发酵采用在发酵槽内用机器翻堆的方式在空气中进行发酵,按照发酵温度的不同,每天翻堆1~4次,发酵温度50~70℃维持5~7d(天),得到菌种土(含水率45%)。复合发酵菌种液为放线菌、细菌、真菌中的两种或两种以上的复合发酵菌种液(由重庆市园林科学研究所提供)。 Strain soil: 1 part of sludge (moisture content 75%) + 1 part of crushed mushroom bag according to the volume ratio, spray the compound fermentation seed liquid and mix well, and then aerobically ferment in the fermentation device. The aerobic fermentation is used in the fermentation tank Fermentation is carried out in the air by machine turning. According to the different fermentation temperatures, turn the pile 1 to 4 times a day, and keep the fermentation temperature at 50-70°C for 5-7 days (days) to obtain the seed soil (moisture content 45%) . The compound fermentation strain liquid is two or more compound fermentation strain liquids of actinomycetes, bacteria and fungi (provided by Chongqing Institute of Garden Science).
发酵物料配比:按体积比为含水率75%污泥1份+ 粉碎菇包1份+菌种土1份,配料混匀后含水率60~65%。 Proportion of fermentation materials: According to the volume ratio, it is 1 part of sludge with a moisture content of 75% + 1 part of crushed mushroom bag + 1 part of bacterial seed soil, and the moisture content after mixing the ingredients is 60-65%.
发酵试验桶:规格为420L,装入发酵物料量为0.35m3。 Fermentation test tank: the specification is 420L, and the amount of fermentation material loaded is 0.35m 3 .
1.4发酵物料氧浓度控制:好氧期气态氧浓度为5%~21%,厌氧期气态氧浓度<5%。 1.4 Oxygen concentration control of fermentation materials: the gaseous oxygen concentration in the aerobic period is 5% to 21%, and the gaseous oxygen concentration in the anaerobic period is <5%.
1.5测试指标及方法 1.5 Test indicators and methods
发酵温度测试:每日8:00、14:00、20:00对发酵装置内物料中、上部进行发酵温度测试,氧浓度于通风和停气前后测试,确定不同发酵温度下氧气消耗情况,取各温度下同一时间氧浓度的平均值。 Fermentation temperature test: 8:00, 14:00, 20:00 daily fermentation temperature test for the middle and upper part of the material in the fermentation device, oxygen concentration test before and after ventilation and gas stop, to determine the oxygen consumption at different fermentation temperatures, take The average value of oxygen concentration at the same time at each temperature.
取样方法:好氧结束、厌氧结束时于发酵物料的上、中、下层的中部各取样200g,混匀、风干、磨碎,分2~3组同时测试。 Sampling method: at the end of aerobic and anaerobic, take 200g samples from the middle of the upper, middle and lower layers of the fermentation material, mix well, air dry, grind, divide into 2~3 groups and test at the same time.
无害化、营养化、腐殖化的测试指标:大肠菌群、蛔虫卵、有效氮、有效磷、总钾、含水率、有机质、pH、电导率EC、腐殖质等。测试方法见《城市污水处理厂污泥检验方法》(CJ/T 221-2005)。 Harmless, nutritious, and humicizing test indicators: coliform bacteria, roundworm eggs, available nitrogen, available phosphorus, total potassium, moisture content, organic matter, pH, electrical conductivity EC, humus, etc. For the test method, see "Examination Methods for Sludge from Municipal Sewage Treatment Plants" (CJ/T 221-2005).
好氧-厌氧交替法可行性试验Feasibility test of aerobic-anaerobic alternating method
实验方法:试验共设计好氧、交替、厌氧三个组(其中好氧和厌氧试验为对照试验组),每组三个发酵装置,试验周期28天。好氧法试验设计:第1~28d(好氧);交替发酵试验设计:第1~7d(好氧),第8~10d(厌氧),第11~15d(好氧),第16~19d(厌氧),第20~23d(好氧),第25~28d(厌氧);厌氧法试验设计:第1~28d(厌氧);试验结果见表1交替法可行性试验测试结果。 Experimental method: Three groups of aerobic, alternating and anaerobic were designed for the test (the aerobic and anaerobic test were the control test groups), with three fermentation devices in each group, and the test period was 28 days. Aerobic method test design: 1st~28d (aerobic); alternate fermentation test design: 1st~7d (aerobic), 8th~10d (anaerobic), 11th~15d (aerobic), 16th~ 19d (anaerobic), 20th~23d (aerobic), 25th~28d (anaerobic); anaerobic method test design: 1st~28d (anaerobic); test results are shown in Table 1 Alternate method feasibility test test result.
表1 交替法可行性试验测试结果 Table 1 Alternative method feasibility test test results
表2 交替法可行性试验综合评价 Table 2 Comprehensive evaluation of alternative method feasibility test
结果分析:由表1 可知,发酵完成后各组试验的结果比较如下: Result analysis: As can be seen from Table 1, the results of each group of experiments after fermentation are compared as follows:
平均有效氮含量:厌氧法0.859 g·kg-1>交替法0.856 g·kg-1>好氧法0.798g·kg-1,交替法高出好氧法7.4%,表明交替法可提高有效氮含量; The average available nitrogen content: anaerobic method 0.859 g·kg -1 > alternate method 0.856 g·kg -1 > aerobic method 0.798g·kg -1 , the alternate method is 7.4% higher than the aerobic method, indicating that the alternate method can improve the effective nitrogen content Nitrogen content;
平均有效磷含量:交替法1.852g·kg-1>好氧法1.692g·kg-1>厌氧法1.636 g·kg-1,交替法高出好氧法9.4%,高出厌氧法13.2%,表明交替法可提高有效磷含量; Average available phosphorus content: alternate method 1.852g·kg -1 > aerobic method 1.692g·kg -1 > anaerobic method 1.636 g·kg -1 , the alternate method is 9.4% higher than the aerobic method and 13.2% higher than the anaerobic method %, indicating that the alternate method can increase the available phosphorus content;
平均腐殖质含量:交替法10.510 g·kg-1>厌氧法9.398 g·kg-1>好氧法8.768 g·kg-1,交替法高出好氧法19.9%,高出厌氧法11.8%,表明交替法可提高腐殖质含量。 Average humus content: Alternative method 10.510 g·kg -1 > Anaerobic method 9.398 g·kg -1 > Aerobic method 8.768 g·kg -1 , indicating that the alternation method can increase the humus content.
