CN102286767B - Composite coating on surface of magnesium alloy biological implant material and preparation method thereof - Google Patents

Composite coating on surface of magnesium alloy biological implant material and preparation method thereof Download PDF

Info

Publication number
CN102286767B
CN102286767B CN2011101738669A CN201110173866A CN102286767B CN 102286767 B CN102286767 B CN 102286767B CN 2011101738669 A CN2011101738669 A CN 2011101738669A CN 201110173866 A CN201110173866 A CN 201110173866A CN 102286767 B CN102286767 B CN 102286767B
Authority
CN
China
Prior art keywords
magnesium alloy
surface
layer
magnesium
step
Prior art date
Application number
CN2011101738669A
Other languages
Chinese (zh)
Other versions
CN102286767A (en
Inventor
杨巍
汪爱英
柯培玲
张栋
代伟
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to CN2011101738669A priority Critical patent/CN102286767B/en
Publication of CN102286767A publication Critical patent/CN102286767A/en
Application granted granted Critical
Publication of CN102286767B publication Critical patent/CN102286767B/en

Links

Abstract

本发明公开了一种镁合金生物植入材料表面的复合涂层,该复合涂层由位于镁合金基体表面的过渡层,以及位于该过渡层表面的DLC薄膜层组成;过渡层是利用微弧氧化技术,使镁合金基体表层的镁原子原位形成的氧化物多孔膜;并且该氧化物多孔膜的表面孔径小于或等于1000nm,过渡层的厚度为3~15μm,DLC薄膜层的厚度为300~1000nm。 The present invention discloses a composite coating A magnesium alloy biological material implant surface, the composite coating located at the surface of the magnesium alloy matrix transition layer, and the DLC film surface layer is a composition of the transition layer; using micro-arc transition oxidation technology, the magnesium alloy substrate a porous film of magnesium oxide surface layer formed in situ atoms; and the surface pore size of the porous oxide film is less than or equal to 1000nm, the thickness of the transition layer of 3 ~ 15μm, the thickness of the DLC thin film layer is 300 ~ 1000nm. 与现有的镁合金生物植入材料相比,本发明的复合涂层是一种具有生物相容性、抗腐耐磨性能的复合涂层,其耐蚀性显著优于Ti/DLC复合涂层,与镁合金基体具有优良的膜基结合力,能够实现对镁合金基体表面的有益改性,促进镁合金生物植入材料在生物体中的应用。 Compared with the conventional biological implant material magnesium alloy, composite coatings of the present invention is a biocompatible, corrosion wear resistance of composite coatings, the corrosion resistance was significantly better than Ti / DLC composite coating layer, and the magnesium alloy substrate having excellent adhesion strength, it is possible to realize a beneficial modification of the surface of the magnesium alloy matrix, promote the application of magnesium alloy implant of biological material in the organism.

Description

一种镁合金生物植入材料表面的复合涂层及其制备方法 A magnesium alloy composite coating biological implant and method for preparing the surface of the material

技术领域 FIELD

[0001] 本发明涉及生物医用金属植入材料技术领域,具体涉及一种具有生物相容性,与镁合金基体具有优良的膜基结合力,能够改善镁合金生物植入材料的抗腐耐磨性能的表面复合涂层及其制备方法。 [0001] The present invention relates to biomedical technology field of metallic implant materials, particularly relates to a biocompatible, magnesium alloy substrate having excellent adhesion strength, wear and corrosion can be improved biological implant material magnesium alloy surface of the composite coating and preparation method performance.

背景技术 Background technique

[0002] 骨和关节系统是人体主要承受负荷的组织,其磨损后的修复和替换材料应有较高的力学强度。 [0002] Bone and joint systems are mainly exposed to human tissue load, its repair and replacement after wear material should have high mechanical strength. 镁合金作为硬组织植入材料,其力学性能较好地满足了作为骨科植入材料的要求,能够有效避免因造成骨质疏松而需二次手术取出的问题;此外,镁合金降解产物与生物体相容,不会对人体产生明显的负作用,而且微量释放的镁离子对组织生长有益,因此,目前已经开展了以镁合金作为生物植入材料,例如骨固定材料、多孔骨修复材料以及心血管支架等材料的生物相容性研究以及临床应用研究。 Magnesium alloy as hard tissue implant material, its mechanical properties better meet the requirements as orthopedic implant material, can effectively avoid the problems caused by osteoporosis and need a second operation to remove; In addition, the magnesium alloy and biological degradation product body compatible, without significant negative effects on the human body, and the release of trace amounts of magnesium ions beneficial for the growth of tissue, therefore, have been carried out as a biological implantation magnesium alloy material, for example a bone fixation material, a porous bone repair material and research and clinical application of biocompatible materials for cardiovascular stents.

[0003] 当前,制约镁合金临床应用的原因众多,例如长期体内生物相容性评价,包括血液相容性、细胞相容性等,其中耐蚀性差是制约镁合金临床应用的主要原因之一。 [0003] Currently, many reasons restrict clinical application of magnesium alloy, for example long-term in vivo biocompatibility evaluation, including blood compatibility, compatibility and other cells, wherein the poor corrosion resistance of magnesium alloy is one of the main constraints clinical applications . 研究表明:纯镁及其合金在pH为7.4〜7.6且富含氯离子的复杂生理系统环境中的腐蚀速率过快,一旦植入生物体内部,在组织没有充分愈合前,植入物已丧失其机械完整性。 Studies have shown that: pure magnesium and its alloys at a pH of 7.4~7.6 corrosion rate rich chloride ions and complex physiological system environment too, before once implanted inside the living body, is not sufficiently healed in the tissue, the implant has lost its mechanical integrity. 因此,研究镁及镁合金的腐蚀性本质,从而通过表面改性技术完善其性能,是镁合金作为生物植入材料被广泛应用在生物体中的关键。 Thus, corrosive nature of Magnesium and magnesium alloys, which improve its properties by surface modification technology, as the magnesium alloy is the key to implant biological material is widely used in the organism.

