Connect public, paid and private patent data with Google Patents Public Datasets

A process for producing light olefins methanol and naphtha

Info

Publication number
CN102276399A
CN102276399A CN 201010199956 CN201010199956A CN102276399A CN 102276399 A CN102276399 A CN 102276399A CN 201010199956 CN201010199956 CN 201010199956 CN 201010199956 A CN201010199956 A CN 201010199956A CN 102276399 A CN102276399 A CN 102276399A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
lower
catalyst
naphtha
olefins
flow
Prior art date
Application number
CN 201010199956
Other languages
Chinese (zh)
Other versions
CN102276399B (en )
Inventor
杨远飞
王华文
齐国祯
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals
    • Y02P20/52Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals
    • Y02P20/58Recycling
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production
    • Y02P30/42Ethylene production using bio-feedstock

Abstract

The invention relates to a method for producing lower olefins from methanol and naphtha. The method is used for mainly solving the problem of the low yield of the lower olefins in the prior art. The problem is well solved by adopting the technical scheme as follows: the method for producing the lower olefins from the methanol and the naphtha mainly comprises the following steps: (a) a raw material mainly including methanol is in contact with a catalyst in a reactor to generate a product material flow I including the lower olefins and hydrocarbon with more than four carbons and form a carbon deposition catalyst at the same time; (b) the carbon deposition catalyst enters a regenerator to be regenerated through a spent inclined tube so as to form a regeneration catalyst; (c) the regenerationcatalyst is divided into three parts, the first part returns into a methanol reactor, the second part enters the upper section of a naphtha conversion reactor and is in contact with the raw material including the hydrocarbon with more than four carbons, the third part enters the lower section of the naphtha conversion reactor and is in contact with the raw material including the naphtha, and a product material flow II including the lower olefins is generated and enters an assistant sedimentation steam stripper above the regenerator; and (d) the decaying catalyst in the assistant sedimentationsteam stripper returns to the regenerator through a spent vertical tube built-in the regenerator, wherein the ratio of the mass flow of the catalyst in the spent inclined tube to the mass flow of themethanol is 0.4-1.5; the ratio of the mass flow of the catalyst in the spent inclined tube to the mass flow of the catalyst in the spent vertical tube is less than 0.8; and the ratio of the residencetimes of the upper section and the lower section of the naphtha conversion reactor is 1.5-4.0. The method can be applied in the industrial production of the lower olefins.

Description

由甲醇和石脑油生产低碳烯烃的方法 A process for producing light olefins methanol and naphtha

技术领域 FIELD

[0001] 本发明涉及一种由甲醇和石脑油生产低碳烯烃的方法。 [0001] The present invention relates to a method of producing light olefins from methanol and the naphtha. 技术背景 technical background

[0002] 低碳烯烃,即乙烯和丙烯,是两种重要的基础化工原料,其需求量在不断增加。 [0002] The light olefins, i.e. ethylene and propylene, are two important basic chemical raw materials, the demand is increasing. 一般地,乙烯、丙烯是通过石油路线来生产,但由于石油资源有限的供应量及较高的价格,由石油资源生产乙烯、丙烯的成本不断增加。 Generally, ethylene, propylene are produced by the oil route, but due to limited supply of petroleum resources and the higher the price, the cost of production of ethylene from petroleum resources, increasing the propylene. 近年来,人们开始大力发展替代原料转化制乙烯、丙烯的技术。 In recent years, people began to develop alternative technologies feedstock into ethylene, propylene. 其中,一类重要的用于轻质烯烃生产的替代原料是含氧化合物,例如醇类(甲醇、乙醇)、醚类(二甲醚、甲乙醚)、酯类(碳酸二甲酯、甲酸甲酯)等,这些含氧化合物可以通过煤、天然气、生物质等能源转化而来。 Wherein, an important class of alternative raw materials for the production of light olefins are oxygenates, such as alcohols (methanol, ethanol), ethers (dimethyl ether, methyl ethyl ether), esters (dimethyl carbonate, methyl formate esters), these may be converted from an oxygenate by coal, natural gas, biomass and other energy. 某些含氧化合物已经可以达到较大规模的生产,如甲醇,可以由煤或天然气制得,工艺十分成熟,可以实现上百万吨级的生产规模。 Certain oxygenates have large-scale production can be achieved, such as methanol, may be obtained from coal or natural gas, very mature technology, can be implemented on a production scale megaton. 由于含氧化合物来源的广泛性,再加上转化生成轻质烯烃工艺的经济性,所以由含氧化合物转化制烯烃(OTO)的工艺,特别是由甲醇转化制烯烃(MTO)的工艺受到越来越多的重视。 Because of the extensive source oxygenate, together with conversion of light olefins to generate economic process, so the process to olefins (the OTO) conversion of the oxygenates, in particular by the conversion of methanol to olefins (MTO) process more to more attention.

[0003] 石脑油是一种轻质油品,由原油蒸馏或石油二次加工切取相应馏分而得。 [0003] naphtha, a light oil, a petroleum crude distillation or secondary processing corresponding cut fractions derived. 其沸点范围依需要而定,通常为较宽的馏程,如20〜220°C。 Having a boiling point range may be required depending, generally wider boiling range, such as 20~220 ° C. 石脑油是管式炉裂解制取乙烯,丙烯及催化重整制取苯、甲苯、二甲苯的重要原料。 Naphtha is a tubular cracking furnace to make ethylene, propylene and the catalytic reforming material is important to take as benzene, toluene, xylene. 作为裂解原料,要求石脑油组成中烷烃和环烷烃的含量不低于70% (体积)。 As cracking feedstock, naphtha claim alkanes and cycloalkanes content of the composition is not less than 70% (by volume). 石脑油催化裂解制低碳烯烃则是在催化剂存在的条件下, 对石油烃类进行裂解来获得低碳烯烃的生产过程。 Catalytic cracking of naphtha to light olefins is in the presence of a catalyst, cracking of petroleum hydrocarbons to be obtained during the production of light olefins. 同传统的管式炉蒸汽热裂解相比,该过程反应温度比蒸汽裂解反应约低50〜200°C,能耗显著降低;裂解炉管内壁结焦速率也会降低,从而可延长操作周期,增加炉管寿命;同时二氧化碳排放也会降低,减轻了污染,并可灵活调整产品结构。 Compared with the traditional tubular furnace steam thermal cracking, the process reaction temperature is lower than the steam cracking reaction of about 50~200 ° C, significantly lower energy consumption; the inner wall of the tube cracking furnace coking rate will be reduced, whereby extended operation period, increasing tube life; while also reducing carbon dioxide emissions, reduce pollution, and the flexibility to adjust the product structure.

