CN102249498B - Biochemical treatment method for waste water from small and medium-sized starch factories - Google Patents
Biochemical treatment method for waste water from small and medium-sized starch factories Download PDFInfo
- Publication number
- CN102249498B CN102249498B CN201110195238A CN201110195238A CN102249498B CN 102249498 B CN102249498 B CN 102249498B CN 201110195238 A CN201110195238 A CN 201110195238A CN 201110195238 A CN201110195238 A CN 201110195238A CN 102249498 B CN102249498 B CN 102249498B
- Authority
- CN
- China
- Prior art keywords
- wastewater
- starch
- filtrate
- biochemical treatment
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 74
- 229920002472 Starch Polymers 0.000 title claims abstract description 71
- 235000019698 starch Nutrition 0.000 title claims abstract description 71
- 239000008107 starch Substances 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000000706 filtrate Substances 0.000 claims abstract description 35
- 238000000926 separation method Methods 0.000 claims abstract description 31
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 28
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 28
- 239000012528 membrane Substances 0.000 claims abstract description 22
- 238000005188 flotation Methods 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 239000010802 sludge Substances 0.000 claims abstract description 14
- 239000011259 mixed solution Substances 0.000 claims abstract description 10
- 239000006228 supernatant Substances 0.000 claims abstract description 8
- 230000018044 dehydration Effects 0.000 claims abstract description 7
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 7
- 230000008676 import Effects 0.000 claims abstract description 5
- 238000003756 stirring Methods 0.000 claims abstract description 4
- 239000007864 aqueous solution Substances 0.000 claims description 34
- 238000006243 chemical reaction Methods 0.000 claims description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 16
- 229920002401 polyacrylamide Polymers 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- -1 polypropylene Polymers 0.000 claims description 7
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 238000007667 floating Methods 0.000 claims description 5
- 238000005189 flocculation Methods 0.000 claims description 5
- 230000016615 flocculation Effects 0.000 claims description 5
- 239000005416 organic matter Substances 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 239000012510 hollow fiber Substances 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229920000620 organic polymer Polymers 0.000 claims description 3
- 239000011148 porous material Substances 0.000 claims description 3
- 238000011085 pressure filtration Methods 0.000 claims description 3
- 238000004062 sedimentation Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 12
- 238000004065 wastewater treatment Methods 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 239000010865 sewage Substances 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 3
- 238000001914 filtration Methods 0.000 abstract description 2
- 235000018102 proteins Nutrition 0.000 description 19
- 239000000126 substance Substances 0.000 description 8
- 238000010170 biological method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 240000003826 Eichhornia crassipes Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 238000011197 physicochemical method Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y02P60/56—
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种中小型淀粉厂废水的生化处理方法。首先在废水中加入有机絮凝剂和无机絮凝剂进行搅拌,混合液中形成有絮团,然后将搅拌后的混合液采用气浮池进行气浮分离,分离出废水中的悬浮物,分离后的出水进行过滤脱水,脱水后得到淀粉蛋白和过滤液;将其过滤液导入IC反应器中进行生化处理,将生化处理后的液体导入MBR膜生物反应器中进行分离,分离后得到的污泥进行干燥重新利用,得到的下清液符合国家污水排放标准,直接排放或循环利用。通过本发明方法可有效处理大量的淀粉废水,处理废水的过程中可以回收淀粉蛋白和沼气,使其资源得到最大程度的利用,从而取得了显著的经济效益和环境效益。The invention discloses a biochemical treatment method for wastewater from small and medium starch factories. First, organic flocculant and inorganic flocculant are added to the wastewater for stirring, and flocs are formed in the mixed solution, and then the stirred mixed solution is separated by air flotation in an air flotation tank, and the suspended solids in the wastewater are separated, and the separated effluent Carry out filtration and dehydration, obtain starch protein and filtrate after dehydration; import the filtrate into IC reactor for biochemical treatment, import the liquid after biochemical treatment into MBR membrane bioreactor for separation, and dry the sludge obtained after separation Reuse, the obtained supernatant meets the national sewage discharge standard, and can be directly discharged or recycled. A large amount of starch wastewater can be effectively treated by the method of the invention, and starch protein and biogas can be recovered during the wastewater treatment process, so that resources can be utilized to the greatest extent, thereby achieving remarkable economic and environmental benefits.
Description
技术领域 technical field
本发明涉及一种废水的处理方法,特别是涉及一种中小型淀粉厂废水的生化处理方法。 The invention relates to a wastewater treatment method, in particular to a biochemical treatment method for medium and small starch factory wastewater.
背景技术 Background technique
淀粉是一种重要的工业原料,除供食用与加工食品外,更广泛的应用于纺织、造纸、医药、发酵、铸造、胶粘、化工、机械及钻井等行业。但是在淀粉加工过程中会产生大量的高浓度酸性有机废水,有机废水中含有大量的残余淀粉、葡萄糖、果糖、麦芽糖等碳水化合物、蛋白质与有机酸等,易腐败发臭,化学需氧量COD含量常在1000~30000mg/L之间;此外,淀粉废水中总氮和磷酸盐浓度高,是食品工业中污染最严重的废水之一。 Starch is an important industrial raw material. In addition to food and processed food, starch is widely used in industries such as textile, papermaking, medicine, fermentation, casting, adhesive, chemical industry, machinery and drilling. However, in the process of starch processing, a large amount of high-concentration acidic organic wastewater will be produced. The organic wastewater contains a large amount of residual starch, glucose, fructose, maltose and other carbohydrates, protein and organic acids, etc., which is easy to be corrupted and smelly, and the chemical oxygen demand COD The content is usually between 1000-30000mg/L; in addition, the concentration of total nitrogen and phosphate in starch wastewater is high, which is one of the most polluted wastewater in the food industry.