试验结论:根据表2交替法可行性试验综合评价的结果可知:交替法89分>好氧法61分>厌氧法47分,因此,污泥酵制园林营养土采用好氧-厌氧交替法是可行的。 Test conclusion: According to the results of the comprehensive evaluation of the feasibility test of the alternate method in Table 2, it can be seen that the alternate method is 89 points > the aerobic method is 61 points > the anaerobic method is 47 points. law is feasible.
通风试验ventilation test
通风试验组分为9组,每组持续时间25天。分析温度、气态氧浓度和通风量、通气时间、停气时间的关系,并确定不同温度下,大肠菌群死亡率情况,试验的通气方式与结果见表3。 The ventilation test group is divided into 9 groups, and each group lasts for 25 days. Analyze the relationship between temperature, gaseous oxygen concentration, ventilation volume, ventilation time, and gas stop time, and determine the mortality rate of coliform bacteria at different temperatures. The ventilation methods and results of the test are shown in Table 3.
the
表3 通气方式与结果 Table 3 Ventilation methods and results
由表3可知,好氧段通气量为1.4~2.8 m3 (h·t) -1时,最高发酵温度≥50℃;通气量>2.8 m3 (h·t) -1或<1.4 m3 (h·t) -1时,最高发酵温度<50℃。当通气量为1.4~2.8 m3 (h·t) -1,通气5min、停气30min时,发酵温度≥50℃,持续时间为3d(即第4-6天d的温度均大于50度),从而可杀灭大部分的大肠菌群等,有利于达到无害化标准;而当通气量为1.4~2.8 m3 (h·t) -1,通气5min、停气45min时,发酵温度≥50℃,持续时间只能维持1d(天),大肠菌群死亡率低,最终不能达到无害化要求,故确定通气方式为通风量1.4~2.8 m3·(h·t) -1,通气5min、停气30min。 It can be seen from Table 3 that when the aeration volume in the aerobic section is 1.4~2.8 m 3 (h·t) -1 , the highest fermentation temperature is ≥50°C; the aeration volume is >2.8 m 3 (h·t) -1 or <1.4 m 3 (h · t) -1 , the highest fermentation temperature <50 ℃. When the aeration volume is 1.4~2.8 m 3 (h·t) -1 , when the aeration is 5 minutes and the aeration is stopped for 30 minutes, the fermentation temperature is ≥50°C and the duration is 3 days (that is, the temperature on the 4th-6th day d is greater than 50°C) , which can kill most of the coliforms, etc., which is conducive to achieving harmless standards; when the aeration volume is 1.4~2.8 m 3 (h·t) -1 , when the aeration is 5 minutes and the aeration is stopped for 45 minutes, the fermentation temperature ≥ 50°C, the duration can only be maintained for 1 day (day), the mortality rate of coliform bacteria is low, and the harmless requirements cannot be met in the end, so the ventilation method is determined to be ventilation volume 1.4~2.8 m 3 ·(h·t) -1 , ventilation 5min, stop gas for 30min.
由图2可知,好氧段通气3min,气态氧浓度由5.3%升至20.6%(图2a-b),5min达到20.7%(图2,b-c),停气30min由20.7%降到5.4%(图2c-d),停气45min降到3.8%,停气70min降到1.5%(图2d-e)。图2中c-d段氧浓度下降较快,d-e段氧浓度下降较慢,d点为停气后氧浓度下降的拐点,拐点氧浓度和停气时间作为下次通气的依据,故将通气时间定为5min,停气时间为30min,与上面得出结论一致。 It can be seen from Figure 2 that the gaseous oxygen concentration increased from 5.3% to 20.6% (Figure 2a-b) in the aerobic stage for 3 minutes, and reached 20.7% in 5 minutes (Figure 2, b-c), and decreased from 20.7% to 5.4% in 30 minutes after stopping the gas (Figure 2, b-c). Figure 2c-d), it dropped to 3.8% after 45 minutes of gas stop, and 1.5% after 70 min of gas stop (Figure 2d-e). In Fig. 2, the oxygen concentration in section c-d drops quickly, and the oxygen concentration in section d-e drops slowly. Point d is the inflection point of oxygen concentration drop after gas stop. The oxygen concentration at the inflection point and the time of gas stop are used as the basis for the next ventilation. It is 5min, and the gas stop time is 30min, which is consistent with the above conclusion.
由表3可知,物料发酵温度在50℃以上时,持续1d(天)时,大肠菌群死亡率为82.7%,持续3d时为91.6%以上,故要使发酵污泥达到无害化标准,需要发酵温度≥50℃并维持1d以上。 It can be seen from Table 3 that when the material fermentation temperature is above 50°C, the mortality rate of coliform bacteria is 82.7% when it lasts for 1 day (day), and it is more than 91.6% when it lasts for 3 days. The fermentation temperature should be ≥50°C and maintained for more than 1 day.