[0004] US6166282中公布了一种氧化物转化为低碳烯烃的技术和反应器,采用快速流化床反应器,气相在气速较低的密相反应区反应完成后,上升到内径急速变小的快分区后,采用特殊的气固分离设备初步分离出大部分的夹带催化剂。 [0004] US6166282 discloses a the conversion of oxygenates to light olefins and reactor technology, the use of a fast fluidized bed reactor, after completion of the reaction gas in the lower gas velocity dense phase reaction zone, rising to rapidly change the inner diameter fast after a small partition, gas-solid separation apparatus using special preliminary separation of the majority of entrained catalyst. 由于反应后产物气与催化剂快速分离,有效的防止了二次反应的发生。 Since the reaction product gas after the rapid separation of the catalyst, effectively prevents the occurrence of secondary reactions. 经模拟计算,与传统的鼓泡流化床反应器相比,该快速流化床反应器内径及催化剂所需藏量均大大减少。 Simulated calculation, compared with the conventional bubbling fluidized bed reactor, a fast fluidized bed of the desired inner diameter of the reactor volume and catalyst inventory is greatly reduced. 但该方法存在低碳烯烃收率较低的问题。 But the presence of lower olefins yield problem with this method.

[0005] CN1723^52中公布了带有中央催化剂回路的多级提升管反应装置用于氧化物转化为低碳烯烃工艺,该套装置包括多个提升管反应器、气固分离区、多个偏移元件等,每个提升管反应器各自具有注入催化剂的端口,汇集到设置的分离区,将催化剂与产品气分开。 [0005] CN1723 ^ 52 published a multistage reaction apparatus for riser oxide catalyst with a central loop into light olefins process, the set of devices comprises a plurality of riser reactors, gas-solid separation zone, a plurality of offset components, etc., each having a respective riser reactor catalyst injection port, to a separation zone provided together, the catalyst is separated from the product gas. 但该方法存在低碳烯烃收率较低的问题。 But the presence of lower olefins yield problem with this method.

[0006] EP0448000和EP0882692中公布了一种甲醇生产丙烯的方法,甲醇首先转化为DME 和水,然后将混合物输送到第一台反应器,并向该反应器中加入蒸汽。 [0006] EP0448000 and EP0882692 discloses a method of propylene methanol production, the methanol is first converted to DME and water, and the mixture was fed to the first reactor, and adding steam to the reactor. 在第一反应器中甲醇和(或)二甲醚或其混合物与催化剂接触进行反应,催化剂采用含ZnO和CdO的专用ZSM-5 催化剂,反应温度观0〜570°C,压力0. 01〜0. IMPa,制备得到以丙烯为主要烃类的产品。 Methanol in the first reactor and (or) dimethyl ether or mixtures contacted with catalyst, using special catalysts containing ZSM-5 catalyst of ZnO and CdO, reaction temperature concept 0~570 ° C, pressure 0.5 01~ 0. IMPa, prepared propylene as the main hydrocarbon products. 较重产物如C5+烃继续在第二台反应器中进行反应转化为以丙烯为主的烃类,经冷却后送回分离器。 The C5 + hydrocarbons heavier products continue to propylene conversion reactions mainly hydrocarbons in the second stage reactor, cooled and returned to the separator. 产品经压缩、进一步精制后可得到纯度为97%的化学级丙烯。 The compressed product, after further purification to a purity of 97% chemical grade propylene. 但是该工艺中采用多个固定床反应器,由于催化剂的活性限制,因此需要频繁切换操作,而且取热问题也很复杂。 However, the process used in a plurality of fixed bed reactors, due to the limitation of the catalyst activity, requiring frequent switching operation, and the heat removal problem is very complex.

[0007] US 20070083071公布了一种烃催化裂解生产乙烯、丙烯的工艺方法,烃原料在催化裂解炉中转化为包括低碳烯烃的产品,然后将产品物流通过一系列工艺分离成C2〜C3 烷烃、C2〜C3烯烃、C4+烃三种物流,将C2〜C3烷烃返回管式裂解炉进行热裂解,C4+烃返回催化裂解炉进行催化裂解,最终得到较高收率的乙烯、丙烯产品。 [0007] US 20070083071 discloses a catalytic cracking of hydrocarbons to produce ethylene, propylene process, the hydrocarbon feedstock is converted to products comprising light olefins in the catalytic cracking furnaces, the product stream is then separated into a series of processes by C2~C3 alkane , C2~C3 olefin, C4 + hydrocarbons three streams, the return pipe C2~C3 alkane cracking furnace for thermal cracking, catalytic cracking C4 + hydrocarbons returns catalytic cracking furnace, finally obtained a higher yield of ethylene and propylene products. 该方法采用提升管反应器,反应物停留时间较短,低碳烯烃产品单程收率较低。 The method uses a riser reactor, a shorter residence time of the reactants, low-pass yield of light olefins products.

[0008] 虽然现有技术中已经分别存在甲醇制烯烃、石脑油制烯烃的技术,但已有技术中两种工艺尚无耦合操作的先例,而且对于甲醇制烯烃反应过程中产生的碳四以上高碳烃副产物如何有效利用也是难题之一。 [0008] Although the prior art methanol to olefins, naphtha to olefins technologies already exist separately, but the two processes prior art coupling operation no precedent for the methanol to olefin and carbon generated during the reaction of the four higher hydrocarbons than the effective use of by-products is also one of the problems. 同时,现有技术均存在低碳烯烃收率较低的问题。 Meanwhile, the presence of the prior art are lower olefins yield problems. 本发明有针对性的解决了上述问题。 It has targeted the present invention solves the above problem.