目前,我国年产淀粉300多万吨,按照现有的加工工艺,平均每生产1吨淀粉产生10~20m3的废水,淀粉废水本身无毒性,其污染物主要是碳水化合物、蛋白质、脂肪等自然生成的有机物,易腐败发酵,使水质发黑发臭,排入江河会消耗水中的溶解氧,促进藻类及水生植物繁殖,淀粉废水量大时,河流会严重缺氧,发生厌氧腐败,散发恶臭,使其鱼、虾、贝类等水生动物可能会因此窒息死亡。因此,淀粉废水的处理成为目前我国淀粉生产厂家面临的十分严峻的问题。 At present, China produces more than 3 million tons of starch annually. According to the existing processing technology, an average of 1 ton of starch produced produces 10-20m3 of wastewater. Starch wastewater itself is non-toxic, and its pollutants are mainly carbohydrates, proteins, fats, etc. Naturally generated organic matter is easily corrupted and fermented, making the water black and smelly. Dissolved oxygen in the water will be consumed when discharged into the river, which will promote the reproduction of algae and aquatic plants. When the amount of starch wastewater is large, the river will be severely hypoxic and anaerobic. It emits a foul odor, which may suffocate aquatic animals such as fish, shrimp, and shellfish. Therefore, the treatment of starch wastewater has become a very serious problem faced by starch manufacturers in my country.
目前,国内外针对淀粉废水处理的现有方法主要有物化法和生物法。 At present, the existing methods for the treatment of starch wastewater at home and abroad mainly include physical and chemical methods and biological methods.
1、物化法:主要包括絮凝沉淀法和由絮凝和吸附组成的组合工艺方法。物化法投资虽然小,但运行费用高,而且出水很难达到排放标准。 1. Physicochemical method: mainly includes flocculation precipitation method and combined process method consisting of flocculation and adsorption. Although the physical and chemical method has a small investment, the operating cost is high, and it is difficult for the effluent to meet the discharge standard.
2、生物法:主要包括好氧生物法、厌氧生物法和光合细菌法等,生物处理方法因为具有成本低、能耗小、剩余污泥量少等优点,从而得到了环境工程界的重视。 2. Biological method: mainly includes aerobic biological method, anaerobic biological method and photosynthetic bacteria method, etc. Biological treatment method has attracted the attention of environmental engineering circles because of its advantages of low cost, low energy consumption, and less residual sludge. .
在处理淀粉废水方面,主要现有技术如下: Aspect the treatment starch wastewater, main prior art is as follows:
1999年,中国农机研究院食品机械研究所有关技术人员提出了«浅谈中小型马铃薯淀粉厂污水处理方案»,该文简单介绍了我国淀粉工业的现状,阐述了薯类淀粉厂目前的工艺技术水平及废水排放情况,提出了采用厌氧-好氧生化处理方法,对年产5000吨马铃薯淀粉厂废水排放进行污水处理的技术方案和工艺流程进行了介绍。该淀粉废水处理方法工艺陈旧,处理后的废水可能会造成二次污染;并且处理后的废水中仍然含有一些宝贵资源,废水的排放造成了宝贵资源的浪费。 In 1999, relevant technicians of the Food Machinery Research Institute of the my country Agricultural Machinery Research Institute put forward "A Brief Discussion on the Sewage Treatment Scheme of Small and Medium-sized Potato Starch Plants". The level and wastewater discharge situation, the anaerobic-aerobic biochemical treatment method was proposed, and the technical scheme and process flow of the sewage treatment for the wastewater discharge of the potato starch factory with an annual output of 5000 tons were introduced. The starch wastewater treatment method is outdated, and the treated wastewater may cause secondary pollution; and the treated wastewater still contains some valuable resources, and the discharge of the wastewater causes a waste of valuable resources.
另外,现有废水处理技术中将玉米淀粉废水经隔栅沉淀后的沉淀物用于喂猪、喂鸡等,废水排入氧化塘自然发酵1~2天,然后排入水葫芦池净化7天,再排入细绿萍池净化7天,达到农田灌溉水质标准,这部分水用于灌溉稻田、果树和蔬菜等,通过这一过程实现资源的再利用。该处理方法技术含量低,废水中仍有一部分资源被浪费掉。 In addition, in the existing wastewater treatment technology, the sediment from the cornstarch wastewater is used to feed pigs, chickens, etc. after being precipitated by the grid, and the wastewater is discharged into the oxidation pond for natural fermentation for 1 to 2 days, and then discharged into the water hyacinth pond for purification for 7 days , and then discharged into the Xiluping Pond for purification for 7 days to meet the water quality standard for farmland irrigation. This part of the water is used to irrigate rice fields, fruit trees and vegetables, etc. Through this process, resources are reused. This treatment method has low technical content, and some resources in the waste water are still wasted.
