CN102248536B - Mobile mechanical arm control system used for extendable modularization - Google Patents

Mobile mechanical arm control system used for extendable modularization Download PDF

Info

Publication number
CN102248536B
CN102248536B CN 201110160108 CN201110160108A CN102248536B CN 102248536 B CN102248536 B CN 102248536B CN 201110160108 CN201110160108 CN 201110160108 CN 201110160108 A CN201110160108 A CN 201110160108A CN 102248536 B CN102248536 B CN 102248536B
Authority
CN
China
Prior art keywords
connected
module
controller
pins
corresponding
Prior art date
Application number
CN 201110160108
Other languages
Chinese (zh)
Other versions
CN102248536A (en
Inventor
吴怀宇
郑秀娟
闫贺
杨升
Original Assignee
武汉科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉科技大学 filed Critical 武汉科技大学
Priority to CN 201110160108 priority Critical patent/CN102248536B/en
Publication of CN102248536A publication Critical patent/CN102248536A/en
Application granted granted Critical
Publication of CN102248536B publication Critical patent/CN102248536B/en

Links

Abstract

本发明涉及一种用于可拓展模块化的移动机械臂控制系统。 The present invention relates to a control system for a mobile robot arm scalable modular. 其方案是:工业计算机(1)通过1~3个运动规划控制器(2)分别与1~6个机械臂区域控制器(4)和1~6个移动平台区域控制器(9)连接;每个机械臂区域控制器(4)分别与1~6个关节驱动模块(5)连接;每个关节驱动模块(5)与第一信息采集反馈器(6)对应连接;每1~6个第一信息采集反馈器(6)与各自对应的关节驱动模块(5)连接的机械臂区域控制器(4)连接;每个移动平台区域控制器(9)分别与2~4个轮子驱动模块(8)连接;每个轮子驱动模块(8)与第二信息采集反馈器(7)对应连接;每2~4个第二信息采集反馈器(7)与各自对应的轮子驱动模块(8)连接的移动平台区域控制器(9)连接。 Its program are: industrial computer (1) are connected to the robot arm 1 to 6 zone controller (4) 1-6 and the mobile platform area controller (9) by 1 to 3 planning motion controller (2); each zone controller robot arm (4) are connected to a joint drive modules 1-6 (5); each joint drive module (5) and a first feedback information collection (6) corresponding to the connection; each of 1 to 6 manipulator controller of the first area information collecting feedback device (6) corresponding to respective joint drive module (5) is connected (4) is connected; and each zone controller mobile platform (9), respectively 2 to 4 wheel drive module (8); each drive wheel module (8) and a second feedback information acquisition unit (7) corresponding to the connection; every two to four second feedback information collecting unit (7) corresponding to the respective wheel drive module (8) zone controller connected to the mobile platform (9). 本发明具有鲁棒性、抗干扰性和实时性强等特点。 The present invention is robust, real-time performance and anti-jamming features.

Description

一种用于可拓展模块化的移动机械臂控制系统技术领域:[0001] 本发明属于移动机械臂控制技术领域。 BACKGROUND mobile manipulator control system for a scalable modular: [0001] The present invention belongs to the field of mobile manipulator control. 具体涉及一种用于可拓展模块化的移动机械臂控制系统。 Particularly it relates to a control system for a mobile manipulator scalable modular. 背景技术:[0002] 近年来,移动机械臂在国防、工业、农业及医疗行业展现了较高的应用价值。 BACKGROUND: [0002] In recent years, mobile manipulators in defense, industry, agriculture and medical industries show a higher value. 模块化机械臂由各种功能模块组成,各模块完整而单一,使得系统有柔性、可拓展、易于修改、重构和添加配置功能,同时根据任务的需要或外界环境的变化,通过随机自主调整各关节模块,以达到相同的目标位姿。 Modular robot arm various functional modules, each module is complete and a single, so that the system is flexible, scalable, easily modified, reconstituted and added functional configuration, while the external environment or the change needed tasks, independent adjustment by randomly each joint module to achieve the same goal pose. [0003] 将模块化的思想应用到机械臂上,当某一模块发生故障时,其他模块的参数耦合可以代替失效模块所负担的任务,大大增强了系统的自我修复能力。 [0003] The idea of ​​modular applied to the robot arm, when a module fails, the other parameters are coupled modules can replace the task module failure burden, greatly enhancing the ability to self-repair system. 集成式6自由度微动并联机器人系统(王振华,陈立国,孙立宁.集成式6自由度微动并联机器人系统.光学精密工程.2007年第15卷第9期)具有定位精度和可靠性高、使用灵活方便的特点,但是其采用机构、驱动、检测一体化的思想,集成度高、结构封闭,无法根据需要更改系统配置,同时当系统任一单元出现故障时,便无法完成工作任务,使得移动机械臂系统鲁棒性不够高。 Integrated micro 6 DOF parallel manipulator system (Fed, Chen Liguo, Sun Lining. Integrated micro 6 DOF parallel robot system. The optical Precision Engineering 2007, Vol. 15, No. 9) having a positioning accuracy and high reliability, flexible and convenient features, but its adoption agency, drive, thinking detect integration, highly integrated, closed structure, can not be configured as necessary to change the system, but when the system either unit fails, you can not complete the task, so that Robust mobile manipulator system is not high enough. [0004] 随着机器人应用领域的扩展,如危险环境下机器人作业等,本地控制已无法满足控制要求,远程操作能力是机器人系统必须具备的要求,模块化可重构履带式微小型机器人的研究(李满天,黄博,刘国才,立宁.模块化可重构履带式微小型机器人的研究.机器人.2006年第28卷第5期)用了微控制器和PC机两级控制体系,这种分层设计系统虽结构合理,但两级间采用蓝牙通讯,其工作频段为全球统一开放的2.4GHz工业、科学和医学频段,会受到诸如微波炉、无绳电话、科研仪器、工业或医疗设备的干扰,抗干扰能力差。 [0004] With the expansion of application fields of the robot, such as robot operation in hazardous environments and the like, the local control has been unable to meet the control requirements, a robot remote manipulation system must have the ability to request, small modular robots Tracked micro Reconstruction ( Lee sky, Huang Bo, Liu was, Lining modular reconfigurable robot crawler small study of micro robot. 2006 Vol 28 5) with a microcontroller and a PC-step control system, this stratification although the design of the system structure is reasonable, but between two Bluetooth communication, its operating band for the 2.4GHz industrial, scientific and medical band global unified and open, be subject to interference such as microwave ovens, cordless phones, scientific instruments, industrial or medical equipment, anti- differential interference. 同时,也限制了对机器人的远程控制,其控制灵活性有待进一步提高。 We also limit the remote control of the robot, which controls flexibility needs to be improved. [0005] 在机械臂关节模块运动规划中,存在着大量的数学计算如坐标变换、正逆运动学方程求解和高次插补运算等。 [0005] In the articulated manipulator motion planning module, there are a lot of mathematical calculations, such as coordinate transformation, and equation solving inverse kinematics n high order interpolation calculation and the like. 同时,运动规划控制器与伺服驱动器之间需要进行大量的数据交换,对于运动规划控制的实时性要求需要采用高速的处理器才能满足。 At the same time, it requires a lot of planning data exchange between the motion controller and servo drives, motion planning requirements for real-time control needs in order to meet high-speed processors. “基于分布式控制的即插即用机械臂系统”(CN1586829)专利技术采用了分布式的控制技术,该技术虽提高了控制精度,但采用8位单片机完成运动规划控制,运算和数据处理能力有限,运动规划控制器的实时性受到影响;嵌入式系统在机器人控制系统中应用(周杰,陈伟海,于守谦.基于ARM的嵌入式系统在机器人控制系统中应用.微计算机信息,2007年第23卷第2期)技术,虽具有层次化的体系结构,但用于完成控制算法的控制器为ARM,主频为67.5MHZ,运算速度低,不能较好的满足实时性的要求。 "Plug and Manipulator System Based on Distributed Control" (CN1586829) patented technology uses a distributed control technique, although this technique improve the control precision, but the 8-bit microcontroller complete motion planning control, arithmetic and data processing capabilities limited, real-time motion planning controller is affected; embedded system applications in robot control system (Zhou Jie, Chen Weihai, in Shouqian use ARM-based embedded system in robot control system microcomputer information, 2007. 