发明内容 SUMMARY

[0009] 本发明所要解决的技术问题是现有技术中存在的低碳烯烃收率不高的问题,提供一种新的由甲醇和石脑油生产低碳烯烃的方法。 [0009] The present invention solves the technical problem of the prior art lower olefin yields present not high, to provide a novel process for producing light olefins from methanol and the naphtha. 该方法用于低碳烯烃的生产中,具有低碳烯烃收率较高的优点。 The method for producing lower olefins with high yield of lower olefins advantages.

[0010] 为解决上述问题,本发明采用的技术方案如下:一种由甲醇和石脑油生产低碳烯烃的方法,所述方法包括以下步骤:(a)主要为甲醇的原料在反应器中与催化剂接触,生成包括低碳烯烃、碳四以上烃的产品物流I,同时形成积碳催化剂;(b)积碳催化剂通过待生斜管进入再生器再生,形成再生催化剂;(C)再生催化剂分为三部分,第一部分返回甲醇反应器,第二部分进入石脑油转化反应器上段,与包括碳四以上烃的原料接触,第三部分进入石脑油转化反应器下段,与包括石脑油的原料接触,生成包括低碳烯烃的产品物流II,进入再生器上方的辅助沉降汽提器;(d)辅助沉降汽提器内的失活催化剂通过内置于再生器中的待生立管返回再生器;其中,待生斜管催化剂质量流量与甲醇的质量流量之比为0. 4〜 1. 5,待生斜管与待生立管内的催化剂质量流量之 [0010] In order to solve the above problems, the present invention employs the following technical solution: A process for the production of methanol and naphtha to light olefins, said method comprising the steps of: (a) as the main raw material of methanol in the reactor contact with the catalyst to produce light olefins including, four or more carbons of the hydrocarbon product stream I, while the formation of carbon catalyst; (b) by the spent catalyst coke chute into the regenerator regeneration, regenerated catalyst is formed; (C) catalyst regeneration It is divided into three parts, the first return methanol reactor, into the second portion contacting the naphtha feed on the reactor reforming section, including four or more carbon hydrocarbons, naphtha third portion enters the conversion reactor section, including naphtha contacting the feedstock oil, generating a product stream comprising light olefins II, into the top of the auxiliary stripper settling regenerator; (d) deactivation of the catalyst within the secondary settling stripper built-in regenerator standpipe spent returned to the regenerator; wherein the mass flow ratio of spent catalyst mass flow rate of the chute and methanol 0. 4 ~ 1.5, the spent catalyst to be inclined tube mass flow rate of the raw standpipe 小于0. 8,石脑油转化反应器上段与下段停留时间之比为1.5〜4.0。 Less than 0.8, a naphtha reforming section on the lower section of the reactor and the residence time of the ratio of 1.5~4.0.

[0011] 上述技术方案中,所述分子筛包括ZSM-5 ;所述甲醇转化反应器为快速流化床;所述石脑油转化反应器为变径提升管,提升管上段直径与下段直径之比为1. 2〜2. 5 : 1 ; 所述碳四以上烃来自产品物流I中分离出来的碳四混合烃,其中烯烃质量含量大于60% ; 所述产品物流I和产品物流II共用一套分离流程;所述再生催化剂积碳量质量分数小于0. 5% ;所述石脑油馏程在20°C〜220°C之间;所述再生催化剂分为三部分,20〜40%通过再生斜管返回甲醇转化反应器,20〜40%进入石脑油转化反应器上段,20〜60%进入石脑油转化反应器下段;所述甲醇转化反应器中反应条件为:反应温度为400〜500°C,气相线速为0. 8〜2. 0米/秒;所述石脑油转化反应器中反应条件为:反应温度为570〜650°C, 下段气相线速为5〜10米/秒,上段气相线速为1. 5〜3. 0米/秒,待生立管中催化剂的 [0011] In the above technical solution, the molecular sieve comprises ZSM-5; conversion of the methanol reactor is a fast fluidized bed; the naphtha conversion reactor riser is adjustable, and the diameter of the upper riser diameter lower section 1. 2~2 ratio of 5: 1; and the hydrocarbons from the four or more carbon four carbon mixed hydrocarbon product stream is separated I, wherein the olefin content greater than 60% by mass; the product stream I and II share a product stream separation process sets; the amount of the regenerated catalyst coke content is less than 0.5%; the naphtha boiling point range between 20 ° C~220 ° C; the regenerated catalyst is divided into three parts, 20~40% back through the regeneration inclined pipe methanol conversion reactor, 20~40% conversion into the reactor section of the naphtha, the naphtha 20~60% conversion into the lower section of the reactor; the reactor is methanol conversion reaction conditions were: reaction temperature of 400~500 ° C, linear velocity of the gas phase 8~2 0. 0 m / sec; naphtha conversion reactor the reaction conditions were: reaction temperature of 570~650 ° C, under gas phase linear velocity of -5 to 10 m / s, the linear velocity of gas phase 5~3 1. 0 m / s, the spent catalyst standpipe 量流量与石脑油的质量流量之比为5. 0〜8. 0 ;所述ZSM-5分子筛的硅铝比在30〜100。 Mass flow ratio of the flow rate and the amount of naphtha 5. 0~8 is 0;. The ZSM-5 zeolite in a silica to alumina ratio of 30~100.

[0012] 采用本发明的方法,将甲醇制烯烃和石脑油催化裂解制烯烃两种工艺有机的耦合在一起,采用一种催化剂,达到共产低碳烯烃的目的。 [0012] The method of the invention, the coupling of methanol to olefins and naphtha catalytic cracking of olefins with organic both processes using a catalyst, the purpose communist light olefins. 本发明通过采用下细上粗的变径提升管,有效保证了石脑油裂解和碳四以上烃裂解反应所需的气固接触时间,提高了烯烃的收率。 By using the present invention, the lower thick thin adjustable riser, effectively guarantee the gas-solid contact time required for the cracking reaction and carbon four or more naphtha cracking hydrocarbons, increasing the yield of olefins. 由于石脑油催化裂解和碳四以上高碳烃催化裂解反应类型有相似之处,本发明所述方法中将甲醇转化生成的副产碳四以上高碳烃返回石脑油转化反应器的上段,在有效保证催化剂活性和气固接触时间的基础上,尽量多的增产低碳烯烃。 Since the catalytic cracking of naphtha catalytic cracking higher hydrocarbons and carbon more than four types of reactions are similar, the method of the present invention will be converted to produce methanol by-product carbon four or more higher hydrocarbons return naphtha conversion reactor upper section on the basis of the effective catalyst activity and to ensure the gas-solid contact time, as much as possible the yield of light olefins. 因此,采用本发明的方法,可以实现提高低碳烯烃收率的目的。 Thus, using the method of the invention can be achieved the purpose of improving the yield of light olefins.