交替发酵试验Alternate fermentation test
交替试验组分6组,每组两个发酵装置,各试验组设计见表4。 There were 6 groups of alternating test components, each group had two fermentation devices, and the design of each test group was shown in Table 4.
用通风试验所得好氧阶段通气方式即通气时间5min(气态氧浓度由5%升至21%),停气时间30min(气态氧浓度由21%降至5%),通气量1.4~2.8m3·(h·t)-1进行交替试验。 The aerobic stage ventilation method obtained from the ventilation test is that the ventilation time is 5 minutes (the gaseous oxygen concentration rises from 5% to 21%), the stop time is 30 minutes (the gaseous oxygen concentration drops from 21% to 5%), and the ventilation volume is 1.4-2.8m 3 • (h·t) -1 Alternate trials were performed.
发酵物料氧浓度控制:好氧期气态氧浓度为5%~21%,厌氧期气态氧浓度<5%。 Oxygen concentration control of fermentation materials: the gaseous oxygen concentration in the aerobic period is 5% to 21%, and the gaseous oxygen concentration in the anaerobic period is <5%.
通过好氧-厌氧天数的不同配置、不同交替次数的试验,确定脱水污泥交替发酵制园林营养土的最佳交替方式。不同交替方式试验与结果见表4. Through experiments with different configurations of aerobic-anaerobic days and different alternating times, the best alternate way of making garden nutrient soil by alternate fermentation of dewatered sludge was determined. The tests and results of different alternation methods are shown in Table 4.
表4 不同交替方式试验与结果 Table 4 Experiments and results of different alternate modes
试验结果分析: Analysis of test results:
(1)第一次交替 (1) First alternate
好氧段5d(天)以上交替方式:第一次交替最高温度均达52.8℃,大肠菌群死亡率在83.3~91.7%,大肠菌群由2400个·g-1降至平均270个·g-1,但仍高于100个·g-1的无害化指标;第一次交替后,从大肠菌群的死亡率来看,最高温度要升至50度以上,才可能达到无害化要求,说明好氧段要大于等于5天,(但是厌氧段是3天还是5天是在最后综合评价才知道的)。根据污泥发酵首先要达到无害化,其次营养化、腐殖化的要求,大肠菌群是无害化指标,当发酵温度大于50度时,大肠菌群死亡率高,从而当好氧期要5天及以上大肠菌的死亡率才高。而营养化、腐殖化指标主要是指有效氮磷和腐殖质含量,第一次交替后,好氧5天的有效氮、磷含量均高于好氧3天和好氧7天的,腐殖质的含量没有太大差别。 Alternation mode in the aerobic section over 5 days (days): the highest temperature in the first alternation is 52.8°C, the mortality rate of coliform bacteria is 83.3-91.7%, and the coliform bacteria is reduced from 2400 g -1 to an average of 270 g -1 , but still higher than the harmless index of 100 g -1 ; after the first alternation, judging from the mortality rate of coliform bacteria, the highest temperature must rise above 50 degrees to achieve harmless Requirements, indicating that the aerobic period should be greater than or equal to 5 days, (however, whether the anaerobic period is 3 days or 5 days is not known until the final comprehensive evaluation). According to the requirements of sludge fermentation first to achieve harmlessness, followed by nutrition and humification, coliform bacteria are harmless indicators. When the fermentation temperature is higher than 50 degrees, the mortality rate of coliform bacteria is high, so when the aerobic period It takes 5 days or more for the mortality rate of coliform bacteria to be high. Nutritization and humification indicators mainly refer to the content of available nitrogen, phosphorus and humus. After the first alternation, the available nitrogen and phosphorus contents of aerobic 5 days were higher than those of aerobic 3 days and aerobic 7 days, and the content of humus content is not much different.
(2)第二次交替 (2) Second alternation
从第二次交替的数据参数来看,进行第二次交替的六种交替方式的中,当发酵温度在41.2~46.5℃时, 大肠菌群死亡率在60.0~77.5%之间,大肠菌群降为70~90个·g-1,低于100个·g-1指标;当第二次交替后,各组有效氮的含量均有所下降,有效磷含量略有升高,腐殖质含量均升高,但好氧5天的腐殖质增长幅度高于其他组。 From the data parameters of the second alternation, among the six alternation methods for the second alternation, when the fermentation temperature is 41.2-46.5°C, the mortality rate of coliform bacteria is between 60.0-77.5%, and the mortality rate of coliform bacteria is 60.0-77.5%. decreased to 70-90 units·g -1 , lower than 100 units·g -1 ; after the second alternation, the content of available nitrogen in each group decreased, the content of available phosphorus increased slightly, and the content of humus However, the growth rate of humic substances in aerobic 5 days was higher than that of other groups.
(3)第三次交替 (3) The third alternation
从第三次交替的数据参数来看,当发酵温度29.8~33.1℃时, 大肠菌群死亡率在28.6~37.5%之间,大肠菌群为50~60个·g-1,低于100个·g指标;当第三次交替结束后,好氧3天的没有达到无害化标准,好氧5天和好氧7天的达到了无害化标准,但好氧5天的腐殖质高于其他组,在好氧5天的两组中,厌氧3天的腐殖质高于厌氧5天的。 From the data parameters of the third alternation, when the fermentation temperature is 29.8~33.1℃, the mortality rate of coliform bacteria is between 28.6~37.5%, and the coliform group is 50~60·g -1 , less than 100 g index; when the third alternation ended, the aerobic 3-day did not reach the harmless standard, the aerobic 5-day and aerobic 7-day reached the harmless standard, but the aerobic 5-day humus was higher than In the other groups, in the two groups of aerobic 5 days, the humus of anaerobic 3 days was higher than that of anaerobic 5 days.