23 No. 2) technique, although having a layered architecture, but the algorithm for performing controller for ARM, clocked at 67.5 MHz, the operation speed is low, preferably not meet real-time requirements. [0006] 移动机械臂系统涉及到机械臂和移动平台两个子系统。 [0006] The robot arm moves the robot arm system involves two subsystems and mobile platforms. 分散独立控制机械臂和移动平台时,精度必然受到影响;集中控制机械臂和移动平台时,机械臂子系统和移动平台子系统之间存在较强的动力学耦合,这对于系统的性能有着较大的影响。 When the dispersion and the mobile platform independent control of the robot arm, the accuracy must be affected; centralized control when the robot arm and the mobile platform, there is a strong coupling between the dynamics of the robot arm subsystem and the mobile platform subsystems for which performance of the system has a more big impact. 所以,如何协调移动平台动态避障和移动机械臂末端的实时操作是一个至关重要的问题。 So, how to coordinate mobile platforms and real-time dynamic obstacle avoidance operation of the mobile robot arm end is a critical issue. “一种智能移动机械臂控制系统”(CN101817182)专利技术采用了分布式的控制技术,该技术虽然对自主移动小车和模块化机械臂能够进行远程控制,但在自主移动小车和模块化机械臂的协调控制方面不强,没有充分发挥移动机械臂可同时实现移动和操作的优点。 "An Intelligent Mobile Robot Manipulator System" (CN101817182) patented technology uses a distributed control technique although independent and modular robotic arm capable of moving the car remote control, but in the autonomous mobile car and modular manipulator coordinated control is not strong, not fully realized the advantages of moving the robot arm can be moved and operated simultaneously. [0007] 综上所述,现有技术中的移动机械臂控制系统存在以下问题:鲁棒性不强;远程操作时抗干扰性不强;操作时不能满足任务的实时性需求;不易拓展和修改;移动平台和机械臂的协调控制能力较差。 [0007] In summary, there is a problem the prior art moves the manipulator control system, of: not strong robustness; remote operation is not strong anti-interference; can not meet the needs of real-time operation tasks; easy to expand and Review; poor coordination and control capabilities of the mobile platform of the robot arm. 发明内容:[0008] 本发明旨在克服现有技术缺陷,目的是提供一种易于修改、鲁棒性好、协调控制能力强、实时运动规划和远程操作时抗干扰性强的用于可拓展模块化的移动机械臂控制系统。 SUMMARY: [0008] The present invention aims to overcome the drawbacks of prior art, the purpose is to provide an easy to modify, robust, coordinated control capability, real-time motion planning and remote operation for strong anti-interference may expand modular control system of a mobile robot arm. [0009] 为了实现上述目的,本发明采用的技术方案是:工业计算机通过以太网以有线或无线方式与I〜3个运动规划控制器分别连接;每个运动规划控制器各自通过CAN-bus分别与I〜6个机械臂区域控制器和I〜6个移动平台区域控制器连接;每个机械臂区域控制器各自通过CAN-bus分别与I〜6个关节驱动模块连接;每个关节驱动模块分别与各自对应的第一信息采集反馈器连接;每I〜6个第一信息采集反馈器分别与各自对应的关节驱动模块连接的机械臂区域控制器连接;每个移动平台区域控制器各自通过CAN-bus分别与2〜4个轮子驱动模块连接;每个轮子驱动模块分别与各自对应的第二信息采集反馈器连接;每2〜4个第二信息采集反馈器分别与各自对应的轮子驱动模块连接的移动平台区域控制器连接。 [0009] To achieve the above object, the technical solution of the present invention is that: a wired or wireless industrial computer connected to the motion planning I~3 Ethernet controller, respectively; each independently of each motion planning controller via CAN-bus I~6 robotic arms connected to the zone controller and zone controllers I~6 mobile internet; each manipulator zone controller via CAN-bus are each connected respectively I~6 joints driving module; each joint drive module are respectively connected to the respective corresponding first collecting feedback information; a manipulator controller for each region of first I~6 collecting feedback information respectively corresponding to respective joint drive connected modules connected; each mobile platform by each zone controller CAN-bus are connected to the driving wheels 2 ~ 4 modules; each driving wheel module respectively corresponding to each of the second feedback connection information collection; ~ 4 per second feedback information collecting respectively corresponding to the respective driving wheel mobile platform area controller module connection. 