发明内容 Contents of the invention
本发明要解决的技术问题是提供一种中小型淀粉厂废水的生化处理方法。通过本发明方法可有效处理大量的淀粉废水,使其资源得到最大程度的利用,从而取得了显著的经济效益和环境效益。 The technical problem to be solved by the present invention is to provide a biochemical treatment method for wastewater from small and medium-sized starch factories. Through the method of the invention, a large amount of starch wastewater can be effectively treated, and its resources can be utilized to the greatest extent, thereby achieving remarkable economic and environmental benefits.
为了解决上述问题,本发明采用的技术方案是: In order to solve the above problems, the technical solution adopted in the present invention is:
本发明提供一种中小型淀粉厂废水的生化处理方法,所述生化处理方法包括以下步骤: The present invention provides a kind of biochemical treatment method of wastewater from small and medium-sized starch factories, and described biochemical treatment method comprises the following steps:
a、首先在淀粉废水中加入有机高分子絮凝剂聚丙烯酰胺水溶液和无机絮凝剂聚合氯化铝水溶液,然后搅拌混合均匀,得到混合液,混合液中形成有稳定的絮团;所述聚丙烯酰胺水溶液的加入量占淀粉废水总重量的2~4%,聚合氯化铝水溶液的加入量占淀粉废水总重量的1~2%; a. First, add organic polymer flocculant polyacrylamide aqueous solution and inorganic flocculant polyaluminum chloride aqueous solution to starch wastewater, then stir and mix evenly to obtain a mixed solution, in which stable flocs are formed; the polypropylene The addition of the amide aqueous solution accounts for 2 to 4% of the total weight of the starch wastewater, and the addition of the polyaluminum chloride aqueous solution accounts for 1 to 2% of the total weight of the starch wastewater;
b、将步骤a混合均匀的混合液导入气浮池进行气浮分离,经过气浮分离后,分离出混合液中上浮的悬浮物絮团,得到出水即蛋白液体,将经过气浮池分离得到的出水即蛋白液体采用板框压滤机进行压滤脱水,脱水后得到淀粉蛋白和过滤液,将所得淀粉蛋白经管束干燥机干燥制成蛋白饲料; b. Import the uniform mixed solution in step a into the air flotation tank for air flotation separation. After the air flotation separation, separate the suspended matter flocs floating in the mixed solution to obtain the effluent, which is protein liquid. The effluent obtained through the separation of the air flotation tank That is, the protein liquid is dehydrated by filter press with a plate and frame filter press, and starch protein and filtrate are obtained after dehydration, and the obtained starch protein is dried by a tube bundle dryer to make protein feed;
c、将步骤b压滤脱水后得到的过滤液导入IC厌氧反应器中进行生化处理,即将得到的过滤液由IC厌氧反应器的底部进入反应器的第一反应区,通过反应器的进水将导入的过滤液进行稀释,使其过滤液中的有机物充分反应被降解,同时产生大量的沼气,产生的沼气部分被IC厌氧反应器下层的三相分离器收集;另外一部分沼气夹带过滤液以及过滤液中污泥进入第二反应区,过滤液在沼气的夹带作用下进入第二反应区内设有的气液分离器中,通过气液分离,沼气脱离过滤液外排收集,剩余过滤液以及污泥在重力作用下通过回流管进入第一反应区的底部; c, the filtrate obtained after step b pressure filtration and dehydration is introduced into the IC anaerobic reactor for biochemical treatment, the filtrate to be obtained enters the first reaction zone of the reactor from the bottom of the IC anaerobic reactor, and passes through the bottom of the reactor The incoming water will dilute the imported filtrate, so that the organic matter in the filtrate can be fully reacted and degraded, and a large amount of biogas will be generated at the same time. Part of the generated biogas is collected by the three-phase separator in the lower layer of the IC anaerobic reactor; the other part of the biogas is entrained The filtrate and the sludge in the filtrate enter the second reaction zone, and the filtrate enters the gas-liquid separator in the second reaction zone under the entrainment of the biogas, and through the gas-liquid separation, the biogas is separated from the filtrate and collected. The remaining filtrate and sludge enter the bottom of the first reaction zone through the return pipe under the action of gravity;
d、将步骤c经过IC厌氧反应器处理后进入第一反应区底部的过滤液以及污泥导入MBR膜生物反应器中进行分离,在MBR膜生物反应器中停留的时间为4~6h,分离过程中控制溶解氧DO成分的含量为2~4 mg/L;经过MBR膜生物反应器分离后得到的污泥进行干燥重新利用,分离后得到的下清液直接排放或循环利用。 d. The filtrate and sludge that enter the bottom of the first reaction zone after step c is treated by the IC anaerobic reactor are introduced into the MBR membrane bioreactor for separation, and the residence time in the MBR membrane bioreactor is 4 to 6 hours. During the separation process, the dissolved oxygen DO content is controlled to be 2-4 mg/L; the sludge obtained after separation by the MBR membrane bioreactor is dried and reused, and the supernatant obtained after separation is directly discharged or recycled.
根据上述的中小型淀粉厂废水的生化处理方法,步骤a中所述聚丙烯酰胺水溶液的质量百分浓度为0.05~0.1%;所述聚合氯化铝水溶液的质量百分浓度为5~10%。 According to the above biochemical treatment method for wastewater from small and medium-sized starch factories, the mass percent concentration of the polyacrylamide aqueous solution in step a is 0.05-0.1%; the mass percent concentration of the polyaluminum chloride aqueous solution is 5-10% .