[0013] 采用本发明的技术方案:所述分子筛包括ZSM-5 ;所述甲醇转化反应器为快速流化床;所述石脑油转化反应器为变径提升管,提升管上段直径与下段直径之比为1. 2〜 2.5 : 1;所述碳四以上烃来自产品物流I中分离出来的碳四混合烃,其中烯烃质量含量大于60% ;所述产品物流I和产品物流II共用一套分离流程;所述再生催化剂积碳量质量分数小于0.5% ;所述石脑油馏程在20°C〜220°C之间;所述再生催化剂分为三部分, 20〜40 %通过再生斜管返回甲醇转化反应器,20〜40%进入石脑油转化反应器上段,20〜 60%进入石脑油转化反应器下段;所述甲醇转化反应器中反应条件为:反应温度为400〜 500°C,气相线速为0. 8〜2. 0米/秒;所述石脑油转化反应器中反应条件为:反应温度为570〜650°C,下段气相线速为5〜10米/秒,上段气相线速为1. 5〜3. 0米/秒,待生立管中催化 [0013] The technical solution of the present invention: the molecular sieves include ZSM-5; conversion of the methanol reactor is a fast fluidized bed; naphtha conversion reactor to the adjustable riser, riser upper section and a lower section diameter 1. the ratio of the diameter of 2 ~ 2.5: 1; the carbon four or more carbon hydrocarbons from the four mixed hydrocarbon product stream is separated I, wherein the olefin content greater than 60% by mass; the product stream I and II share a product stream separation process sets; the amount of the regenerated catalyst coke content is less than 0.5%; the naphtha boiling point range between 20 ° C~220 ° C; the regenerated catalyst is divided into three parts, 20~40% by regeneration return chute methanol conversion reactor, 20~40% naphtha conversion into the upper section of the reactor, 20~ 60 percent naphtha conversion into the lower section of the reactor; the reactor is methanol conversion reaction conditions were: reaction temperature of 400~ 500 ° C, vapor linear velocity of 0. 8~2 0 m / sec; naphtha conversion reactor the reaction conditions were: reaction temperature of 570~650 ° C, the gas phase of 5 to 10 m line speed / sec, the linear velocity of gas phase 5~3 1. 0 m / s, the spent catalyst standpipe 的质量流量与石脑油的质量流量之比为5. 0〜8. 0 ;所述ZSM-5分子筛的硅铝比在30〜100,产品物流I的低碳烯烃碳基收率可达到60. 14%重量,产品物流II的低碳烯烃碳基收率可达到40. 42%重量,取得了较好的技术效果。 Mass flow ratio of the mass flow 5. 0~8 naphtha is 0;. The ZSM-5 zeolite in a silica to alumina ratio of 30~100, olefin-carbon-based lower yield of the product stream may be up to 60 I . 14% by weight, the yield of light olefins product stream of carbon-based II may reach 40.42% by weight, better technical effect achieved.

附图说明 BRIEF DESCRIPTION

[0014] 图1为本发明所述方法的流程示意图。 [0014] Fig 1 a schematic flow chart of the method of the present invention.

[0015] 图1中,1为甲醇转化反应器原料进料;2为甲醇转化反应器反应区;3为气固快速分离设备;4为甲醇转化反应器汽提区;5为甲醇转化反应器待生催化剂循环斜管;6为待生斜管;7为甲醇转化反应器换热器;8为甲醇转化反应器气固旋风分离器;9为甲醇转化反应器沉降区;10为产品集气室;11为产品物流I出口管线;12为再生斜管;13为待生塞阀;14为再生介质入口管线;15为待生立管;16为再生斜管;17为石脑油原料进料管线;18 为再生斜管;19为预提升段;20为再生器;21为汽提介质入口管线;22为汽提区;23为再生器旋风分离器;对为再生烟气出口管线;25为辅助沉降汽提器J6为气固旋风分离器; 27为产品物流II出口管线;观为包括碳四以上烃的原料进料管线;四为石脑油转化反应器上段;30为石脑油转化反应器下段。 In [0015] FIG. 1, a reactor feed is converted to methanol feed; methanol conversion reactor 2 a reaction zone; Solid Separator apparatus 3; 4 conversion reactor stripping zone is methanol; methanol conversion reactor 5 circulating the spent catalyst chute; spent inclined tube 6; 7 methanol conversion reactor heat exchanger; 8 methanol conversion reactor gas-solid cyclone; 9 methanol conversion reactor settling zone; product plenum 10 chamber; I 11 is a product stream outlet line; the regeneration inclined pipe 12; 13 of the spent plug valve; 14 is a regeneration medium inlet line; riser 15 is spent; regeneration inclined pipe 16; 17 naphtha feedstock into feed lines; the regeneration inclined pipe 18; pre-raising section 19; 20 of the regenerator; 21 is a stripping medium inlet line; stripping zone 22; as a regenerator cyclone 23; for the regeneration flue gas outlet line; 25 is a secondary settling the stripper cyclone gas-solid to J6; 27 as product stream outlet line II; concept to include four or more carbons of the hydrocarbon raw material feed line; four segments of the naphtha conversion reactor; 30 naphtha oil conversion section of the reactor.