电源模块与每个运动规划控制器、每个机械臂区域控制器、每个移动平台区域控制器、每个关节驱动模块、每个轮子驱动模块、每个第一信息采集反馈器和每个第二信息采集反馈器分别连接。 Motion planning module and each power controller, each manipulator zone controller, the zone controllers each mobile platform, each joint drive module, the drive module each wheel, each first and each feedback information collection section two feedback information collection respectively connected. [0010] 运动规划控制软件嵌入在运动规划控制器中。 [0010] The motion planning motion planning control software embedded in the controller. [0011] 所述的电源模块包括直流电源、第一电压转换芯片、第二电压转换芯片和第三电压转换芯片。 [0011] The power supply module comprises a DC power source, a first voltage converter chip, the second chip and the third voltage converter converting chip. 直流电源与第一电压转换芯片的INPUT端口连接,第一电压转换芯片的OUTPUT端口与第二电压转换芯片的INPUT端口连接,第二电压转换芯片的OUTPUT端口与第三电压转换芯片的INPUT端口连接。 INPUT INPUT port and the first port is connected a DC power supply voltage converting chip, INPUT port of the first voltage converting chip OUTPUT port of the second voltage converter chip, a second voltage converting chip OUTPUT port and the third voltage converting chip . 第一电压转换芯片的输出端口OUTPUT与每个轮子驱动模块和每个关节驱动模块分别连接,第二电压转换芯片的输出端口OUTPUT与每个第一信息采集反馈器和每个第二信息采集反馈器分别连接,第三电压转换芯片的输出端口OUTPUT与每个运动规划控制器、每个机械臂区域控制器和每个移动平台区域控制器分别连接。 A first voltage converting chip is connected to the output ports OUTPUT driving each wheel module and each joint drive module, the second output port OUTPUT voltage converting each of the first chip and the feedback information collecting unit and each second feedback information collection respectively connected to output ports oUTPUT third voltage conversion chip with each motion planning controllers, each zone controller and each mobile manipulator platform region are connected to the controller. 第一电压转换芯片的输出端口OUTPUT的输出电压为+12V,第二电压转换芯片的输出端口OUTPUT的输出电压为+5V,第三电压转换芯片的输出端口OUTPUT的输出电压为+3.3V。 A first output port OUTPUT voltage conversion chip output voltage of + 12V, a second output port OUTPUT voltage conversion chip output voltage of + 5V, the output port of the third voltage OUTPUT conversion chip output voltage is + 3.3V. [0012] 所述的运动规划控制器包括第一DSP芯片、以太网控制器、以太网连接器和第一CAN通讯模块。 [0012] The motion planning comprises a first DSP chip controller, Ethernet controller, the Ethernet connector and the first CAN communication module. 第一DSP 芯片的XCLK0UT、GP10B7、XINT1、XINT2、SPISM0、SPIS0MI 和SPICLK弓丨脚分别与以太网控制器的0SC1、6、Jnt,函Z、S1、SO和SCK引脚对应连接,第一DSP芯片的CANTX和CANRX引脚分别与第一CAN通讯模块的TXD和RXD引脚对应连接,运动规划控制软件嵌入在第一DSP芯片中;以太网控制器的TP0UT+、TP0UT_、TPIN+和TPIN_引脚分别与以太网连接器的TP_0UT+、TP_0UT_、TP_IN+和TP_IN_引脚对应连接。 The first DSP chip XCLK0UT, GP10B7, XINT1, XINT2, SPISM0, SPIS0MI SPICLK and are connected to the foot arch Shu 0SC1,6, Jnt, the letter Z, S1, SO corresponding to the Ethernet controller and the SCK pin, a first DSP CANRX CANTX chip and are connected to the pins of the first CAN communication module TXD and RXD pin corresponds, motion planning control software embedded in the first DSP chip; TP0UT Ethernet controllers +, TP0UT_, TPIN + and pins TPIN_ respectively Ethernet connector TP_0UT +, TP_0UT_, TP_IN + TP_IN_ pins and the corresponding connector. 第一DSP芯片的VDDIO引脚、以太网控制器的VDD引脚和以太网连接器的TX_CT引脚分别与电源模块连接;第一CAN通讯模块通过CAN-bus与每个机械臂区域控制器和每个移动平台区域控制器连接,以太网连接器的Jl〜J8输出端通过双绞线与工业计算机连接。 