根据上述的中小型淀粉厂废水的生化处理方法,步骤b中所述将所得淀粉蛋白经管束干燥机干燥制成蛋白饲料时,干燥条件是常压、干燥温度为40~50℃、干燥时间为4~6h。 According to the above-mentioned biochemical treatment method of wastewater from small and medium-sized starch factories, when the obtained starch protein is dried into a protein feed through a tube bundle dryer as described in step b, the drying conditions are normal pressure, a drying temperature of 40 to 50°C, and a drying time of 4~6h.
根据上述的中小型淀粉厂废水的生化处理方法,步骤b中所述分离出混合液中上浮的悬浮物絮团,分离出悬浮物后淀粉废水中的悬浮物SS和化学需氧量CODcr二者的去除率分别达到≥80%和≥30%。 According to the biochemical treatment method of the above-mentioned small and medium-sized starch factory wastewater, the suspended matter flocculation floating in the mixed liquid is separated as described in step b, and the suspended matter SS and the chemical oxygen demand COD cr in the starch wastewater after the suspended matter are separated The removal rates of those reached ≥80% and ≥30%, respectively.
根据上述的中小型淀粉厂废水的生化处理方法,步骤c中所述IC厌氧反应器采用高径比为4~8:1的塔式反应器;所述IC厌氧反应器是在常温条件下运行,容积负荷为17.0~22.0 kg CODCr/(m3·d),沉淀区表面负荷0.6 m3/(m2·h),反应区水力停留时间5~7 h。 According to the biochemical treatment method of the above-mentioned small and medium-sized starch factory wastewater, the IC anaerobic reactor described in step c adopts a tower reactor with a height-to-diameter ratio of 4~8:1; Downstream operation, the volume load is 17.0-22.0 kg COD Cr /(m 3 ·d), the surface load in the sedimentation zone is 0.6 m 3 /(m 2 ·h), and the hydraulic retention time in the reaction zone is 5-7 h.
根据上述的中小型淀粉厂废水的生化处理方法,步骤d中所述MBR膜生物反应器采用的是聚丙烯中空纤维膜,膜的孔径为0.1~0.45 μm。 According to the above biochemical treatment method for wastewater from small and medium-sized starch factories, the MBR membrane bioreactor in step d uses polypropylene hollow fiber membranes with a pore size of 0.1-0.45 μm.
根据上述的中小型淀粉厂废水的生化处理方法,步骤d经过MBR膜生物反应器分离后所得下清液中悬浮物SS和生化需氧量BOD5的去除率分别达到≥90%和≥85%。 According to the above-mentioned biochemical treatment method for wastewater from small and medium-sized starch factories, the removal rates of suspended matter SS and biochemical oxygen demand BOD 5 in the supernatant obtained after step d is separated by MBR membrane bioreactor reach ≥90% and ≥85% respectively .
本发明的积极有益效果:Positive beneficial effect of the present invention:
1、本发明处理方法中首先在淀粉废水中加入有机絮凝剂和无机絮凝剂,加入无机絮凝剂可以产生电性中和作用,使废水中的絮粒易于靠近凝聚成较大絮粒,加入有机絮凝剂可使絮粒之间通过吸附架桥作用形成较稳定的大絮团,这样有利于气浮分离,从而能够有效分离出废水中的悬浮物SS和化学需氧量CODcr。本发明联合使用有机絮凝剂和无机絮凝剂,不仅絮凝效果好,而且可大大降低絮凝剂的用量。 1. In the treatment method of the present invention, an organic flocculant and an inorganic flocculant are first added to the starch wastewater. Adding the inorganic flocculant can produce an electrical neutralization effect, so that the flocs in the wastewater are easy to agglomerate into larger flocs. The flocculant can make the flocs form relatively stable large flocs through adsorption and bridging, which is conducive to air flotation separation, so that the suspended solids SS and chemical oxygen demand COD cr in the wastewater can be effectively separated. The present invention uses organic flocculant and inorganic flocculant in combination, not only has good flocculation effect, but also can greatly reduce the dosage of flocculant.
2、本发明处理工艺中将加入絮凝剂的废水混合均匀,利用气浮池进行分离,经过气浮分离后得到的出水进行过滤脱水,过滤后可以得到蛋白饲料,过滤后的滤液中悬浮物SS和化学需氧量CODcr的去除率分别达到80%以上和30%以上。根据测算,在该阶段每立方米废水可提取蛋白饲料5kg,按照1150元/吨计算,每立方米废水可产生效益5.75元;按照每立方米废水可提取蛋白饲料5kg计算,每年可提取蛋白饲料3969吨。本发明在IC厌氧反应器中进行生化处理过程中,每立方米废水可以回收1.90m3的沼气。因此,通过本发明,不仅有效处理了大量的淀粉废水,同时还获得了额外的经济效益。因此,本发明具有显著的经济效益和社会效益。 2. In the treatment process of the present invention, the waste water added with the flocculant is mixed evenly, separated by the air flotation tank, and the effluent obtained after the air flotation separation is filtered and dehydrated, and protein feed can be obtained after filtration. The suspended matter SS and The removal rates of COD cr are over 80% and 30% respectively. According to calculations, at this stage, 5kg of protein feed can be extracted from each cubic meter of waste water, calculated at 1150 yuan/ton, and the benefit can be generated at 5.75 yuan per cubic meter of waste water; calculated on the basis of 5kg of protein feed extracted from waste water per cubic meter, protein feed can be extracted every year 3969 tons. In the process of biochemical treatment in the IC anaerobic reactor, 1.90 m3 of biogas can be recovered per cubic meter of waste water. Therefore, the present invention not only effectively treats a large amount of starch wastewater, but also obtains additional economic benefits. Therefore, the present invention has remarkable economic benefit and social benefit.