[0016] 甲醇经进料管线1进入甲醇转化反应器反应区2中,与分子筛催化剂接触,反应生成含有低碳烯烃的产品,携带待生催化剂经过气固快速分离设备3进入甲醇转化反应器沉降区9,其中,气固快速分离设备3分离出来的大部分催化剂进入甲醇转化反应器汽提区4, 而气相产品以及部分未被气固快速分离设备分离的催化剂经入旋风分离器8分离进行再次分离,催化剂经过旋风分离器8的料腿返回到甲醇转化反应器汽提区4,气相产品进入集气室10后经出口管线11进入后续的分离工段。 [0016] methanol feed via line 1 to the methanol conversion reactor 2 in a reaction zone, contacted with a molecular sieve catalyst, reaction product containing light olefins, after carrying spent catalyst device 3 Solid Separator to the methanol conversion reactor Settlement zone 9, wherein most of the catalyst separation device 3 Solid separator out to the methanol conversion reactor stripper zone 4, the catalyst and product vapor is not partially Solid separator apparatus for separating into the cyclone separator 8 again separated catalyst through a cyclone dipleg 8 is returned to the methanol conversion reactor stripper zone 4, the product gas enters the plenum chamber 10 into the subsequent separation section 11 via outlet line. 被气固快速分离设备3和旋风分离器8分离出的待生催化剂经过汽提后分为两部分,一部分经过换热器7换热后通过催化剂循环斜管5返回到甲醇转化反应器反应区2的底部,另外一部分经过待生斜管6进入再生器20中烧炭再生,焦炭燃烧生成的烟气经过旋风分离器23后通过烟气出口管线M进入后续的能量回收系统,再生催化剂一部分通过再生斜管12返回甲醇转化反应器反应区2中,一部分通过再生斜管16进入石脑油转化反应器下段30,与石脑油原料接触,生成的产品携带催化剂进入石脑油转化反应器上段四,与包括碳四以上烃的原料和从再生斜管18中来的再生催化剂接触,生产的混合产品进入辅助沉降汽提器25,经过气固旋风分离器分离后,催化剂进入汽提区22,经汽提后经待生立管15返回再生器20,生成的产品经出口管线27进入分离工段。 Spent catalyst is quickly separated from the gas-solid cyclone apparatus 3 and 8 separated after stripping is divided into two parts after the heat exchanger 7 through the catalyst circulation return chute 5 to the methanol conversion reaction zones 2 at the bottom, the other part through the chute 6 to be regenerated into the regenerator 20 is regenerated charcoal, coke combustion flue gases through the cyclone 23 into the subsequent flue gas energy recovery system via outlet line M, by a portion of the regenerated catalyst regeneration inclined pipe 12 is returned to the reactor the methanol conversion reaction zone 2, a portion of the inclined pipe 16 into the regenerative naphtha conversion reactor lower section 30, in contact with the naphtha feed, the resulting product carrying the catalyst into the reactor section of the naphtha conversion Fourth, contact with the hydrocarbon feedstock comprises more than four carbon regenerated catalyst from the regeneration inclined pipe 18 to the production of mixed products into the secondary settling the stripper 25, after the gas-solid separation cyclones, into the catalyst stripping zone 22 , stripped and spent by the 15 returned to the regenerator standpipe 20, the resulting product through outlet line 27 into the separation stage.

[0017] 下面通过实施例对本发明作进一步的阐述,但不仅限于本实施例。 [0017] The following examples of the present invention will be further illustrated by, but is not limited to this embodiment.

具体实施方式 detailed description

[0018]【实施例1】 [0018] [Example 1]

[0019] 在小型快速流化床反应-再生装置中,反应器型式同图1所示,催化剂采用ZSM-5, 硅铝比为50(体积)。 [0019] In a small fast fluidized bed reactor - reproducing apparatus, shown in FIG. 1 type reactor with a catalyst using ZSM-5, silica to alumina ratio of 50 (by volume). 甲醇转化反应区平均温度为440°C,气相线速为1. 12米/秒,纯度为99. 5%的甲醇进料,甲醇重时空速为5. 7小时―1,待生斜管催化剂质量流量与甲醇进料质量流量之比为0.7,再生器平均温度为675°C,再生催化剂积碳量为0.¾% (重量)。 Methanol conversion reaction zone an average temperature of 440 ° C, gas linear speed of 1.12 m / s, with a purity of 99.5% methanol feed weight hourly space velocity of methanol was 5.7 hours -1, spent catalyst chute mass flow ratio of the mass flow rate of methanol feed is 0.7, the average temperature of the regenerator 675 ° C, the amount of regenerated catalyst coke (wt) 0.¾%. 待生斜管与待生立管中催化剂质量流量之比为0. 5。 Spent inclined riser pipe and a spent ratio of mass flow of the catalyst is 0.5. 石脑油馏程在25〜204°C,烷烃和环烷烃的含量为93. 5% (重量),烯烃含量小于0.2% (重量),芳烃含量为6. 2% (重量),并添加15% (重量)的水蒸气,与石脑油混合进料。 Naphtha distillation range at 25~204 ° C, alkanes and cycloalkanes content of 93.5% (wt), the olefin content is less than 0.2% (by weight), aromatic content of 6.2% (by weight), and adding 15 % (by weight) water vapor, mixed with the naphtha feed. 石脑油转化反应器上段直径与下段直径的比值为2. 5 : 1,上段中与下段的气相停留时间之比为2.1,提升管下段反应温度为632°C,下段气相线速为7. 3米/秒,上段反应温度为608°C,上段气相线速为2. 1米/秒。 Naphtha reforming reactor upper section diameter ratio of the lower diameter is 2.5: 1, the upper residence gas phase lower stage time ratio of 2.1, the riser lower section of the reaction temperature is 632 ° C, under gas phase linear velocity is 7. 3 m / s, the upper reaction temperature is 608 ° C, the gas phase linear speed 2.1 m / sec. 石脑油转化反应器上段进料包括质量分数60%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91% )、30%石脑油、10%水蒸气,再生催化剂分为三部分,20%通过再生斜管返回甲醇转化反应器,20%进入石脑油转化反应器上段,60%进入石脑油转化反应器下段。 The conversion reactor section naphtha feed comprises a mass fraction of 60% or more of mixed C4 hydrocarbon (wherein the olefin content of 88% of the total carbon Hydrocarbon 91%), 30% naphtha, 10% water vapor, the regeneration is divided into three portion of the catalyst, 20% returned by the regeneration inclined pipe reactor methanol conversion, 20% of the reactor into the upper section of the naphtha conversion, 60% conversion of naphtha into the lower section of the reactor. 保持催化剂流动控制的稳定性,反应器出口产物采用在线气相色谱分析,产品物流I的低碳烯烃碳基收率可达到60. 14%重量,产品物流II的低碳烯烃收率可达到36. 25%重量。 Maintaining the stability of the catalyst flow control the reactor outlet product using online gas chromatography analysis, the yield of light olefins product stream of carbon-based I can reach 60.14% by weight, the yield of light olefins product stream 36 can reach II. 25% by weight.