由表4可知三次交替后,好氧段5d(天)以上的最高发酵温度高于好氧3d(天)的交替方式,好氧3d(天)不能使污泥达到无害化要求。发酵污泥的有效氮含量上升,有效磷总体上略有下降,而腐殖质上升明显,但是综合考虑发酵后的土壤中的各项指标来看,交替方式为5d→3d的方式是最优的,虽然交替方式为7d→3d的方式也能够使土壤的达到无害化、营养化和腐殖化的要求,但是从时间效率上来说,好氧5天时间更短,更经济,节约。而好氧3天的交替方式,其最后得到的土壤不能满足园林用于的要求,在此不考虑。因此,5d(天)→3d(天)的交替方式时间最短,可作为今后污泥发酵的交替方式。从交替的次数来看,交替1次虽然能够杀害大部分的大肠菌,但是有效氮磷,腐殖质含量均较低,从而需要三次交替发酵才可促进发酵污泥的有效氮、有效磷、腐殖质的形成,从而使得大肠菌的数量满足园林用土的要求。 It can be seen from Table 4 that after three alternations, the highest fermentation temperature in the aerobic section of 5d (days) is higher than that of the aerobic 3d (days) alternation mode, and the aerobic 3d (days) cannot make the sludge meet the harmless requirements. The available nitrogen content of the fermented sludge increased, the available phosphorus decreased slightly on the whole, and the humus increased significantly. However, considering the various indicators in the fermented soil comprehensively, the alternating mode of 5d → 3d is the best. Although the alternating method of 7d → 3d can also make the soil meet the requirements of harmlessness, nutrition and humification, but in terms of time efficiency, 5 days of aerobic treatment is shorter, more economical and economical. And the aerobic 3-day alternating method, the soil obtained at the end cannot meet the requirements for garden use, so it is not considered here. Therefore, the alternation of 5d (days) → 3d (days) has the shortest time and can be used as an alternation of sludge fermentation in the future. From the perspective of the number of alternations, although one alternation can kill most coliform bacteria, the content of available nitrogen, phosphorus and humus is low, so three times of alternate fermentation are needed to promote the effective nitrogen, available phosphorus, and humus of fermented sludge. Formation, so that the number of coliform bacteria meets the requirements of garden soil.
5综合评价 5 comprehensive evaluation
表5 不同交替方式综合评价表 Table 5 Comprehensive evaluation table of different alternative methods
污泥酵制园林营养土效果的评价原则:首先考虑无害化,其次是营养化,再是腐殖化,最后是时间等。根据重庆市《园林栽植土壤质量标准》(DBJ/T50-044-2005)对以上6种交替方法发酵的营养土土质进行评价,评价结果见表5,根据重庆市《园林栽植土壤质量标准》(DBJ/T50-044-2005)中对一级土壤标准的规定:土质评价得分为85~100为一级土壤,(好5d-厌3d)×3的发酵方法得分最高,时间最短,且其发酵的营养土能到一级土壤的标准,从而满足园林用土的需要。因此,选用(好5d-厌3d)×3的发酵方法作为最佳的交替发酵方法。
The evaluation principle of the effect of sludge fermented garden nutrient soil: first consider the harmlessness, then the nutrient, then the humification, and finally the time. According to Chongqing City's "Garden Planting Soil Quality Standard" (DBJ/T50-044-2005), the soil quality of the nutrient soil fermented by the above six alternate methods is evaluated. The evaluation results are shown in Table 5. According to Chongqing City's "Garden Planting Soil Quality Standard" ( DBJ/T50-044-2005) stipulates the first-class soil standard: the soil quality evaluation score is 85~100 as the first-class soil, and the fermentation method of (good 5d-hateful 3d)×3 has the highest score and the shortest time, and its fermentation method The nutrient soil can reach the standard of first-class soil, so as to meet the needs of garden soil. Therefore, the fermentation method of (good 5d-
6结论 6 Conclusion
采用好-厌氧交替法发酵脱水污泥生产“三化”园林营养土的最佳参考的控制参数如下: The best reference control parameters for the production of "three modernizations" garden nutrient soil by using the good-anaerobic alternating method to ferment dewatered sludge are as follows:
交替方式:每次交替为好氧5d-厌氧3d,交替三次,即(好5d-厌3d)×3。 Alternation method: each alternation is aerobic 5d-anaerobic 3d, alternating three times, namely (good 5d-anaerobic 3d)×3.
好氧期通气方式:通气5min,停气30min,通气量1.4~2.8m3·(h·t)-1。 Ventilation mode in the aerobic period: ventilation for 5 minutes, stop gas for 30 minutes, ventilation volume 1.4~2.8m 3 ·(h·t) -1 .
发酵物料配比:体积比为,含水率75%污泥1份 + 粉碎菇包1份 +菌种土1份。 Proportion of fermentation materials: volume ratio is 1 part of sludge with a moisture content of 75% + 1 part of crushed mushroom bag + 1 part of bacterial seed soil.
the
二、验证性实验2. Confirmatory experiment
根据前述可行性试验得到的结果,进行具体实施。 According to the results obtained from the aforementioned feasibility test, specific implementation will be carried out.
1材料与方法 1 Materials and methods
1.1发酵装置 1.1 Fermentation device
同可行性试验部分。 Same as the feasibility test part.
1.2实验仪器 1.2 Experimental Instruments
同可行性试验部分。 Same as the feasibility test part.
1.3实验材料 1.3 Experimental materials
同可行性试验部分。 Same as the feasibility test part.