3、淀粉废水经过本发明方法处理后,淀粉废水中的悬浮物SS、化学需氧量CODcr和生化需氧量BOD5由原来含量6862mg/L、14467 mg/L和8672 mg/L分别减少到86 mg/L、127 mg/L和22.5 mg/L,经过最后MBR膜生物反应器分离后得到的出水即下清液完全能到达到«污水综合排放标准»(GB8978-1996,一级排放标准)。因此,经过本发明处理方法,不仅有效解决了淀粉废水污染的问题,而且在废水处理过程中还提取了蛋白饲料和获得沼气,额外获得了经济效益。所以本发明无论在经济效益方面还是在社会环境效益方面,都具有显著的效果。 3. After the starch wastewater is treated by the method of the present invention, the suspended solids SS, chemical oxygen demand COD cr and biochemical oxygen demand BOD 5 in the starch wastewater are respectively reduced from the original content of 6862 mg/L, 14467 mg/L and 8672 mg/L To 86 mg/L, 127 mg/L and 22.5 mg/L, the effluent obtained after the final MBR membrane bioreactor separation, that is, the supernatant, can fully meet the "Sewage Comprehensive Discharge Standard" (GB8978-1996, first-level discharge standard). Therefore, the treatment method of the present invention not only effectively solves the problem of starch wastewater pollution, but also extracts protein feed and obtains biogas during the wastewater treatment process, and additionally obtains economic benefits. Therefore, the present invention has remarkable effects both in terms of economic benefits and social and environmental benefits.
4、本发明将淀粉废水通过加入絮凝剂、气浮分离、IC厌氧生化处理和MBR膜生物反应器处理后,可以使高浓度的淀粉废水最终的出水水质优于GB8978-1996一级排放标准,最终的出水可回用于工厂冲洗水、冲厕用水、绿化用水、景观用水,不但达到了保护环境的目的,同时节约了常规水资源,取得了良好的生态效益,而且减少了新鲜用水,降低了企业用水成本。因而,本发明具有显著的经济效益。 4. After the starch wastewater is treated by adding flocculants, air flotation separation, IC anaerobic biochemical treatment and MBR membrane bioreactor, the final effluent quality of high-concentration starch wastewater can be better than the first-level discharge standard of GB8978-1996 , the final effluent can be reused for factory flushing water, toilet flushing water, greening water, and landscape water, which not only achieves the purpose of protecting the environment, but also saves conventional water resources, achieves good ecological benefits, and reduces fresh water. Reduced corporate water costs. Therefore, the present invention has significant economic benefits.
四、具体实施方式:Fourth, the specific implementation method:
以下实施例仅为了进一步说明本发明,并不限制本发明的内容。 The following examples are only for further illustrating the present invention, and do not limit the content of the present invention.
实施例1: Example 1:
本发明一种中小型淀粉厂废水的生化处理方法,所述生化处理方法的详细步骤如下: A kind of biochemical treatment method of waste water of small and medium-sized starch factory of the present invention, the detailed steps of described biochemical treatment method are as follows:
a、首先在淀粉废水中加入有机高分子絮凝剂聚丙烯酰胺水溶液和无机絮凝剂聚合氯化铝水溶液,然后搅拌混合均匀,得到混合液,混合液中形成有稳定的絮团;所述聚丙烯酰胺水溶液的质量百分浓度为0.08%,聚丙烯酰胺水溶液的加入量占淀粉废水总重量的3%;所述聚合氯化铝水溶液的质量百分浓度为8%,聚合氯化铝水溶液的加入量占淀粉废水总重量的1.5%; a. First, add organic polymer flocculant polyacrylamide aqueous solution and inorganic flocculant polyaluminum chloride aqueous solution to starch wastewater, then stir and mix evenly to obtain a mixed solution, in which stable flocs are formed; the polypropylene The mass percent concentration of the amide aqueous solution is 0.08%, and the addition of the polyacrylamide aqueous solution accounts for 3% of the total weight of the starch wastewater; the mass percent concentration of the polyaluminum chloride aqueous solution is 8%, and the addition of the polyaluminum chloride aqueous solution The amount accounts for 1.5% of the total weight of starch wastewater;
b、将步骤a混合均匀的混合液导入气浮池进行气浮分离,经过气浮分离后,分离出混合液中上浮的悬浮物絮团(分离出悬浮物后淀粉废水中的悬浮物SS和化学需氧量CODcr二者的去除率分别达到≥80%和≥30%),得到出水即蛋白液体;将经过气浮池分离得到的出水即蛋白液体采用板框压滤机进行压滤脱水,脱水后得到淀粉蛋白和过滤液,将所得淀粉蛋白经管束干燥机干燥制成蛋白饲料;经管束干燥机干燥时干燥条件是常压、干燥温度为40℃、干燥时间为6h; b. Import the uniformly mixed liquid in step a into the air flotation tank for air flotation separation. After air flotation separation, separate the suspended matter flocs floating in the mixed liquid (suspended matter SS and chemical Oxygen demand, COD cr , and the removal rates of the two are ≥80% and ≥30% respectively), and the effluent is the protein liquid; the effluent, which is the protein liquid, obtained through the separation of the air flotation tank is filtered and dehydrated by a plate and frame filter press. Finally, starch protein and filtrate are obtained, and the obtained starch protein is dried by a tube bundle dryer to make protein feed; when dried by a tube bundle dryer, the drying conditions are normal pressure, a drying temperature of 40°C, and a drying time of 6 hours;