[0004] 类金刚石(DLC)膜具有高硬度、低摩擦系数以及强化学惰性等优异特性,能够有效隔离基体与工作环境,是一种基体较为理想的抗腐耐磨涂层;而且,作为生物材料,DLC薄膜的生物相容性也已为国内外众多研究学者所报道,因此,在镁合金基体的表面制备DLC薄膜,不仅能够保证镁合金生物植入材料的生物相容性,而且能够增强该植入材料的抗腐蚀性能,为镁合金生物植入材料广泛应用在生物体中提供了理论可行性与实验基础。 [0004] The diamond-like carbon (DLC) film having excellent properties high hardness, low coefficient of friction and enhanced chemical inertness, can be effectively isolated from the substrate and the working environment, a matrix is ​​ideal corrosion wear-resistant coating; Further, as a biological biocompatibility DLC film has for many domestic and foreign researchers reported, therefore, the DLC films deposited surface of the magnesium alloy matrix, not only to ensure a magnesium alloy biocompatible implant of biological material, but can be enhanced the corrosion resistance can implant material, the implant of biological material is a magnesium alloy are widely used to provide a theoretical and experimental basis for the feasibility in the organism.

[0005] 但是,由于DLC薄膜具有高残余应力,易引起薄膜开裂、剥落和失效,因而限制膜层生长,造成膜基结合力下降,这是目前严重制约DLC薄膜作为抗腐耐磨涂层的关键因素,尤其是在化学活性高、硬度低的“软基体”材料表面,例如镁及镁合金基体表面,制备生物相容DLC薄膜的难度也将更大。 [0005] However, since the DLC film has a high residual stress, the film can lead to cracking, spalling and failure, thus limiting the growth of the film, resulting in adhesion strength decreases, which is a serious constraint DLC film as a wear-resistant coating corrosion the difficulty of key factors, especially high chemical activity on the surface, a low hardness "soft base" material, for example, magnesium and magnesium alloy substrate surface biocompatible DLC films prepared will be greater. 因此,增强镁合金基体与DLC薄膜的膜基结合力,是镁合金生物植入材料被广泛应用于生物体中的有效途径之一。 Thus, enhanced adhesion strength magnesium alloy substrate and the DLC film, is an effective way of magnesium alloy implant materials are widely used in the biological organism.

[0006] 微弧氧化(MAO)技术是一种能够在镁、铝、钛等合金表面简易构筑陶瓷质氧化物多孔膜结构的技术,其工作原理是将镁、铝、钛等合金制品做阳极,不锈钢做阴极,置于脉冲电场环境的电解液中,使制品表面产生微弧放电而生成一层与基体以冶金方式结合的氧化物陶瓷层。 [0006] The micro-arc oxidation (MAO) technology is a technology capable of constructing a simple structure of the ceramic porous film on the surface quality of the oxide of magnesium, aluminum, titanium alloy, its working principle is magnesium, aluminum, titanium alloy article as an anode , a cathode made of stainless steel, placed in a pulsed electric field in the electrolyte environment, the surface of the article to generate an oxide ceramic layer and the substrate layer metallurgically bonded micro-arc discharge is generated. 利用微弧氧化技术在镁合金生物植入材料表面构筑氧化物陶瓷层作为改性涂层,以提高镁合金基体的耐蚀性,通过选配合适的电解液体系使其它有害元素不会被引入该改性涂层,从而避免该改性涂层与生物体环境不相容,这种方法目前已在钛合金生物植入材料领域有所应用。 By micro-arc oxidation in biological implant material magnesium alloy surface layer is constructed as a modifying ceramic oxide coating to improve the corrosion resistance of magnesium alloy matrix, by matching the appropriate electrolyte system so that other harmful elements are not introduced into the modification coating layer, so as to avoid the modification coating layer is incompatible with the living environment, this method has been applied in the field of implantable biological material of titanium alloy. 但是,微弧氧化产生的氧化物陶瓷层表面存在微孔,难以在复杂生理环境中对镁合金生物植入材料起到有效的防护作用。 However, the surface of the oxide ceramic layer produced by micro-arc oxidation presence of micropores, the magnesium alloy is difficult to play an effective biological protective role in complex physiological environment implant material. [0007] 因此,如何通过表面改性使镁合金生物植入材料具有优良的生物相容性和抗腐蚀性,是促进镁合金生物植入材料在生物体中应用的重要课题。 [0007] Accordingly, how the surface modification by making the implant of biological material having a magnesium alloy excellent biocompatibility and corrosion resistance, the magnesium alloy is an important issue to promote biological implant material is applied in the organism.

发明内容 SUMMARY

[0008] 本发明的技术目的是针对镁合金作为生物植入材料存在的不足,提供一种镁合金生物植入材料表面的复合涂层及其制备方法,该复合涂层具有生物相容性,能够改善镁合金生物植入材料的抗腐耐磨性能,促进其在生物体中的应用。 [0008] The technical object of the present invention is directed to a magnesium alloy as the shortcomings of the biological implant material, provides a composite coating and method for preparing biological implantation material is a magnesium alloy surface, the composite coating is biocompatible, magnesium alloy corrosion wear resistance can be improved biological implant material, promote the application in the organism.

[0009] 本发明实现上述技术目的所采用的技术方案为:一种镁合金生物植入材料表面的复合涂层,由位于镁合金基体表面的过渡层,以及位于该过渡层表面的DLC薄膜层组成;该过渡层是利用微弧氧化技术,使镁合金基体表层的镁原子原位形成的氧化物多孔膜,并且该氧化物多孔膜的表面孔径小于或等于IOOOnm ;该过渡层的厚度为3〜15 μ m,DLC薄膜层的厚度为300〜lOOOnm。 [0009] The present invention achieves the above technical object adopts the following technical scheme: A magnesium alloy composite coating implantable biological material surface, the substrate surface is located magnesium alloy transition layer, the transition layer is located, and the surface of the DLC film layer composition; transition layer using micro-arc oxidation, the magnesium alloy substrate a porous film of magnesium oxide surface atoms formed in situ, and the surface pore size of the porous oxide film is less than or equal to IOOOnm; thickness of the buffer layer is approximately 3 ~15 μ m, thickness of the DLC thin film layer is 300~lOOOnm.