VDDIO pin pin TX_CT, VDD pin and Ethernet connector Ethernet controller first DSP chip are connected to the power supply module; CAN communication module through a first CAN-bus and each zone controller and the robot arm each mobile internet connection zone controller, Ethernet Jl~J8 output is connected via a twisted pair is connected to the computer industry. [0013] 所述的机械臂区域控制器包括第二DSP芯片和第二CAN通讯模块。 [0013] The zone controller comprises a second robotic arm and a second CAN communication chip DSP module. 第二DSP芯片的CANTX和CANRX引脚分别与第二CAN通讯模块的TXD和RXD引脚对应连接;第二DSP芯片的10PA2和10PA3引脚分别与每个第一信息采集反馈器连接;第二CAN通讯模块通过CAN-bus与运动规划控制器和每个关节驱动模块连接;第二DSP芯片的VDDIO引脚与电源模块连接。 And a second DSP chip CANTX CANRX pins are electrically connected TXD and RXD pin corresponding to the second CAN communication module; 10PA2 10PA3 and second pins are connected with each DSP chip collecting first feedback information; a second CAN communication module via CAN-bus controller and motion planning and each joint drive module; VDDIO second DSP chip pin and power supply module. [0014] 所述的移动平台区域控制器包括第三DSP芯片和第三CAN通讯模块。 The controller comprises a mobile platform region [0014] of the third and the third DSP chip CAN communication module. 第三DSP芯片的CANTX和CANRX引脚分别与第三CAN通讯模块的TXD和RXD引脚对应连接•'第三DSP芯片的10PA2和10PA3引脚分别与每个第二信息采集反馈器连接,第三CAN通讯模块通过CAN-bus与运动规划控制器和每个轮子驱动模块连接;第三DSP芯片的VDDIO引脚与电源模块连接。 And the third DSP chip CANTX CANRX pins are connected to the TXD and RXD pin corresponding to the third CAN communication module • '10PA2 third DSP chips were collected and 10PA3 pins connected to each of the second feedback information, second three CAN communication module via CAN-bus controller and motion planning module and each drive wheel; VDDIO third DSP chip pin and power supply module. [0015] 所述的关节驱动模块包括第四DSP芯片、第一光电耦合模块、第一电机驱动模块和第一自我保护单兀。 The [0015] driving module comprises a fourth articulation DSP chip, a first photo-coupler block, and a first motor driving the first self-protection module single Wu. 第四DSP芯片的PWMl和PWM2引脚分别与第一光电藕合模块的ANODEl和AN0DE2引脚对应连接,第四DSP芯片的10PE3引脚与第一自我保护单元的ENABLE_BRAKE引脚连接,第一光电藕合模块的OVl和0V2引脚分别与第一电机驱动模块的BHI和BLI引脚对应连接,第一自我保护单元的BRAKEl和BRAKE2引脚分别与第一电机驱动模块的OUTl和0UT2引脚对应连接。 The fourth DSP chip PWMl and PWM2 are connected to pins corresponding AN0DE2 ANODEl a first optical coupling module pins, the first pin is internally connected to the self-protection unit ENABLE_BRAKE fourth DSP chip 10PE3, a first photo OVl coupling module are connected to the pins and 0V2 BHI BLI corresponding pins of a first motor drive module, BRAKEl a first unit and a self-protection BRAKE2 pins respectively corresponding to the first motor drive module OUTl and 0UT2 pins connection. 第四DSP芯片通过CAN-bus与机械臂区域控制器连接,第四DSP芯片的APP1_SENS0R和APP2_SENS0R引脚分别与各自对应的第一信息采集反馈器连接,第四DSP芯片的VDDIO引脚、第一光电耦合模块的VCC引脚和第一电机驱动模块的VCC引脚分别与电源模块连接。 The fourth DSP chip via CAN-bus controller and the robot arm region, and the fourth DSP chip APP1_SENS0R APP2_SENS0R pins are connected to the respective corresponding first feedback information collection, a fourth pin VDDIO DSP chip, a first VCC pin and the first photocoupler motor module VCC pin driver module are connected to the power supply module. [0016] 所述的轮子驱动模块包括第五DSP芯片、第二光电耦合模块、第二电机驱动模块和第二自我保护单元。 Wheel drive module [0016] The fifth includes a DSP chip, module second photocoupler, a second motor and a second self-protection module driving unit. 第五DSP芯片的PWMl和PWM2引脚分别与第二光电藕合模块的ANODEI和AN0DE2引脚对应连接,第五DSP芯片的10PE3引脚与第二自我保护单元的ENABLE_BRAKE引脚连接,第二光电藕合模块的OVl和0V2引脚分别与第二电机驱动模块的BHI和BLI引脚对应连接,第二自我保护单元的BRAKEl和BRAKE2引脚分别与第二电机驱动模块的OUTl和0UT2引脚对应连接。 