c、将步骤b压滤脱水后得到的过滤液导入IC厌氧反应器中进行生化处理,即将得到的过滤液由IC厌氧反应器的底部进入反应器的第一反应区,通过反应器的进水将导入的过滤液进行稀释,使其过滤液中的有机物充分反应被降解,同时产生大量的沼气,产生的沼气部分被IC厌氧反应器下层的三相分离器收集;另外一部分沼气夹带过滤液以及过滤液中污泥进入第二反应区,过滤液在沼气的夹带作用下进入第二反应区内设有的气液分离器中,通过气液分离,沼气脱离过滤液外排收集,剩余过滤液以及污泥在重力作用下通过回流管进入第一反应区的底部; c, the filtrate obtained after step b pressure filtration and dehydration is introduced into the IC anaerobic reactor for biochemical treatment, the filtrate to be obtained enters the first reaction zone of the reactor from the bottom of the IC anaerobic reactor, and passes through the bottom of the reactor The incoming water will dilute the imported filtrate, so that the organic matter in the filtrate can be fully reacted and degraded, and a large amount of biogas will be generated at the same time. Part of the generated biogas is collected by the three-phase separator in the lower layer of the IC anaerobic reactor; the other part of the biogas is entrained The filtrate and the sludge in the filtrate enter the second reaction zone, and the filtrate enters the gas-liquid separator in the second reaction zone under the entrainment of the biogas, and through the gas-liquid separation, the biogas is separated from the filtrate and collected. The remaining filtrate and sludge enter the bottom of the first reaction zone through the return pipe under the action of gravity;
所述IC厌氧反应器采用高径比为4~8:1的塔式反应器;所述IC厌氧反应器是在常温条件下运行,容积负荷为17.0~22.0 kg CODCr/(m3·d),沉淀区表面负荷0.6 m3/(m2·h),反应区水力停留时间5~7 h; The IC anaerobic reactor adopts a tower reactor with a height-to-diameter ratio of 4-8:1; the IC anaerobic reactor operates under normal temperature conditions, and the volume load is 17.0-22.0 kg COD Cr /(m 3 d), the surface load in the sedimentation zone is 0.6 m 3 /(m 2 h), and the hydraulic retention time in the reaction zone is 5-7 h;
d、将步骤c经过IC厌氧反应器处理后进入第一反应区底部的过滤液以及污泥导入MBR膜生物反应器中进行分离(所述MBR膜生物反应器采用的是聚丙烯中空纤维膜,膜的孔径为0.1~0.45 μm),在MBR膜生物反应器中停留的时间为4~6h,分离过程中控制溶解氧DO成分的含量为2~4 mg/L;经过MBR膜生物反应器分离后得到的污泥进行干燥重新利用,分离后得到的下清液直接排放或循环利用;经过MBR膜生物反应器分离后所得下清液中悬浮物SS和生化需氧量BOD5的去除率分别达到≥90%和≥85%。 d, the filtrate and the sludge that enter the bottom of the first reaction zone after step c is treated by the IC anaerobic reactor are introduced into the MBR membrane bioreactor for separation (the MBR membrane bioreactor adopts a polypropylene hollow fiber membrane , the pore size of the membrane is 0.1-0.45 μm), the residence time in the MBR membrane bioreactor is 4-6h, and the content of dissolved oxygen DO is controlled to be 2-4 mg/L during the separation process; after passing through the MBR membrane bioreactor The sludge obtained after separation is dried and reused, and the supernatant obtained after separation is directly discharged or recycled; the removal rate of suspended matter SS and biochemical oxygen demand BOD 5 in the supernatant obtained after separation by MBR membrane bioreactor Reach ≥90% and ≥85% respectively.
实施例2:与实施例1基本相同,不同之处在于: Embodiment 2: basically the same as Embodiment 1, the difference is:
步骤a中:所述聚丙烯酰胺水溶液的质量百分浓度为0.05%,聚丙烯酰胺水溶液的加入量占淀粉废水总重量的4%;所述聚合氯化铝水溶液的质量百分浓度为10%,聚合氯化铝水溶液的加入量占淀粉废水总重量的1.0%; In step a: the mass percent concentration of the polyacrylamide aqueous solution is 0.05%, and the addition amount of the polyacrylamide aqueous solution accounts for 4% of the total weight of the starch wastewater; the mass percent concentration of the polyaluminum chloride aqueous solution is 10% , the addition of polyaluminum chloride aqueous solution accounts for 1.0% of the total weight of starch wastewater;
步骤b中:经管束干燥机干燥时干燥条件是常压、干燥温度为50℃、干燥时间为4h。 In step b: when drying by a tube bundle dryer, the drying conditions are normal pressure, a drying temperature of 50° C., and a drying time of 4 hours.