[0010] 为了进一步降低DLC薄膜的内应力,改善其生物相容性,在DLC薄膜中掺杂活性组元,例如掺杂N、Ti组元。 [0010] In order to further reduce the internal stress of the DLC films, to improve their biocompatibility, DLC doped with active components in the film, such as doped N, Ti component.

[0011] 上述镁合金生物植入材料表面的复合涂层与镁合金基体的膜基体系纳米压痕硬度值为5〜20GPa,与钢球对磨的摩擦系数在0.2以下,腐蚀电流密度显著低于钛作为过渡层的Ti/DLC复合涂层。 [0011] The above-described composite coating film-based systems biological implant material magnesium alloy surface with a magnesium alloy matrix nanoindentation hardness value 5~20GPa, and the ball mill in the coefficient of friction of 0.2 or less, a significantly lower corrosion current density titanium Ti as the buffer layer / DLC composite coating.

[0012] 本发明镁合金生物植入材料表面的复合涂层的制备方法包括如下步骤: [0012] Preparation of the composite coating of the present invention the magnesium alloy implant of biological material having a surface comprising the steps of:

[0013] 步骤1:依据镁合金微弧氧化电解液的选配原则,选用无有害元素引入的化学试齐U,配制出适合医用镁合金表面改性要求的硅酸盐系微弧氧化电解液; [0013] Step 1: According to the principles Microarc optional oxidation of the electrolyte, the choice of chemically homogeneous U test no harmful elements introduced to prepare a micro-arc oxidation silicate electrolyte for magnesium alloy surface modification of the medical requirements ;

[0014] 步骤2:采用直流脉冲微弧氧化电源,通过调整单脉冲输出能量及氧化时间,使镁合金基体表层的镁原子原位形成厚度为3〜15 μ m,表面孔径小于或等于IOOOnm的微弧氧化物多孔膜; [0014] Step 2: DC pulse power supply micro-arc oxidation, by adjusting the single pulse output energy and the oxidation time, the magnesium matrix atoms situ magnesium alloy surface layer having a thickness of 3~15 μ m, surface pore size of less than or equal IOOOnm Microarc oxide porous film;

[0015] 步骤3:经步骤2处理后的镁合金基体进行超声清洗,清除镁合金基体表面微弧氧化多孔膜的微孔中含有的残余电解液后烘干; [0015] Step 3: The process step after the magnesium substrate 2 was subjected to ultrasonic cleaning, remove the magnesium substrate surface micro-arc electrolytic oxidation residue contained in micropores of the porous film drying;

[0016] 步骤4:经步骤3处理后的镁合金基体置于离子束复合磁控溅射沉积系统,抽真空,然后通过离子源向镀膜腔体里通入乙炔气体,在镁合金基体上施加-100〜-300V的脉冲偏压,开启离子源,电流为0.1〜0.5A,在微弧氧化多孔膜表面沉积厚度为300〜IOOOnm的DLC薄膜层。 [0016] Step 4: After Step magnesium substrate 3 is placed after the ion beam treatment composite magnetron sputtering system, evacuated, then purged with acetylene gas in the coating chamber by an ion source, is applied to the magnesium alloy substrate pulse bias -100~-300V, and the ion source is turned on, current is 0.1~0.5A, deposited on the surface micro-arc oxidation in the membrane thickness of a DLC film layer 300~IOOOnm.

[0017] 作为优选,所述的步骤2中,直流脉冲微弧氧化电源的单脉冲输出电压为280〜350V,频率为400〜800Hz,占空比为5〜10%,氧化时间为3〜lOmin。 [0017] Advantageously, the step 2, the output voltage of the DC single pulse micro-arc oxidation power pulse is 280~350V, frequency 400~800Hz, the duty ratio is 5 to 10%, the oxidation time is 3~lOmin .

[0018] 作为优选,所述的步骤4中,通过离子源向镀膜腔体里同时通入氮气,从而得到氮掺杂的DLC薄膜层,具体过程为: [0018] Advantageously, the step 4, while introducing nitrogen gas through the coating chamber in the ion source, to obtain nitrogen-doped DLC thin film layer, the specific process is:

[0019] 经步骤3处理后的镁合金基体置于离子束复合磁控溅射沉积系统,抽真空,然后通过离子源向镀膜腔体里通入乙炔和氮气的混合气体,在氧化镁合金基体上施加-100〜-300V的脉冲偏压,开启离子源,电流为0.1〜0.5A,在微弧氧化多孔膜表面沉积厚度为300〜IOOOnm的氮掺杂的DLC薄膜层。 [0019] step over magnesium substrate treated magnesium alloy substrate 3 is placed in the composite beam magnetron sputtering system, evacuated, and then a gas mixture of acetylene and nitrogen in the film by the ion source chamber, applying a pulsed bias -100~-300V, and the ion source is turned on, current is 0.1~0.5A, deposited on the surface of the porous oxide film thickness Microarc 300~IOOOnm nitrogen-doped DLC film layer.

[0020] 作为优选,所·述的步骤4中,同时开启溅射源,以钛为溅射靶材,在微弧氧化多孔膜表面沉积钛掺杂的薄膜层具体过程为:[0021] 经步骤3处理后的镁合金基体置于离子束复合磁控溅射沉积系统,抽真空,然后通过离子源向镀膜腔体里通入乙炔气体,在氧化镁合金基体上施加-100〜-300V的脉冲偏压,开启离子源,电流为0.1〜0.5A,以钛为溅射靶材,开启溅射源,电流在I〜3A,在微弧氧化多孔膜表面沉积厚度为300〜IOOOnm的钛掺杂的DLC薄膜层。 [0020] Advantageously, the said step-4, while the open sputtering source, the titanium sputtering target micro-arc oxidation in the surface of the porous film is deposited a thin film layer of titanium doped specific process: [0021] by step 3 the processed substrate was placed magnesium ion beam composite magnetron sputtering system, evacuated, and then introduced into the ion source of acetylene gas through the coating chamber, the -100~-300V is applied on magnesia alloy matrix pulsed bias, the ion source is turned on, current is 0.1~0.5A, the titanium sputtering target, a sputtering source is turned on, current I~3A, deposited on the surface micro-arc oxidation in a film thickness of the porous titanium-doped 300~IOOOnm miscellaneous DLC film layer.