1.4测试指标及方法 1.4 Test indicators and methods
同可行性试验部分。 Same as the feasibility test part.
1.5实施方法: 1.5 Implementation method:
试验组设计:实验分3组,每组2个容积为0.42m3试验桶。 Test group design: The experiment is divided into 3 groups, each group has 2 test barrels with a volume of 0.42m 3 .
交替方法:交替法一为(好3d-厌3d)×3、交替法二为(好5d-厌3d)×3、交替法三为(好7d-厌3d)×3,其中交替法一和交替法三为对比试验,三种交替法实施结果见表6。
Alternate method: Alternate method 1 is (good 3d-
物料装桶:将配料装入发酵装置中,松紧自然不用加力压紧,当配料顶弄平后与发酵装置口沿相距10cm即可停止装料(约0.35m3),盖上桶盖。 Material loading into barrels: put the ingredients into the fermentation device, the tightness is naturally not required to be pressed tightly, when the top of the ingredients is flattened and the distance from the edge of the fermentation device is 10cm, the filling can be stopped (about 0.35m 3 ), and the lid of the barrel will be closed.
好-厌氧交替法:每次交替先好氧5d,再厌氧3d,即好5d-厌3d;好-厌氧交替法共交替三次,即(好5d-厌3d)×3。 Good-anaerobic alternation method: aerobic for 5 days first, and then anaerobic for 3 days, that is, good for 5 days-anaerobic for 3 days; good-anaerobic alternating method for a total of three times, that is, (good for 5 days-anaerobic for 3 days)×3.
发酵物料氧浓度控制:好氧期气态氧浓度为5%~21%,厌氧期气态氧浓度<5%。 Oxygen concentration control of fermentation materials: the gaseous oxygen concentration in the aerobic period is 5% to 21%, and the gaseous oxygen concentration in the anaerobic period is <5%.
好氧期通气方法:通气时间5min(气态氧浓度由5%升至21%),停气时间30min(气态氧浓度由21%降至5%),通气量1.4~2.8m3·(h·t)-1。
Ventilation method in aerobic period:
表6 交替法实施结果 Table 6 Implementation Results of Alternate Method
2具体实施步骤2 specific implementation steps
先将脱水污泥摊晾使含水率降至75%,与粉碎菇包、菌种土按体积比1:1:1混匀成发酵物料,配料后含水率60~65%。然后,将配料装入发酵装置中,松紧自然不用加力压紧,当配料顶弄平后与发酵装置口沿相距10cm即可停止装料(约0.35m3),盖好桶盖,分别进行(好3d-厌3d)×3、(好5d-厌3d)×3、(好7d-厌3d)×3的交替发酵。好氧期:通气时间5min,停气时间30min,通气量1.4~2.8m3·(h·t)-1,厌氧期:停止通气使气态氧浓度<5%。最后,测试无害化、营养化、腐殖化的数据。发酵温度测试:每日8:00、14:00、20:00对发酵装置内物料中层、上层的中部进行温度测试;氧浓度测试:于通风前后和停气前后测试;取样方法:好氧结束、厌氧结束时于发酵物料上、中、下层的中部各取样200g,混匀、风干、磨碎,分2~3组同时测试。大肠菌群、蛔虫卵、有效氮、有效磷、总钾、含水率、有机质、pH、电导率EC、腐殖质等测试方法见《城市污水处理厂污泥检验方法》(CJ/T 221-2005)。
First spread the dewatered sludge to reduce the moisture content to 75%, and mix it with the crushed mushroom bag and seed soil in a volume ratio of 1:1:1 to form a fermentation material. After batching, the moisture content is 60-65%. Then, put the ingredients into the fermentation device. Naturally, there is no need to apply force to tighten the tightness. When the top of the ingredients is flattened and the distance from the edge of the fermentation device is 10cm, the filling can be stopped (about 0.35m 3 ), and the lid is closed, and the fermentation process is carried out separately. Alternate fermentation of (good 3d-
三种交替方式的实施结果分析Analysis of Implementation Result of Three Alternative Ways
(1)第一次交替 (1) First alternate
表6可知第一次交替中,最高发酵温度:好氧期3d、5d、7d分别为47.6℃、54.6℃、55.1℃;大肠菌群死亡率:好氧期3d、5d、7d分别为30.8%、93.1%、95.4%;有效氮、有效磷含量:好氧期3d、5d、7d分别为有效氮1.50 g·kg-1、1.52 g·kg-1、1.43g·kg-1,有效磷1.07 g·kg-1、1.33 g·kg-1、1.14g·kg-1;腐殖质含量:好氧期3d、5d、7d分别为8.15 g·kg-1、8.52 g·kg-1、8.30g·kg-1。分析可知,第一次交替后,大肠菌群死亡率好氧7天的>好氧5天的>好氧3天的,虽然第一次交替杀死了大部分的大肠菌(即强力杀菌阶段),但大肠菌群还未达到绿化用土标准≤100个·g-1即未达到无害化的要求;有效氮、磷含量均高于绿化用土的一级标准,即有效氮≥0.12g·kg-1、有效磷≥0.03g·kg-1,而好氧5天的高于其他两组;腐殖质含量均低于10g·kg-1,未达到腐殖化的要求。因此,第一次交替污泥发酵虽然三种交替方式均达到了营养化要求,但尚未达到无害化、腐殖化要求,需要再次交替发酵。 Table 6 shows that in the first alternation, the highest fermentation temperature: 3d, 5d, and 7d in the aerobic period were 47.6°C, 54.6°C, and 55.1°C; the mortality rate of coliform bacteria: 30.8% in the 3d, 5d, and 7d in the aerobic stage , 93.1%, 95.4%; available nitrogen, available phosphorus content: available nitrogen 1.50 g·kg -1 , 1.52 g·kg -1 , 1.43 g·kg -1 , available phosphorus 1.07 in 3d, 5d, 7d of aerobic period respectively g·kg -1 , 1.33 g·kg -1 , 1.14g·kg -1 ; humus content: 8.15 g·kg -1 , 8.52 g·kg -1 , 8.30g· kg -1 . It can be seen from the analysis that after the first alternation, the mortality rate of coliform bacteria in aerobic 7 days > aerobic in 5 days > aerobic in 3 days, although the first alternation killed most of the coliforms (that is, the strong sterilization stage ), but the coliforms have not yet reached the greening soil standard ≤ 100 g -1 , that is, they have not met the requirement of harmlessness; the available nitrogen and phosphorus content are higher than the first-level standard of greening soil, that is, available nitrogen ≥ 0.12g· kg -1 , available phosphorus ≥ 0.03g·kg -1 , and aerobic for 5 days was higher than the other two groups; the humus content was lower than 10g·kg -1 , which did not meet the requirements of humification. Therefore, although the three alternate methods of the first alternate sludge fermentation have met the nutritional requirements, they have not yet met the harmless and humic requirements, and alternate fermentation is required again.