[0020]【实施例2】 [0020] [Example 2]

[0021] 按照实施例1所述的条件,催化剂采用ZSM-5,硅铝比为30(体积)。 [0021] under the conditions described in Example 1, a catalyst using ZSM-5, silica to alumina ratio of 30 (by volume). 甲醇转化反应区平均温度为400°C,气相线速为0. 8米/秒,待生斜管催化剂质量流量与甲醇进料质量流量之比为0.4,再生器平均温度为668°C,再生催化剂积碳量为0.21% (重量)。 Methanol conversion reaction zone an average temperature of 400 ° C, gas linear speed of 0.8 m / s, the mass flow ratio of spent catalyst mass flow chute methanol feed was 0.4, the average temperature of the regenerator 668 ° C, regeneration carbon catalyst in an amount of 0.21% (by weight). 待生斜管与待生立管中催化剂质量流量之比为0. 34。 Spent inclined riser pipe and a spent ratio of mass flow of the catalyst is 0.34. 石脑油转化反应器上段与下段的气相停留时间之比为4. 0,提升管下段反应温度为649°C,下段气相线速为10米/秒,上段反应温度为631°C,上段气相线速为1.5米/秒。 Naphtha reforming section on the reactor and the ratio of the lower residence time of the gas phase is 4.0, the riser lower section of the reaction temperature is 649 ° C, under gas phase linear velocity of 10 m / sec, the upper reaction temperature of 631 ° C, the gas phase line speed of 1.5 m / sec. 石脑油转化反应器上段进料包括质量分数75%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91%)、10%石脑油、15%水蒸气,再生催化剂分为三部分,40%通过再生斜管返回甲醇转化反应器,40%进入石脑油转化反应器上段,20%进入石脑油转化反应器下段。 The conversion of naphtha feed comprises a reactor section 75% of the mass fraction of a hydrocarbon mixture than four carbons (wherein the olefin content is 88%, the total amount of hydrocarbon carbon four 91%), 10% naphtha, 15% water vapor, the regeneration the catalyst is divided into three parts, 40% returned by the regeneration inclined pipe reactor methanol conversion, 40% of the reactor into the upper section of the naphtha conversion, 20% conversion of naphtha into the lower section of the reactor. 保持催化剂流动控制的稳定性,反应器出口产物采用在线气相色谱分析,产品物流I的低碳烯烃碳基收率可达到56. 08%重量,产品物流II 的低碳烯烃收率可达到39. 17%重量。 Maintaining the stability of the catalyst flow control the reactor outlet product using online gas chromatography analysis, the yield of light olefins product stream of carbon-based I can reach 56.08% by weight, the yield of light olefins product stream 39 can reach II. 17% by weight.

[0022]【实施例3】 [0022] [Example 3]

[0023] 按照实施例1所述的条件,催化剂采用ZSM-5,硅铝比为100(体积)。 [0023] under the conditions described in Example 1, a catalyst using ZSM-5, silica-alumina ratio of 100 (volume). 甲醇转化反应区平均温度为500°C,气相线速为2. 0米/秒,待生斜管催化剂质量流量与甲醇进料质量流量之比为1. 5,再生器平均温度为640°C,再生催化剂积碳量为0. 47% (重量)。 Methanol conversion reaction zone an average temperature of 500 ° C, gas linear speed of 2.0 m / sec, inclined tube spent catalyst ratio of mass flow and mass flow rate of methanol feed is 1.5, the average temperature of the regenerator 640 ° C regenerated catalyst coke in an amount of 0.47% (by weight). 待生斜管与待生立管中催化剂质量流量之比为0. 8。 Spent inclined riser pipe and a spent ratio of mass flow of the catalyst is 0.8. 石脑油转化反应器上段直径与下段直径的比值为1.2 : 1,石脑油转化反应器上段与下段的气相停留时间之比为1.5,提升管下段反应温度为583°C,下段气相线速为5米/秒,上段反应温度为71°C,上段气相线速为3. 0米/秒。 Naphtha reforming reactor upper section diameter ratio of the lower diameter is 1.2: 1, ratio of segments on the reactor and the gas phase section of the residence time of naphtha is converted to 1.5, the riser lower section of the reaction temperature is 583 ° C, under gas phase linear velocity 5 m / sec, upper reaction temperature is 71 ° C, the gas phase linear velocity of 3.0 m / sec. 石脑油转化反应器上段进料包括质量分数82 %的混合碳四以上烃(其中烯烃含量为88 %, 碳四烃总量为91% )、18%水蒸气,保持催化剂流动控制的稳定性,反应器出口产物采用在线气相色谱分析,产品物流I的低碳烯烃碳基收率可达到53. 69%重量,产品物流II的低碳烯烃收率可达到32. 89%重量。 Conversion of naphtha over the reactor section including the feed mixture of 82% by mass fraction of more than four carbon hydrocarbons (wherein the olefin content is 88%, the total amount of hydrocarbon carbon four 91%), 18% steam, the catalyst to maintain the stability of flow control the reactor outlet products using online gas chromatography analysis, the yield of light olefins product stream of carbon-based I can reach 53.69% by weight, the yield of light olefins product stream II may reach 32.89% by weight.