[0022] 与现有技术相比,本发明以镁合金生物植入材料为基体,在其表面首先利用微弧氧化技术引入厚度为3〜15 μ m、表面孔径在IOOOnm以内的微弧氧化陶瓷层作为过渡层,然后在该过渡层表面制备厚度为300〜IOOOnm的DLC薄膜层,形成具有优异性能的MA0/DLC复合涂层,该复合涂层的有益性能表现如下: [0022] Compared with the prior art, the present invention is to implant the biological material is a magnesium alloy substrate, its surface is first introduced by micro arc oxidation thickness is 3~15 μ m, the micro-arc oxidation ceramic surface pore size within the IOOOnm layer as a transition layer, the thickness of the surface preparation and the transition layer is formed MA0 / DLC composite coating with excellent properties for 300~IOOOnm a DLC thin film layer, the beneficial performance of the composite coating as follows:

[0023] (I)微弧氧化陶瓷层作为过渡层,其工艺简单、环保、涂层结构可控、不引入对人体有害的元素,具有生物相容性;DLC薄膜具有生物相容性,尤其是掺杂N、Ti等活性组元的DLC薄膜,将进一步降低DLC薄膜的内应力,改善其生物相容性;因此,该复合涂层具有优异的生物相容性,如细胞相容性、血液相容性等; [0023] (I) micro-arc oxidation ceramic layer as a transition layer, which process is simple, environmentally friendly, controllable coating structure, without introducing harmful element, biocompatible; the DLC film has biocompatibility, in particular doped N, active components such as Ti DLC film, the DLC film to further reduce stress and improve their biocompatibility; therefore, the composite coating has excellent biocompatibility, cell compatibility, such as, blood compatibility and the like;

[0024] (2)由于MA0/DLC复合涂层中过渡层的存在,将DLC薄膜层与镁合金基体的结合转变为DLC薄膜层与高硬度的多孔陶瓷层的结合,有利于DLC薄膜释放残余应力并提高机械咬合力,实现膜基结合力的大幅度增加; [0024] (2) due to the presence MA0 / DLC transition layer composite coating layer, the bonding layer and the DLC films magnesium alloy matrix into a binding layer and a DLC film porous ceramic layer of high hardness, DLC films facilitate release of the residue bite force and improve the mechanical stresses, to achieve a substantial increase in adhesion strength;

[0025] (3)DLC薄膜层自身的化学惰性以及多孔陶瓷层与镁合金基体的冶金结合有利于减缓界面电化学腐蚀,改善膜基体系在生物体环境中的耐蚀性,其耐蚀性显著优于Ti/DLC复合涂层; [0025] (3) DLC film layer itself chemically inert porous ceramic layer and the magnesium alloy metallurgy binding matrix interface facilitates mitigation electrochemical corrosion, to improve the environment in a living body corrosion film-based system, the corrosion resistance significantly better than Ti / DLC composite coating;

[0026] (4)DLC薄膜层所具有的高硬度、低摩擦系数、MA0/DLC复合涂层的强膜基界面结合状态以及涂层表面多孔结构可容纳生物体液的结构特点,有利于提高膜基体系的摩擦学特性,达到与钢球对磨的摩擦系数在0.2以下。 [0026] (4) DLC film layer having a high hardness, low coefficient of friction, MA0 / DLC composite coating film base strong bond interface and the structural characteristics of the coating surface of the porous structure can accommodate biological fluids, help to improve the film Tribological Behavior-based systems, and the ball reaches the coefficient of friction of 0.2 or less in the mill.

[0027] 因此,本发明镁合金生物`植入材料表面的MA0/DLC复合涂层是一种具有生物相容性、抗腐耐磨性能的复合涂层,并且与镁合金基体具有优良的膜基结合力,能够实现对镁合金基体表面的有益改性,满足镁合金材料在生物医用植入材料领域中的要求,促进镁合金生物植入材料在生物体中的应用。 [0027] Thus, the biological `MA0 magnesium alloy surface of the implant material of the present invention / DLC composite coating is a biocompatible, corrosion wear resistance of the composite coating and have excellent film and the magnesium alloy substrate group bonding force can be achieved advantageous modification of the substrate surface of the magnesium alloy, the magnesium alloy material to meet the requirements in the field of biological medical implant material, the implant facilitate application of magnesium alloy material in the biological organism.

附图说明 BRIEF DESCRIPTION

[0028] 图1是本发明实施例1中的MA0/DLC复合涂层与现有涂层在浓度为3.5%的NaCl溶液中的极化曲线。 [0028] FIG. 1 is a MA0 embodiment of the present invention in Example 1 / DLC coating and the prior coating composite at a concentration of 3.5% polarization curve NaCl solution.

具体实施方式 Detailed ways

[0029] 以下结合具体实施例对本发明作进一步详细说明。 [0029] The following embodiments in conjunction with specific embodiments of the present invention is described in further detail.

[0030] 实施例1: [0030] Example 1:

[0031] 本实施例中,镁合金生物植入材料表面的复合涂层为MA0/DLC复合涂层,即镁合金基体表面与DLC薄膜层之间有过渡层,该过渡层是利用微弧氧化技术,使镁合金基体表层的镁原子原位形成的氧化物多孔膜,并且该氧化物多孔膜的表面孔径最大值为500nm,该过渡层的厚度为5 μ m, DLC薄膜层的厚度为600nm。 [0031] In this embodiment, a magnesium alloy composite coating the surface of a biological material implant MA0 / DLC composite coating, i.e., there is a transition layer between the surface of the magnesium alloy matrix DLC thin film layer, the transition layer is the use of micro-arc oxidation technology, the magnesium oxide substrate surface layer porous film of magnesium atoms formed in situ, and the maximum surface pore size of the porous oxide film is 500 nm, the thickness of the buffer layer is approximately 5 μ m, thickness of the DLC thin film layer is 600nm .