实施例3:与实施例1基本相同,不同之处在于: Embodiment 3: basically the same as Embodiment 1, the difference is:
步骤a中:所述聚丙烯酰胺水溶液的质量百分浓度为0.1%,聚丙烯酰胺水溶液的加入量占淀粉废水总重量的2%;所述聚合氯化铝水溶液的质量百分浓度为5%,聚合氯化铝水溶液的加入量占淀粉废水总重量的2%; In step a: the mass percent concentration of the polyacrylamide aqueous solution is 0.1%, and the addition amount of the polyacrylamide aqueous solution accounts for 2% of the total weight of the starch wastewater; the mass percent concentration of the polyaluminum chloride aqueous solution is 5% , the addition of polyaluminum chloride aqueous solution accounts for 2% of starch wastewater gross weight;
步骤b中:经管束干燥机干燥时干燥条件是常压、干燥温度为45℃、干燥时间为5h。 In step b: the drying condition is normal pressure, the drying temperature is 45° C., and the drying time is 5 hours when drying by the tube bundle dryer.
实施例4:与实施例1基本相同,不同之处在于: Embodiment 4: basically the same as Embodiment 1, the difference is:
步骤a中:所述聚丙烯酰胺水溶液的质量百分浓度为0.065%,聚丙烯酰胺水溶液的加入量占淀粉废水总重量的3.5%;所述聚合氯化铝水溶液的质量百分浓度为9%,聚合氯化铝水溶液的加入量占淀粉废水总重量的1.2%。 In step a: the mass percent concentration of the polyacrylamide aqueous solution is 0.065%, and the addition amount of the polyacrylamide aqueous solution accounts for 3.5% of the total weight of the starch wastewater; the mass percent concentration of the polyaluminum chloride aqueous solution is 9% , the addition of the polyaluminum chloride aqueous solution accounts for 1.2% of the total weight of the starch wastewater.
实施例5:与实施例1基本相同,不同之处在于: Embodiment 5: basically the same as Embodiment 1, the difference is:
步骤a中:所述聚丙烯酰胺水溶液的质量百分浓度为0.09%,聚丙烯酰胺水溶液的加入量占淀粉废水总重量的2.5%;所述聚合氯化铝水溶液的质量百分浓度为6%,聚合氯化铝水溶液的加入量占淀粉废水总重量的1.8%。 In step a: the mass percent concentration of the polyacrylamide aqueous solution is 0.09%, the addition of the polyacrylamide aqueous solution accounts for 2.5% of the total weight of the starch wastewater; the mass percent concentration of the polyaluminum chloride aqueous solution is 6% , the addition of the polyaluminum chloride aqueous solution accounts for 1.8% of the total weight of the starch wastewater.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110195238A CN102249498B (en) | 2011-07-13 | 2011-07-13 | Biochemical treatment method for waste water from small and medium-sized starch factories |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110195238A CN102249498B (en) | 2011-07-13 | 2011-07-13 | Biochemical treatment method for waste water from small and medium-sized starch factories |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102249498A CN102249498A (en) | 2011-11-23 |
CN102249498B true CN102249498B (en) | 2012-09-05 |
Family
ID=44977132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110195238A Expired - Fee Related CN102249498B (en) | 2011-07-13 | 2011-07-13 | Biochemical treatment method for waste water from small and medium-sized starch factories |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102249498B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103833188A (en) * | 2014-03-24 | 2014-06-04 | 蒲晓斌 | High-suspension easy-to-biochemically treated wastewater treatment method |
CN104118964B (en) * | 2014-06-19 | 2016-03-02 | 山东西王糖业有限公司 | A kind of method of isolating active proteins in sewage treatment process |
CN104478989A (en) * | 2014-12-20 | 2015-04-01 | 山东绅联生物科技有限公司 | Method for recovering protein from heparin sodium extraction waste liquid |
CN104609646B (en) * | 2014-12-24 | 2016-09-07 | 三达膜环境技术股份有限公司 | A kind of processing method of cordyceps waste water |
CN105461162A (en) * | 2015-11-24 | 2016-04-06 | 广西罗城科潮基业科技发展有限公司 | Starch wastewater treatment method |
CN105366783B (en) * | 2015-12-08 | 2017-12-05 | 甘肃省建材科研设计院 | A kind of method of potato starch wastewater purified treatment |
CN106746225A (en) * | 2016-12-28 | 2017-05-31 | 宁夏北国环保节能有限公司 | Device and method for recovering potato starch production wastewater |
CN107050937A (en) * | 2017-04-13 | 2017-08-18 | 池州西恩新材料科技有限公司 | A kind of processing system and processing method in coal chemical industry Heisui River |
CN107873941A (en) * | 2017-11-06 | 2018-04-06 | 山东省博兴县洁源环保有限公司 | A kind of system that PURE WHEY is extracted from soy protein wastewater |
CN109956615A (en) * | 2017-12-25 | 2019-07-02 | 安徽洁之源环保科技有限公司 | Packaging printing sewage treatment process |
CN108423828A (en) * | 2018-05-15 | 2018-08-21 | 中国科学院兰州化学物理研究所 | A kind of potato starch processing waste water qualified discharge processing system |
CN108689489A (en) * | 2018-05-15 | 2018-10-23 | 中国科学院兰州化学物理研究所 | A kind of potato starch processing waste water qualified discharge treatment process |
CN111233261A (en) * | 2020-01-20 | 2020-06-05 | 轻工业环境保护研究所 | Treatment technology of potato starch production wastewater |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3780471A (en) * | 1970-07-16 | 1973-12-25 | Era Inc | Water reclamation-algae production |