[0024]【实施例4】 [0024] [Example 4]

[0025] 按照实施例1所述的条件,石脑油转化反应器上段进料包括质量分数70%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91% )、30%水蒸气,石脑油转化反应器下段进料包括质量分数50%的混合碳四以上烃(其中烯烃含量为88%,碳四烃总量为91% )、35%石脑油、15%水蒸气,产品物流I的低碳烯烃碳基收率可达到59. 95%重量,产品物流II的低碳烯烃收率可达到40. 42%重量。 [0025] under the conditions described in Example 1, the upper section of naphtha conversion reactor feed fraction comprises 70% by mass of the above mixed C4 hydrocarbon (wherein the olefin content is 88%, the total amount of hydrocarbon carbon four 91%), 30% steam, naphtha conversion reactor comprising a lower section of the feed mixture of 50% by mass fraction of more than four carbon hydrocarbons (wherein the olefin content is 88%, the total amount of hydrocarbon carbon four 91%), 35% naphtha, 15 % water vapor, carbon-based olefins stream yields product I can reach 59.95% by weight, the yield of light olefins product stream II may reach 40.42% by weight.

[0026]【比较例】 [0026] [Comparative Example]

[0027] 按照实施例1所述的条件,不设石脑油转化反应器,产品物流I中的混合碳四以上烃也不返回进行再转化,再生催化剂直接返回到流化床反应区的下部,产品物流I的低碳烯烃碳基收率为57. 84%重量。 [0027] under the conditions described in Example 1, no naphtha conversion reactor product stream I is mixed C4 hydrocarbon does not return above re-conversion, the regenerated catalyst returned directly to the lower portion of the fluidized bed reaction zone , lower olefins product stream I is a carbon-based yield 57.84% by weight.

[0028] 显然,采用本发明的方法,可以达到提高低碳烯烃收率的目的,具有较大的技术优势,可用于低碳烯烃的工业生产中。 [0028] Obviously, the present invention method, the purpose of improving the yield of light olefins, with great technical advantages, can be used for industrial production of lower olefins.

Claims (10)

1. 一种由甲醇和石脑油生产低碳烯烃的方法,所述方法包括以下步骤:(a)主要为甲醇的原料在甲醇转化反应器中与分子筛催化剂接触,生成包括低碳烯烃、 碳四以上烃的产品物流I,同时形成积碳催化剂;(b)所述积碳催化剂通过待生斜管进入再生器再生,形成再生催化剂;(c)所述再生催化剂分为三部分,第一部分通过再生斜管返回甲醇转化反应器,第二部分进入石脑油转化反应器上段,与包括所述碳四以上烃的原料接触,第三部分进入石脑油转化反应器下段,与包括石脑油的原料接触,生成包括低碳烯烃的产品物流II,携带催化剂进入位于再生器上方的辅助沉降汽提器;(d)辅助沉降汽提器内的失活催化剂通过内置于再生器中的待生立管返回再生器;其中,待生斜管催化剂质量流量与甲醇的质量流量之比为0. 4〜1. 5,待生斜管与待生立管内的催化剂质 1. A method of lower olefins from methanol and naphtha production, said method comprising the steps of: (a) as the main raw material of methanol conversion reactor into contact with the molecular sieve catalyst in methanol, comprising generating light olefins, carbon four or more hydrocarbon product stream I, while the formation of carbon catalyst; (b) the catalyst by coke chute regenerator spent regeneration, regenerated catalyst into the formation; (c) the regenerated catalyst is divided into three portions, a first portion by reproducing return chute methanol conversion reactor, the second portion enters a naphtha reforming section on the reactor, with said feedstock comprising contacting four or more carbon hydrocarbons, naphtha third portion enters the conversion reactor section, including naphtha contacting the feedstock oil, generating a product stream comprising light olefins II, carrying the catalyst enters the regenerator is located above the secondary settling the stripper; (d) an auxiliary catalyst deactivation in settling the stripper to the regenerator to be built by the students returned to the regenerator riser; wherein the mass flow ratio of spent catalyst mass flow rate of the chute and methanol 4~1 0. 5, the spent catalyst to be inclined tube quality of the raw riser. 流量之比小于0.8,石脑油转化反应器上段停留时间与下段停留时间之比为1. 5〜4. 0。 Flow ratio of less than 0.8, the conversion of naphtha residence time in the reactor upper section and the lower section ratio of 1. The residence time of 5~4. 0.
2.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述分子筛包括ZSM-5 ;所述甲醇转化反应器为快速流化床;所述石脑油转化反应器为变径提升管,提升管上段直径与下段直径之比为1.2〜2. 5 : 1。 The process for producing light olefins from methanol and naphtha to claim 1, characterized in that the molecular sieve comprises ZSM-5; conversion of the methanol reactor is a fast fluidized bed; the conversion of naphtha Reducing reactor riser, riser diameter than the upper section of the lower diameter of 1.2~2 5: 1.
3.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述碳四以上烃来自产品物流I中分离出来的碳四混合烃,其中烯烃质量含量大于60%。 3. The process for producing light olefins from methanol and naphtha according the claim 1, wherein said carbon four or more carbon hydrocarbons from the four mixed hydrocarbon product stream is separated I, wherein the olefin content greater than 60% by mass .
4.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述产品物流I和产品物流II共用一套分离流程。 4. The method of claim 1 methanol and naphtha to light olefins, and wherein said product stream I and II share a product stream separation process.
5.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述再生催化剂积碳量质量分数小于0. 5%。 5. The process for producing light olefins from methanol and naphtha according the claim 1, wherein the amount of regenerated catalyst coke content is less than 0.5%.
6.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述石脑油馏程在20°C〜220°C之间。 The process for producing light olefins from methanol and naphtha to claim 1, wherein the naphtha boiling point range between 20 ° C~220 ° C.
7.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述再生催化剂分为三部分,20〜40%通过再生斜管返回甲醇转化反应器,20〜40%进入石脑油转化反应器上段,20〜60%进入石脑油转化反应器下段。 7. The method of claim 1 and a method of naphtha produced from methanol to light olefins, characterized in that the regenerated catalyst is divided into three portions, regeneration 20~40% by return chute methanol conversion reactor, 20~40 % naphtha reforming section on entering the reactor, 20~60% naphtha conversion into the lower section of the reactor.
8.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述甲醇转化反应器中反应条件为:反应温度为400〜500°C,气相线速为0. 8〜2. 0米/秒。 8. A process for producing light olefins from methanol and naphtha according the claim 1, wherein said methanol conversion reactor reaction conditions were: reaction temperature of 400~500 ° C, gas linear speed is zero. 8~2. 0 m / s.
9.根据权利要求1所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述石脑油转化反应器中反应条件为:反应温度为570〜650°C,下段气相线速为5〜10米/秒,上段气相线速为1. 5〜3. 0米/秒,待生立管中催化剂的质量流量与石脑油的质量流量之比为5. 0 〜8. O0 9. The method of claim 1 methanol and naphtha production of lower olefins, wherein said naphtha conversion reactor according to Claim reaction conditions: the reaction temperature is 570~650 ° C, under gas phase linear velocity of 5 to 10 m / s, the linear velocity of gas phase 1. 5~3. 0 m / sec, the ratio of the mass flow and mass flow rate of naphtha in the spent catalyst riser to 5. 0 ~8. O0
10.根据权利要求2所述由甲醇和石脑油生产低碳烯烃的方法,其特征在于所述ZSM-5 分子筛的硅铝比在30〜100。 10. A process for producing light olefins from methanol and the naphtha according to claim 2, wherein said ZSM-5 zeolite in a silica to alumina ratio of 30~100.
CN 201010199956 2010-06-11 2010-06-11 Method for producing lower olefins from methanol and naphtha CN102276399B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010199956 CN102276399B (en) 2010-06-11 2010-06-11 Method for producing lower olefins from methanol and naphtha