(2)第二次交替 (2) Second alternation
表6可知第二次交替中,最高发酵温度:好氧期3d、5d、7d分别为35.6℃、33.1℃、32.6℃;大肠菌群死亡率:好氧期3d、5d、7d分别为75.0%、55.6%、58.3%;有效氮、有效磷含量:好氧期3d、5d、7d分别为有效氮1.41 g·kg-1、1.45 g·kg-1、1.27g·kg-1,有效磷1.13 g·kg-1、1.39 g·kg-1、1.41g·kg-1;腐殖质含量:好氧期3d、5d、7d分别为8.56 g·kg-1、9.67 g·kg-1、9.39g·kg-1。分析可知,第二次交替后,好氧5天和7天之后,大肠菌的个数降低(达标杀菌阶段),达到绿化用土标准≤100个·g-1,满足无害化要求,但好氧3天的未达到;第二次交替有效氮、有效磷均高于绿化用土的一级标准,即有效氮≥0.12g·kg-1、有效磷≥0.03g·kg-1,有效氮含量是好氧5天和好氧3天的>好氧7天的,而有效磷是好氧7天的最高;腐殖质含量是好氧5天的最高,但腐殖质含量低于园林营养土的腐殖化指标,即腐殖质含量≥10g·kg-1。因此,第二次交替污泥发酵后,好氧5天和7天的方式虽然达到了无害化、营养化要求,但尚未达到腐殖化要求,需要第三次交替发酵。 Table 6 shows that in the second alternation, the highest fermentation temperature: 35.6°C, 33.1°C, and 32.6°C in the 3d, 5d, and 7d of the aerobic period; the mortality rate of coliform bacteria: 75.0% in the 3d, 5d, and 7d of the aerobic period , 55.6%, 58.3%; available nitrogen, available phosphorus content: available nitrogen 1.41 g·kg -1 , 1.45 g·kg -1 , 1.27g·kg -1 , available phosphorus 1.13 g·kg -1 , 1.39 g·kg -1 , 1.41g·kg -1 ; humus content: 8.56 g·kg -1 , 9.67 g·kg -1 , 9.39g· kg -1 . The analysis shows that after the second alternation, after 5 days and 7 days of aerobic conditions, the number of coliform bacteria decreased (standard sterilization stage), reaching the greening soil standard ≤ 100 g -1 , meeting the harmless requirements, but good Oxygen was not reached for 3 days; the second alternate available nitrogen and available phosphorus were all higher than the first-level standard for greening soil, that is, available nitrogen ≥ 0.12g·kg -1 , available phosphorus ≥ 0.03g·kg -1 , available nitrogen content It is aerobic for 5 days and aerobic for 3 days > aerobic for 7 days, and the available phosphorus is the highest for aerobic 7 days; the humus content is the highest for aerobic 5 days, but the humus content is lower than that of the garden nutrient soil. Chemical index, that is, humus content ≥ 10g·kg -1 . Therefore, after the second alternate sludge fermentation, although the aerobic 5-day and 7-day methods have met the requirements of harmlessness and nutrition, they have not yet met the requirements of humification, and a third alternate fermentation is required.