[0032] 上述镁合金生物植入材料表面的复合涂层的制备方法包括如下步骤: [0032] The method of preparing a magnesium alloy composite coating the surface of a biological implant material comprising the steps of:

[0033] 步骤1:镁合金基体经机械抛光,选用无有害元素引入的化学试剂,配制出适合医用镁合金表面改性要求的硅酸盐系微弧氧化电解液; [0033] Step 1: magnesium alloy substrate by mechanical polishing, no harmful element into the selected chemical agent to prepare a micro-arc oxidation silicate electrolyte for magnesium alloy surface modified medical requirements;

[0034] 步骤2:采用直流脉冲微弧氧化电源,调整单脉冲输出电压为300V,频率为500Hz,占空比为5%,氧化时间为5min,在镁合金基体表面制备厚度为5 μ m,表面孔径最大值为500nm的微弧氧化陶瓷层; [0034] Step 2: DC pulse power supply micro-arc oxidation, to adjust the output voltage of 300V single pulse, a frequency of 500Hz, the duty ratio is 5%, the oxidation time of 5min, in the preparation of the surface of the magnesium alloy matrix having a thickness of 5 μ m, maximum surface pore size of the micro-arc oxidation ceramic layer is 500nm;

[0035] 步骤3:经步骤2处理后的镁合金基体经丙酮超声清洗,清除镁合金基体表面微弧氧化陶瓷层微孔中含有的残余电解液后烘干; [0035] Step 3: The process step after the magnesium alloy matrix 2 ultrasonic cleaning with acetone, the residual electrolyte after clearing micro-arc oxidation ceramic layer micropores magnesium alloy matrix containing drying surface;

[0036] 步骤4:经步骤3处理后的镁合金基体置于离子束复合磁控溅射沉积系统,预抽真空到2X KT5Torr ;通过离子源向镀膜腔体里通入气体流量为40sCCm的乙炔,在微弧氧化镁合金基体上施加-100V的脉冲偏压,开启离子源,电流为0.2A,维持此过程60min,在陶瓷层表面沉积厚度为600 nm的DLC薄膜层。 [0036] Step 4: After Step magnesium substrate 3 is placed after the ion beam treatment composite magnetron sputtering system, pre-vacuum to 2X KT5Torr; into the gas flow through the ion source in the plating chamber acetylene 40sCCm , is applied to the micro-arc magnesium alloy matrix pulse bias of -100V, the ion source is turned on, a current of 0.2A, the process to maintain 60min, the surface of the ceramic layer is deposited at 600 nm thick layer of DLC films.

[0037] 上述得到的MA0/DLC复合涂层的纳米压痕硬度值为12GPa,与钢球对磨的摩擦系数在0.2以下,腐蚀电流密度显著低于Ti/DLC复合涂层(如图1所示),且该复合涂层具有优良的生物相容性。 [0037] Nano-indentation hardness obtained above MA0 / DLC composite coating is 12 GPa, and the ball mill in the coefficient of friction of 0.2 or less, the corrosion current density is significantly lower than that of Ti / DLC composite coating (FIG. 1 shown), and the composite coating layer having excellent biocompatibility.

[0038] 实施例2: [0038] Example 2:

[0039] 本实施例中,镁合金生物植入材料表面的复合涂层为MA0/N-DLC复合涂层,即镁合金基体表面与氮掺杂的DLC薄膜层(简称为N-DLC薄膜层)之间有过渡层,该过渡层是利用微弧氧化技术,使镁合金基体表层的镁原子原位形成的氧化物多孔膜,并且该氧化物多孔膜的表面孔径最大值为400nm,该过渡层的厚度为3 μ m, N-DLC薄膜层的厚度为500nm。 [0039] N-DLC thin film layer of the present embodiment, a magnesium alloy composite coating the surface of a biological material implant MA0 / N-DLC composite coating, i.e., the surface of the magnesium alloy matrix nitrogen-doped DLC thin film layer (referred to as between) transition layer, the transition layer is the use of micro-arc oxidation, the oxide film of the porous substrate surface layer of the magnesium alloy of magnesium atoms formed in situ, and the maximum surface pore size of the porous oxide film is 400 nm, the transition thickness of the layer was 3 μ m, the thickness of the N-DLC thin film layer is 500nm.

[0040] 上述镁合金生物植入材料表面的复合涂层的制备方法包括如下步骤: [0040] The method of preparing a magnesium alloy composite coating the surface of a biological implant material comprising the steps of:

[0041] 步骤1:镁合金基体经机械抛光,选用无有害元素引入的化学试剂,配制出适合医用镁合金表面改性要求的硅酸盐系微弧氧化电解液; [0041] Step 1: magnesium alloy substrate by mechanical polishing, no harmful element into the selected chemical agent to prepare a micro-arc oxidation silicate electrolyte for magnesium alloy surface modified medical requirements;

[0042] 步骤2:采用直流脉冲微弧氧化电源,调整单脉冲输出电压为280V,频率为800Hz,占空比为5 %,氧化时间为3min,在镁合金基体表面制备厚度为3 μ m,表面孔径最大值为400nm的微弧氧化陶瓷层; [0042] Step 2: DC pulse power supply micro-arc oxidation, to adjust the output voltage of 280V single pulse, a frequency of 800Hz, the duty ratio is 5%, the oxidation time 3min, in the preparation of the surface of the magnesium alloy matrix having a thickness of 3 μ m, maximum surface pore size of the micro-arc oxidation ceramic layer is 400nm;

[0043] 步骤3:经步骤2处理后的镁合金基体经丙酮超声清洗,清除镁合金基体表面微弧氧化陶瓷层微孔中含有的残余电解液后烘干; [0043] Step 3: The process step after the magnesium alloy matrix 2 ultrasonic cleaning with acetone, the residual electrolyte after clearing micro-arc oxidation ceramic layer micropores magnesium alloy matrix containing drying surface;

[0044] 步骤4:经步骤3处理后的镁合金基体置于自主研制的离子束复合磁控溅射沉积系统,预抽真空到2X 10_5Torr ;通过离子源向镀膜腔体里通入30sccm的乙炔和IOsccm的氮气的混合气体,在微弧氧化镁合金基体上施加-100V的脉冲偏压,开启离子源,电流为 [0044] Step 4: The magnesium substrate is placed after the ion beam treatment step 3 compound magnetron sputtering system independently developed, pre-vacuum to 2X 10_5Torr; 30sccm into the coating chamber through the ion source in acetylene and a mixed gas of nitrogen IOsccm applying pulsed bias of -100V on microarc magnesium alloy substrate, an ion source is turned on, current is

0.2A,维持此过程60min,在陶瓷层表面沉积厚度为500nm的N-DLC薄膜层。 0.2A, this process is maintained 60min, the thickness of the ceramic layer deposited on the surface of N-DLC thin film layer of 500nm.