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010199956 CN102276399B (en) 2010-06-11 2010-06-11 Method for producing lower olefins from methanol and naphtha

Publications (2)

Publication Number Publication Date
CN102276399A true true CN102276399A (en) 2011-12-14
CN102276399B CN102276399B (en) 2013-10-16

Family

ID=45102192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010199956 CN102276399B (en) 2010-06-11 2010-06-11 Method for producing lower olefins from methanol and naphtha

Country Status (1)

Country Link
CN (1) CN102276399B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166282A (en) * 1999-08-20 2000-12-26 Uop Llc Fast-fluidized bed reactor for MTO process
CN101104576A (en) * 2006-07-13 2008-01-16 中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院 Combination catalysis conversion method for organic oxygen-containing compound and hydrocarbons
CN101270023A (en) * 2008-04-11 2008-09-24 中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院 Method for improving selectivity of light olefin hydrocarbon
CN101279875A (en) * 2007-04-04 2008-10-08 中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院 Method for increasing production of ethylene and propone
CN101279877A (en) * 2007-04-04 2008-10-08 中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院 Method for increasing yield of ethylene and propone in conversion process of oxocompound
WO2009065875A1 (en) * 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for converting an oxygenate into an olefin-containing product, and reactor system
CN101633593A (en) * 2008-07-26 2010-01-27 中国石化集团洛阳石油化工工程公司 Conversion method of C4 and heavier components

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166282A (en) * 1999-08-20 2000-12-26 Uop Llc Fast-fluidized bed reactor for MTO process
CN101104576A (en) * 2006-07-13 2008-01-16 中国石油化工股份有限公司;中国石油化工股份有限公司石油化工科学研究院 Combination catalysis conversion method for organic oxygen-containing compound and hydrocarbons
CN101279875A (en) * 2007-04-04 2008-10-08 中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院 Method for increasing production of ethylene and propone
CN101279877A (en) * 2007-04-04 2008-10-08 中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院 Method for increasing yield of ethylene and propone in conversion process of oxocompound
WO2009065875A1 (en) * 2007-11-19 2009-05-28 Shell Internationale Research Maatschappij B.V. Process for converting an oxygenate into an olefin-containing product, and reactor system
CN101270023A (en) * 2008-04-11 2008-09-24 中国石油化工股份有限公司;中国石油化工股份有限公司上海石油化工研究院 Method for improving selectivity of light olefin hydrocarbon
CN101633593A (en) * 2008-07-26 2010-01-27 中国石化集团洛阳石油化工工程公司 Conversion method of C4 and heavier components

Also Published As

Publication number Publication date Type
CN102276399B (en) 2013-10-16 grant

Similar Documents

Publication Publication Date Title
CN101279877A (en) Method for increasing yield of ethylene and propone in conversion process of oxocompound
CN101402538A (en) Method for improving yield of light olefins
CN101270023A (en) Method for improving selectivity of light olefin hydrocarbon
CN101333140A (en) Reaction device for preparing low carbon olefin from methanol or dimethyl ether
CN101165017A (en) Production increasing method for propylene
CN101164684A (en) Combined fluidized bed reactor
CN101239869A (en) Process for converting methanol or dimethyl ether to low-carbon olefins
CN1962573A (en) Method and reactor for catalytic cracking for producing propylene using fluid bed
CN101165018A (en) Method for producing ethylene and propylene
CN101333141A (en) Reaction device for conversing methanol or dimethyl ether to be low carbon olefin
CN101633593A (en) Conversion method of C4 and heavier components
CN101941875A (en) Method for increasing production of low-carbon olefins
CN101239874A (en) Reaction device for converting oxygen-containing compound to low-carbon olefins
CN101279872A (en) Method for preparing low-carbon olefin hydrocarbon with oxocompound
CN101992046A (en) Parallel combined riser circular reaction-regeneration device
CN101239871A (en) Method for increasing selectivity of low-carbon olefins in methanol or dimethyl ether converting process
CN101164687A (en) Multi-reaction-area combination type reactor
CN102039107A (en) Parallel cyclic reaction-regeneration device with embedded riser
CN101260013A (en) Method for preparing low-carbon olefins from oxygen-containing compound
CN101279875A (en) Method for increasing production of ethylene and propone
CN101270017A (en) Process for producing light olefin hydrocarbon with oxygen-containing compound conversion
CN101327445A (en) High-efficient regeneration method for preparing light olefins catalyst from oxygen-containing compounds
CN101941876A (en) Method for increasing production of light olefin
CN101062885A (en) Catalytic conversion method for increasing propylene production
CN101165022A (en) Method for increasing yield of ethylene and propylene

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model