(3)第三次交替 (3) The third alternation
表6可知,第三次交替中,最高发酵温度:好氧期3d、5d、7d分别为37.8℃、47.2℃、45.1℃;大肠菌群死亡率:好氧期3d、5d、7d分别为20.0%、37.5%、60.0%;有效氮、有效磷含量:好氧期3d、5d、7d分别为有效氮1.33 g·kg-1、1.42 g·kg-1、1.47g·kg-1,有效磷1.31 g·kg-1、1.42 g·kg-1、1.37g·kg-1;腐殖质含量:好氧期3d、5d、7d分别为9.65 g·kg-1、12.53 g·kg-1、11.14g·kg-1。分析可知,第三次交替后,好氧5天和7天的方式,大肠菌群的个数继续减少(稳定杀菌阶段),低于绿化用土标准≤100个·g-1;好氧3天的大肠菌仍未达标;三种方式的有效氮、有效磷均高于绿化用土的一级标准,即有效氮≥0.12g·kg-1、有效磷≥0.03g·kg-1;腐殖质含量:好氧期3d低于园林营养土的腐殖化指标10g·kg-1,而好氧期5d、7d均高于园林营养土的腐殖化指标10g·kg-1。三次交替完成后,好氧3天的未达到无害化要求,不能考虑作为生产园林营养土的控制参数,而好氧5天的腐殖质高于好氧7天的,虽然二者有效氮磷含量均较高,但好氧5天的生产周期要短于好氧7天的生产周期。因此,最优的交替方式为好氧5天-厌氧3天的交替方式。
Table 6 shows that in the third alternation, the highest fermentation temperature: 3d, 5d, and 7d in the aerobic period were 37.8°C, 47.2°C, and 45.1°C; the mortality rate of coliform bacteria: 20.0 %, 37.5%, 60.0%; available nitrogen and available phosphorus content: 1.33 g·kg -1 , 1.42 g·kg -1 , 1.47g·kg -1 1.31 g·kg -1 , 1.42 g·kg -1 , 1.37g·kg -1 ; humus content: 9.65 g·kg -1 , 12.53 g·kg -1 , 11.14g on the 3d, 5d, and 7d of the aerobic period, respectively • kg −1 . According to the analysis, after the third alternation, the number of coliform bacteria continued to decrease in the 5-day and 7-day aerobic methods (stable sterilization stage), which was lower than the greening soil standard ≤ 100 g -1 ; aerobic 3 days The coliform bacteria in the three methods are still not up to the standard; the available nitrogen and available phosphorus of the three methods are all higher than the first-level standard of greening soil, that is, available nitrogen ≥ 0.12g·kg -1 , available phosphorus ≥ 0.03g·kg -1 ; humus content: The humification index of garden nutrient soil was lower than 10g·kg -1 in
综合评价Overview
表7 交替法实施结果综合评价分析 Table 7 Comprehensive evaluation and analysis of the implementation results of the alternate method
综合评价分析可知(见表7),好氧期3d、5d、7d的总分分别为45分、82分、64分,三种交替方式的土质评价得分分别为78.7分、91.3分、79.3分,表明第三次交替完后,用三种交替方法分别酵制无害化、营养化、腐殖化的园林营养土的效果是:(好3d-厌3d)×3的交替法最差,其次是(好7d-厌3d)×3的交替法,最好的是(好5d-厌3d)×3的交替法,该方法不仅经济、节约时间,而且发酵效果最好,使得发酵之后的污泥能达到园林营养土的用土要求,为污泥和菇包废料的废物再利用找到了一个合理的去处,有效节约了资源。
According to the comprehensive evaluation analysis (see Table 7), the total scores of
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011102392738A CN102303988B (en) | 2011-08-19 | 2011-08-19 | Method for preparing garden and park nutrient soil by adopting dewatered sludge through fermentation |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011102392738A CN102303988B (en) | 2011-08-19 | 2011-08-19 | Method for preparing garden and park nutrient soil by adopting dewatered sludge through fermentation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN102303988A true CN102303988A (en) | 2012-01-04 |
| CN102303988B CN102303988B (en) | 2012-12-26 |
Family
ID=45377932
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011102392738A Expired - Fee Related CN102303988B (en) | 2011-08-19 | 2011-08-19 | Method for preparing garden and park nutrient soil by adopting dewatered sludge through fermentation |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN102303988B (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103880512A (en) * | 2014-03-31 | 2014-06-25 | 李兆勇 | Rice compound seedling raising substrate and preparation method thereof |
| CN105294186A (en) * | 2015-11-25 | 2016-02-03 | 北京中兰环境工程有限公司 | Garbage treatment method and organic nutrient soil |
| CN105622180A (en) * | 2015-12-17 | 2016-06-01 | 江苏同盛环保技术有限公司 | Process of using garden waste and dewatered sludge to produce landscaping cultivation medium |
| CN108668837A (en) * | 2018-06-21 | 2018-10-19 | 蚌埠天河花卉市场开发有限公司 | Flower nutrient soil and preparation method thereof |
| CN110066071A (en) * | 2019-05-16 | 2019-07-30 | 重庆市机电设计研究院 | A kind of livestock breeding wastewater biological utilisation processing method |
| CN112552097A (en) * | 2020-12-08 | 2021-03-26 | 娄底市朝阳塑胶有限公司 | Method for preparing fertilizer by fermenting food waste |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1337381A (en) * | 2001-09-20 | 2002-02-27 | 郭高友 | Technological process of producing high-quality organic fertilizer with domestic garbage |
| DE10120372A1 (en) * | 2001-04-25 | 2002-10-31 | Franz Dietrich Oeste | Liquid and/or solid, nitrogen-containing organic fertilizer, obtained by reacting humus, humic acid or its salt and manure |
| JP2004099426A (en) * | 2002-05-09 | 2004-04-02 | Yoshiji Sakamoto | Method for producing organic fertilizer utilizing organic waste |
| CN101863692A (en) * | 2009-04-29 | 2010-10-20 | 岳寿松 | Method for preparing bioorganic fertilizer by using city life sludge |
-
2011
- 2011-08-19 CN CN2011102392738A patent/CN102303988B/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10120372A1 (en) * | 2001-04-25 | 2002-10-31 | Franz Dietrich Oeste | Liquid and/or solid, nitrogen-containing organic fertilizer, obtained by reacting humus, humic acid or its salt and manure |
| CN1337381A (en) * | 2001-09-20 | 2002-02-27 | 郭高友 | Technological process of producing high-quality organic fertilizer with domestic garbage |
| JP2004099426A (en) * | 2002-05-09 | 2004-04-02 | Yoshiji Sakamoto | Method for producing organic fertilizer utilizing organic waste |
| CN101863692A (en) * | 2009-04-29 | 2010-10-20 | 岳寿松 | Method for preparing bioorganic fertilizer by using city life sludge |
Non-Patent Citations (2)
| Title |
|---|
| 纪轩等: "脱水污泥堆肥的生产性试验研究", 《中国给水排水》 * |