[0045] 上述得到的MA0/N-DLC复合涂层的纳米压痕硬度值为6GPa,与钢球对磨的摩擦系数在0.2以下,腐蚀电流密度显著低于Ti/DLC复合涂层,且该复合涂层具有优良的生物相容性。 [0045] The obtained MA0 / N-DLC nanoindentation hardness of the composite coating is 6 GPa, and the ball mill in the coefficient of friction of 0.2 or less, the corrosion current density is significantly lower than the Ti / DLC composite coating, and the composite coating having excellent biocompatibility.

[0046] 实施例3: [0046] Example 3:

[0047] 本实施例中,镁合金生物植入材料表面的复合涂层为MAO/T1-DLC复合涂层,即镁合金基体表面与钛掺杂的DLC薄膜层(简称为T1-DLC薄膜层)之间有过渡层,该过渡层是利用微弧氧化技术,使镁合金基体表层的镁原子原位形成的氧化物多孔膜,并且该氧化物多孔膜的表面孔径最大值为800nm,该过渡层的厚度为12μπι,T1-DLC薄膜层的厚度为800nmo[0048] 上述镁合金生物植入材料表面的复合涂层的制备方法包括如下步骤: [0047] In this embodiment, a magnesium alloy composite coating the surface of a biological material implant MAO / T1-DLC composite coating, i.e., the surface of the magnesium alloy matrix with the titanium-doped DLC thin film layer (referred to as T1-DLC film layer between) transition layer, the transition layer is the use of micro-arc oxidation, the oxide film of the porous substrate surface layer of the magnesium alloy of magnesium atoms formed in situ, and the maximum surface pore size of the porous oxide film is 800 nm, the transition thickness of the layer of 12μπι, the thickness T1-DLC thin film layer is 800nmo [0048] the method of preparing a magnesium alloy composite coating the surface of the biological implant material comprising the steps of:

[0049] 步骤1:镁合金基体经机械抛光,选用无有害元素引入的化学试剂,配制出适合医用镁合金表面改性要求的硅酸盐系微弧氧化电解液; [0049] Step 1: magnesium alloy substrate by mechanical polishing, no harmful element into the selected chemical agent to prepare a micro-arc oxidation silicate electrolyte for magnesium alloy surface modified medical requirements;

[0050] 步骤2:采用直流脉冲微弧氧化电源,调整单脉冲输出电压为350V,频率为450Hz,占空比为8%,氧化时间为8min,在镁合金基体表面制备厚度为12 μ m,表面孔径最大值为SOOnm的微弧氧化陶瓷层; [0050] Step 2: DC pulse power supply micro-arc oxidation, to adjust the output voltage of 350V single pulse, a frequency of 450Hz, 8% duty cycle, the oxidation time of 8min, in the preparation of the surface of the magnesium alloy matrix having a thickness of 12 μ m, maximum surface pore size of the micro-arc oxidation SOOnm ceramic layer;

[0051] 步骤3:经步骤2处理后的镁合金基体经丙酮超声清洗,清除镁合金基体表面微弧氧化陶瓷层微孔中含有的残余电解液后烘干; [0051] Step 3: The process step after the magnesium alloy matrix 2 ultrasonic cleaning with acetone, the residual electrolyte after clearing micro-arc oxidation ceramic layer micropores magnesium alloy matrix containing drying surface;

[0052] 步骤4:经步骤3处理后的镁合金基体置于自主研制的离子束复合磁控溅射沉积系统,预抽真空到2X10_5Torr ;通过离子源向镀膜腔体里通入乙炔气体,在微弧氧化镁合金基体上施加-100V的脉冲偏压,开启离子源,电流为0.2A,以Ti为溅射靶材,开启溅射源,电流在2A,维持此过程70min,在陶瓷层表面沉积厚度为800nm的T1-DLC薄膜层。 [0052] Step 4: After Step magnesium substrate 3 is placed after the ion beam treatment composite magnetron sputtering system independently developed, pre-vacuum to 2X10_5Torr; with acetylene gas in the coating chamber by an ion source, in applying the pulse bias of -100V microarc magnesium alloy substrate, an ion source is turned on, a current of 0.2A, Ti as the sputtering target, a sputtering source is turned on, current in. 2A, 70min maintaining this process, the surface of the ceramic layer depositing a thin film having a thickness of T1-DLC layer of 800nm.

[0053] 上述得到的MAO/T1-DLC复合涂层的纳米压痕硬度值为lOGPa,与钢球对磨的摩擦系数在0.2以下,腐蚀电流密度显著低于Ti/DLC复合涂层,且该复合涂层具有优良的生物相容性。 [0053] The nano-indentation hardness MAO / T1-DLC composite coating obtained was lOGPa, and the ball mill in the coefficient of friction of 0.2 or less, the corrosion current density is significantly lower than the Ti / DLC composite coating, and the composite coating having excellent biocompatibility. · ·

Claims (7)