CN1058575A (en) * | 1991-06-06 | 1992-02-12 | 平湖县环境保护监测站 | Method for treating waste water of cocoon of reeling silk |
CN1772661A (en) * | 2005-10-15 | 2006-05-17 | 桂林工学院 | Combined biological treatment process of cassava starch production wastewater |
CN101434436A (en) * | 2007-11-12 | 2009-05-20 | 东莞东美食品有限公司 | Treatment method of cassava starch production wastewater |
CN101633542A (en) * | 2008-07-24 | 2010-01-27 | 甘肃省膜科学技术研究院 | Treatment process of waste water produced in potato starch manufacturing |
-
2011
- 2011-07-13 CN CN201110195238A patent/CN102249498B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3780471A (en) * | 1970-07-16 | 1973-12-25 | Era Inc | Water reclamation-algae production |
CN1058575A (en) * | 1991-06-06 | 1992-02-12 | 平湖县环境保护监测站 | Method for treating waste water of cocoon of reeling silk |
CN1772661A (en) * | 2005-10-15 | 2006-05-17 | 桂林工学院 | Combined biological treatment process of cassava starch production wastewater |
CN101434436A (en) * | 2007-11-12 | 2009-05-20 | 东莞东美食品有限公司 | Treatment method of cassava starch production wastewater |
CN101633542A (en) * | 2008-07-24 | 2010-01-27 | 甘肃省膜科学技术研究院 | Treatment process of waste water produced in potato starch manufacturing |
Also Published As
Publication number | Publication date |
---|---|
CN102249498A (en) | 2011-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102249498B (en) | Biochemical treatment method for waste water from small and medium-sized starch factories | |
CN102826726B (en) | Refuse incineration plant leachate treatment process | |
CN103864266B (en) | A method for recycling waste paper and papermaking wastewater and sludge | |
CN201062224Y (en) | Sewage water treatment system for refining cotton | |
CN103102034B (en) | Deep treatment reuse method for cellulose ethanol production wastewater | |
CN103613245B (en) | Treatment process for waste water in neuropeptide product production | |
CN105384305B (en) | A kind of domestic sewage treatment process | |
CN103771655B (en) | A kind for the treatment of process of cellulose alcoholic fermentation waste liquid | |
CN207891214U (en) | A kind of high concentration animal fat sewage treatment equipment | |
CN102198997B (en) | Treatment process method for wastewater from abscisic acid production | |
CN103043789A (en) | Anaerobic reactor and treatment method of cotton pulp production waste water | |
CN103420542B (en) | Wastewater recycling process for waste paper pulping and manufacturing bobbin paper | |
CN104529053A (en) | High concentration pharmaceutical wastewater treatment technology | |
CN102659284B (en) | Regenerated papermaking wastewater treatment system and process | |
CN204417278U (en) | Culturing wastewater processing system | |
CN104129886B (en) | A kind of membrane biological reactor process for VITAMIN pharmacy wastewater treatment | |
CN110357357A (en) | A kind of high concentration nonionic surfactant wastewater treatment equipment and method | |
CN210287088U (en) | Melamine formaldehyde resin effluent treatment plant | |
CN208136048U (en) | A kind of vegetables juicing waste water treatment system | |
CN108623076A (en) | A kind of method and apparatus of processing whey wastewater | |
CN204369720U (en) | Culturing wastewater processing system | |
CN103693809B (en) | Anaerobic biological treatment system for fruit juice wastewater | |
CN204325083U (en) | A kind for the treatment of system of straw-pulp-papermaking wastewater | |
CN210505835U (en) | System for utilize denitrification treatment resin regeneration waste liquid | |
CN1270982C (en) | Process for comprensive treating waste water of paper making by grass pulp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: HEZE SANLEI PLASTIC INDUSTRY CO., LTD. Free format text: FORMER OWNER: NORTH-CHINA WATER CONSERVANCY + HYDROELECTRIC POWER COLLEGE Effective date: 20131127 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 450011 ZHENGZHOU, HENAN PROVINCE TO: 274100 HEZE, SHANDONG PROVINCE |
|
TR01 | Transfer of patent right |
Effective date of registration: 20131127 Address after: 274100 Shandong city of Heze province Dingtao County Economic Development Zone, Fang Shan Xiang (Netherlands East Route) Patentee after: Heze Sanlei Plastic Co. Ltd. Address before: 450011 Henan province Zhengzhou North Ring Road No. 36 Patentee before: North-China Water Conservancy & Hydroelectric Power College |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120905 Termination date: 20210713 |
|
CF01 | Termination of patent right due to non-payment of annual fee |