| 陈朱蕾等: "脱水污泥好氧堆肥化处理工艺中的返料比研究", 《武汉城市建设学院学报》 * |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103880512A (en) * | 2014-03-31 | 2014-06-25 | 李兆勇 | Rice compound seedling raising substrate and preparation method thereof |
| CN105294186A (en) * | 2015-11-25 | 2016-02-03 | 北京中兰环境工程有限公司 | Garbage treatment method and organic nutrient soil |
| CN105294186B (en) * | 2015-11-25 | 2019-07-09 | 北京中兰环境工程有限公司 | A kind of waste disposal method and organic nutrient soil |
| CN105622180A (en) * | 2015-12-17 | 2016-06-01 | 江苏同盛环保技术有限公司 | Process of using garden waste and dewatered sludge to produce landscaping cultivation medium |
| CN108668837A (en) * | 2018-06-21 | 2018-10-19 | 蚌埠天河花卉市场开发有限公司 | Flower nutrient soil and preparation method thereof |
| CN108668837B (en) * | 2018-06-21 | 2021-08-03 | 安徽翰邦科技咨询有限公司 | Flower nutrient soil and preparation method thereof |
| CN110066071A (en) * | 2019-05-16 | 2019-07-30 | 重庆市机电设计研究院 | A kind of livestock breeding wastewater biological utilisation processing method |
| CN112552097A (en) * | 2020-12-08 | 2021-03-26 | 娄底市朝阳塑胶有限公司 | Method for preparing fertilizer by fermenting food waste |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102303988B (en) | 2012-12-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN104529112B (en) | Sludge organism drying method for treating | |
| CN106495945B (en) | A kind of method that soil conditioner is quickly prepared using municipal sludge | |
| CN105016802B (en) | A kind of bioreactor and the method using bioreactor conversion solid organic castoff | |
| CN102557772A (en) | Fermentation device for sludge compost treatment and treatment method using same | |
| CN104384170A (en) | Process and device for biologically treating urban organic refuse and agricultural organic waste | |
| CN101125768A (en) | Method for aerobic composting of kitchen waste to maintain nitrogen by using Mg and P compound salt | |
| CN111454086B (en) | A rail car type anaerobic-aerobic combined fermentation and composting device | |
| CN102303988A (en) | Method for preparing garden and park nutrient soil by adopting dewatered sludge through fermentation | |
| CN101289637B (en) | Method for preparing clean fuel derived from sludge | |
| CN204625491U (en) | Urban waste is utilized to prepare the device of novel ecological cultivation matrix | |
| CN103265154A (en) | Resource utilization and comprehensive treatment process for sewage and manure generated during cultivation | |
| CN103664255A (en) | Organic waste facultative aerobic fermentation composting treatment process | |
| CN102229504A (en) | Method for producing biogas slurry fertilizer having advantages of no biogas slurry odor and high fertilizer efficiency | |
| CN101792339A (en) | Organic solid waste film covering high-temperature aerobic fermentation method | |
| CN114940635A (en) | Method for reducing emission of greenhouse gas by organic solid waste semipermeable membrane fermentation and preparing microbial fertilizer | |
| CN109265206A (en) | Device and method for reducing nitrogen dioxide release in solid waste composting process by utilizing decomposed sludge | |
| CN106116734A (en) | Aerobic composting device and aerobic composting method for organic solid waste | |
| CN101774835B (en) | Composting material composition and composting method | |
| CN110407191A (en) | A method of straw biological charcoal is prepared using hydrothermal carbonization | |
| CN206417986U (en) | A kind of high-temperature aerobic fermentation sludge treatment equipment | |
| CN107640879A (en) | Application of the municipal sludge in vegetation soil after municipal sludge/deodorization | |
| CN102408259A (en) | Solid waste co-composting stepwise regulation and control system and method | |
| CN113526993B (en) | An intelligent control method and system for treating livestock and poultry manure with drum fermentation composting | |
| CN101033154A (en) | Method and device for fast composting kitchen residual by catalytic decomposing agent | |
| CN111763106A (en) | A Construction Model of Green Energy Ecological Town |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right |
Owner name: CHONGQING LANDSCAPE AND GARDENING RESEARCH INSTITU Effective date: 20130204 |
|
| C41 | Transfer of patent application or patent right or utility model | ||
| C53 | Correction of patent of invention or patent application | ||
| CB03 | Change of inventor or designer information |
Inventor after: Guo Weihua Inventor after: Xian Xudong Inventor after: Liu Nana Inventor after: Bao Bing Inventor after: Hu Yanyan Inventor after: He Bing Inventor after: Chen Xiang Inventor after: Liu Yunxiao Inventor before: Guo Weihua Inventor before: Xian Xudong Inventor before: Liu Nana Inventor before: Bao Bing Inventor before: Hu Yanyan Inventor before: He Bing Inventor before: Chen Xiang Inventor before: Liu Yunxiao |
|
| TR01 | Transfer of patent right |
Effective date of registration: 20130204 Address after: 400044 Shapingba District Sha Street, No. 174, Chongqing Patentee after: Chongqing University Patentee after: CHONGQING LANDSCAPE AND GARDENING RESEARCH INSTITUTE Address before: 400044 Shapingba District Sha Street, No. 174, Chongqing Patentee before: Chongqing University |
|
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121226 Termination date: 20140819 |
|
| EXPY | Termination of patent right or utility model |