1.一种镁合金材料作为生物植入材料的应用,所述的镁合金材料是由镁合金基体与其表面的复合涂层组成,所述的复合涂层是由位于镁合金基体表面的过渡层,以及位于该过渡层表面的DLC薄膜层组成;所述的过渡层是利用微弧氧化技术,使镁合金基体表层的镁原子原位形成的氧化物多孔膜,并且该氧化物多孔膜的表面孔径小于或等于IOOOnm ;所述的过渡层的厚度为3〜15 μ m,DLC薄膜层的厚度为300〜IOOOnm ;所述的复合涂层与镁合金基体的膜基体系纳米压痕硬度值为5〜20GPa,与钢球对磨的摩擦系数在0.2以下。 1. A magnesium alloy material as an implant material for biological applications, the magnesium alloy material is magnesium alloy matrix composite coating composition to its surface, said composite coating layer is located in the surface of the magnesium alloy matrix transition , and the DLC film surface layer is composed of the transition layer; the transition layer using micro-arc oxidation, the oxide film of the porous substrate surface layer of the magnesium alloy of magnesium atoms formed in situ, and the oxide surface of the porous membrane pore diameter less than or equal to IOOOnm; thickness of the transition layer is 3~15 μ m, thickness of the DLC thin film layer is 300~IOOOnm; film-based systems of the composite coating and the magnesium alloy matrix nanoindentation hardness value 5~20GPa, and the ball mill in the coefficient of friction of 0.2 or less.
2.根据权利要求1所述的镁合金材料作为生物植入材料的应用,其特征是:所述的DLC薄膜中掺杂活性组元。 2. The magnesium alloy material according to claim 1 as an application of biological implant material, characterized in that: said DLC film doped active component.
3.根据权利要求2所述的镁合金材料作为生物植入材料的应用,其特征是:所述的活性组元为氮或者钛。 3. The magnesium alloy material according to claim 2, use as a biological implant material, characterized in that: said active component is nitrogen or titanium.
4.根据权利要求1所述的镁合金材料作为生物植入材料的应用,其特征是:所述的复合涂层的制备方法包括如下步骤: 步骤1:依据镁合金微弧氧化电解液的选配原则,选用无有害元素引入的化学试剂,配制出适合医用镁合金表面改性要求的硅酸盐系微弧氧化电解液; 步骤2:采用直流脉冲微弧氧化电源,通过调整单脉冲输出能量及氧化时间,使镁合金基体表层的镁原子原位形成厚度为3〜15 μ m,表面孔径小于或等于IOOOnm的微弧氧化物多孔膜; 步骤3:经步骤2处理后的镁合金基体进行超声清洗,清除镁合金基体表面微弧氧化多孔膜的微孔中含有的残余电解液后烘干; 步骤4:经步骤3处理后的镁合金基体置于离子束复合磁控溅射沉积系统,抽真空,然后通过离子源向镀膜腔体里通入乙炔气体,在镁合金基体上施加-100〜-300V的脉冲偏压,开启离子源,电流为0.1〜0.5A A magnesium alloy material according to claim 1, wherein the use as a biological implant material, characterized in that: the method of preparing a composite coating comprising the following steps: Step 1: According to the magnesium alloy micro-arc oxidation of the electrolytic solution is selected from with principles, the choice of Chemicals no harmful elements introduced to prepare a silicate-based micro-arc oxidation requires the electrolytic solution for the surface modification of medical magnesium alloy; step 2: DC pulse power supply micro-arc oxidation, a single pulse output by adjusting the energy and the oxidation time, the magnesium alloy substrate surface of magnesium atoms formed in situ thickness 3~15 μ m, pore diameter less than or equal to the surface of the oxide membrane IOOOnm Microarc; and step 3: a step performed after the treatment by the magnesium alloy matrix 2 ultrasonic cleaning, removal of residual electrolyte after pores of the porous membrane surface of the magnesium alloy matrix containing a micro-arc oxidation in drying; step 4: after step magnesium substrate 3 is placed after the ion beam treatment composite magnetron sputtering system, evacuated and then passed through the ion source in the plating chamber acetylene gas, applying a pulse bias -100~-300V on a magnesium alloy substrate, an ion source is turned on, current is 0.1~0.5A ,在微弧氧化多孔膜表面沉积厚度为300〜IOOOnm的DLC薄膜层。 , Deposited on the surface micro-arc oxidation of the porous film thickness of the DLC film layer 300~IOOOnm.
5.根据权利要求4所述的镁合金材料作为生物植入材料的应用,其特征是:所述的步骤2中,直流脉冲微弧氧化电源的单脉冲输出电压为280〜350V,频率为400〜800Hz,占空比为5〜10%,氧化时间为3〜lOmin。 The magnesium alloy material according to claim 4, wherein the use as a biological implant material, characterized in that: said step 2, micro-arc oxidation DC pulse power supply voltage of the single pulse output 280~350V, a frequency of 400 ~800Hz, the duty ratio is 5 to 10%, the oxidation time is 3~lOmin.
6.根据权利要求4所述的镁合金材料作为生物植入材料的应用,其特征是:所述的步骤4中,通过离子源向镀膜腔体里同时通入氮气,从而得到氮掺杂的DLC薄膜层,具体过程为: 经步骤3处理后的镁合金基体置于离子束复合磁控溅射沉积系统,抽真空,然后通过离子源向镀膜腔体里通入乙炔和氮气的混合气体,在氧化镁合金基体上施加-100〜-300V的脉冲偏压,开启离子源,电流为0.1〜0.5A,在微弧氧化多孔膜表面沉积厚度为300〜IOOOnm的氮掺杂的DLC薄膜层。 The magnesium alloy material as claimed in claim 4, wherein the use as a biological implant material, characterized in that: said step 4, while passing nitrogen through the ion source in the plating chamber, thereby obtaining nitrogen-doped DLC thin film layer, the specific process is: step by magnesium substrate 3 is placed after the ion beam treatment composite magnetron sputtering system, evacuated, and then a gas mixture of acetylene and nitrogen in the film by the ion source chamber, magnesium alloy is applied to the substrate bias voltage pulse -100~-300V, and the ion source is turned on, current is 0.1~0.5A, deposited on the surface of the porous oxide film thickness Microarc 300~IOOOnm nitrogen-doped DLC film layer.
7.根据权利要求4所述的镁合金材料作为生物植入材料的应用,其特征是:所述的步骤4中,同时开启溅射源,以钛为溅射靶材,在微弧氧化多孔膜表面沉积钛掺杂的薄膜层具体过程为: 经步骤3处理后的镁合金基体置于离子束复合磁控溅射沉积系统,抽真空,然后通过离子源向镀膜腔体里通入乙炔气体,在氧化镁合金基体上施加-100〜-300V的脉冲偏压,开启离子源,电流为0.1〜0.5A,以钛为溅射靶材,开启溅射源,电流在I〜3A,在微弧氧化多孔膜表面沉积厚度为300〜I·OOOnm的钛掺杂的DLC薄膜层。 7. The magnesium alloy material according to claim 4, wherein the use as a biological implant material, characterized in that: said step 4, while the open sputtering source, the titanium sputtering target in a porous micro-arc oxidation depositing a titanium film surface of a thin film layer doped specific process: step by magnesium substrate 3 is placed after the ion beam treatment composite magnetron sputtering system, evacuated, then purged with acetylene gas in the coating chamber by an ion source , magnesium alloy is applied to the substrate bias voltage pulse -100~-300V, and the ion source is turned on, current is 0.1~0.5A, the titanium sputtering target, a sputtering source is turned on, current I~3A, micro oxidation of the porous surface of the deposited film thickness 300~I · OOOnm titanium-doped DLC film layer.
CN2011101738669A 2011-06-24 2011-06-24 Composite coating on surface of magnesium alloy biological implant material and preparation method thereof CN102286767B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101738669A CN102286767B (en) 2011-06-24 2011-06-24 Composite coating on surface of magnesium alloy biological implant material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101738669A CN102286767B (en) 2011-06-24 2011-06-24 Composite coating on surface of magnesium alloy biological implant material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102286767A CN102286767A (en) 2011-12-21
CN102286767B true CN102286767B (en) 2013-11-20

Family

ID=45333509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101738669A CN102286767B (en) 2011-06-24 2011-06-24 Composite coating on surface of magnesium alloy biological implant material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102286767B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758201B (en) * 2012-06-26 2015-07-15 中国科学院宁波材料技术与工程研究所 Composite coating with anti-corrosion lubricating property of surface of magnesium alloy, preparation method thereof
CN104138616B (en) * 2014-07-23 2016-06-08 深圳清华大学研究院 A medical surface of titanium and titanium alloy oxide - coated carbon - diamond composite film and method
CN105112981A (en) * 2015-08-18 2015-12-02 江苏科技大学 Method for preparing magnesium alloy micro-arc oxidation ceramics coating by staged pressurizing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273788A (en) 1992-07-20 1993-12-28 The University Of Utah Preparation of diamond and diamond-like thin films
EP1338576B1 (en) 1999-05-03 2005-07-27 Guardian Industries Corp. Highly tetrahedral amorphous carbon coating on glass
CN101665941A (en) 2008-09-04 2010-03-10 中国科学院兰州化学物理研究所 Method for preparing diamond-like composite coating on surface of magnesium alloy
CN101792898A (en) 2010-04-09 2010-08-04 中国科学院宁波材料技术与工程研究所 Carbon film for improving abrasion resistance of magnesium alloy and preparation method thereof
CN101871119A (en) 2010-07-28 2010-10-27 哈尔滨工业大学 Preparation method of magnesium alloy surface micro-arc oxidation/spray coating compound film
CN102021513A (en) 2010-12-02 2011-04-20 中国科学院宁波材料技术与工程研究所 High-tenacity oxidation-resistant anti-friction coating on substrate surface and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2617209B2 (en) * 1988-08-30 1997-06-04 浜松ホトニクス株式会社 Light arithmetic unit
JPH0963027A (en) * 1995-08-28 1997-03-07 Yamaha Corp The magnetic head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273788A (en) 1992-07-20 1993-12-28 The University Of Utah Preparation of diamond and diamond-like thin films
EP1338576B1 (en) 1999-05-03 2005-07-27 Guardian Industries Corp. Highly tetrahedral amorphous carbon coating on glass
CN101665941A (en) 2008-09-04 2010-03-10 中国科学院兰州化学物理研究所 Method for preparing diamond-like composite coating on surface of magnesium alloy
CN101792898A (en) 2010-04-09 2010-08-04 中国科学院宁波材料技术与工程研究所 Carbon film for improving abrasion resistance of magnesium alloy and preparation method thereof
CN101871119A (en) 2010-07-28 2010-10-27 哈尔滨工业大学 Preparation method of magnesium alloy surface micro-arc oxidation/spray coating compound film
CN102021513A (en) 2010-12-02 2011-04-20 中国科学院宁波材料技术与工程研究所 High-tenacity oxidation-resistant anti-friction coating on substrate surface and preparation method thereof

Also Published As

Publication number Publication date
CN102286767A (en) 2011-12-21

Similar Documents

Publication Publication Date Title
Narayanan et al. Calcium phosphate‐based coatings on titanium and its alloys
Garcıa-Alonso et al. In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy
Shabalovskaya et al. Critical overview of Nitinol surfaces and their modifications for medical applications
US20040121290A1 (en) Biocompatible implants
Yang et al. Surface modifications of magnesium alloys for biomedical applications
Liu et al. Corrosion behavior of AZ91 magnesium alloy treated by plasma immersion ion implantation and deposition in artificial physiological fluids
Chen et al. Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation
JPWO2007108450A1 (en) Degradation time control method for a medical biodegradable devices
Gopi et al. A comparative study on the direct and pulsed current electrodeposition of hydroxyapatite coatings on surgical grade stainless steel
Narayanan et al. Electrochemical nano-grained calcium phosphate coatings on Ti–6Al–4V for biomaterial applications
KR100714244B1 (en) Osseoinductive metal implants for a living body and producing method thereof
Park et al. Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation
Yu et al. Biocompatibility and osteoconduction of active porous calcium–phosphate films on a novel Ti–3Zr–2Sn–3Mo–25Nb biomedical alloy
EP2212453B1 (en) Method of forming a bioactive coating
CN101797191A (en) Corrosion-resistant magnesium alloy bracket and preparation method thereof
Kung et al. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation
Zhao et al. Preparation and properties of composite MAO/ECD coatings on magnesium alloy
US8382823B2 (en) Biodegradable stent and method for manufacturing the same
CN101709496B (en) Micro-arc oxidation-electrodeposition preparation method of magnesium-based bioactive coating
CN104212998A (en) Zn-Mg zinc alloy and preparation method and application thereof
CN101899700B (en) Magnesium, titanium oxide surface ultrasonic Microarc preparing biologically active silver antibacterial coating process
Wan et al. Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability: A review
Ni et al. Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation
CN1629364A (en) Process for preparing hydroxy apatite / titanium oxide gradient coating
CN101254314A (en) Hydroxylapatite coating magnesium alloy medical inner implantation material and method of preparing the same

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model