Fifth DSP chip PWMl and PWM2 pins are connected to pins AN0DE2 ANODEI corresponding second optical coupling module, connected to the second lead pin self-protection unit ENABLE_BRAKE fifth DSP chip 10PE3, second photoelectric OVl module and coupling pins are respectively connected to 0V2 BHI BLI corresponding pins of the second motor drive module, BRAKEl second self-protection unit and respectively second pins BRAKE2 OUTl and 0UT2 motor drive module corresponding pin connection. 第五DSP芯片通过CAN-bus与移动平台区域控制器连接;第五DSP芯片的APP1_SENS0R和APP2_SENS0R引脚分别与各自对应的第二信息采集反馈器连接,第五DSP芯片的VDDIO引脚、第二光电耦合模块的VCC引脚和第二电机驱动模块的VCC引脚分别与电源模块连接。 Fifth DSP chip via CAN-bus controller and the mobile platform region; and a fifth DSP chip APP1_SENS0R APP2_SENS0R pins respectively corresponding to the respective second feedback information collecting unit connected to the fifth pin VDDIO DSP chip, a second VCC pin and the second motor driver module photocoupler modules are connected to the VCC pin of the power module. [0017] 所述的第一信息采集反馈器包括第一滞回比较器和第一光电编码器。 [0017] The first feedback information collection comprises a first hysteresis comparator and a first photoelectric encoder. 第一滞回比较器的IA和2A引脚分别与第一光电编码器的XA和XB引脚对应连接;第一滞回比较器的IY和2Y引脚分别与机械臂区域控制器连接,第一光电编码器的XFSIPUTA和XFSIPUTB引脚分别与各自对应的关节驱动模块连接,第一滞回比较器的VCC引脚和第一光电编码器的VCC引脚分别与电源模块连接。 A first hysteresis comparator IA and 2A are connected to pins corresponding to XA and XB of the pin of the first photoelectric encoder; a first hysteresis comparator IY and 2Y pins are connected to the robot arm the zone controller, the first an optical encoder XFSIPUTA XFSIPUTB and the corresponding pins are connected to the respective joint drive module, the first hysteresis comparator VCC pin VCC pin and a first photoelectric encoder are connected to the power supply module. [0018] 所述的第二信息采集反馈器包括第二滞回比较器和第二光电编码器。 [0018] The second feedback information collection comprises a second hysteresis comparator, and a second optical encoder. 第二滞回比较器的IA和2A引脚分别与第二光电编码器的XA和XB引脚对应连接;第二滞回比较器的IY和2Y引脚分别与移动平台区域控制器连接,第二光电编码器的XFSIPUTA和XFSIPUTB弓丨脚分别与各自对应的轮子驱动模块连接,第二滞回比较器的VCC引脚和第二光电编码器的VCC弓丨脚分别与电源模块连接。 A second hysteresis comparator IA and 2A are respectively connected to the pins corresponding to XA and XB second optical encoder pin; a second hysteresis comparator, respectively, IY and 2Y pins connected to the mobile platform the zone controller, the first two optical encoder XFSIPUTA Shu foot arch and XFSIPUTB modules are connected to each corresponding drive wheel, a second pin VCC bow Shu hysteresis comparator VCC pin and the second photoelectric encoder are connected to the power supply module. [0019] 所述的运动规划控制软件的主流程为:[0020] S-1:初始化,进入循环;[0021] S-2:判断运动规划控制器是否接收到工业计算机的指令,不是则关节驱动模块驱动的关节和轮子驱动模块驱动的轮子停止运动,是则进行S-3 ;[0022] S-3:运动规划控制器发送指令至每个机械臂区域控制器和移动平台区域控制器;[0023] S-4:判断机械臂区域控制器和移动平台区域控制器是否接收到运动规划控制器的指令,不是则重新判断:是则进行S-5 ;[0024] S-5:判断关节驱动模块和轮子驱动模块是否进行零位置检测,是则进行零位置检测,再返回S-4,不是则进行S-6;[0025] S-6:关节驱动模块和轮子驱动模块分别接收各自对应的机械臂区域控制器和移动平台区域控制器相应的指令;[0026] S-7:读取关节驱动模块和轮子驱动模块接收到的信息;通过运动控制算法,关节驱动模块控制关节动作, [0019] The motion planning software for main process control: [0020] S-1: initialization, into circulation; [0021] S-2: determining whether the motion planning controller receives an instruction of the computer industry, the joint is not joints and drive module drive module drive wheel driven wheel stops moving is performed is S-3; [0022] S-3: the controller sends an instruction to the motion planning zone controller and each mobile platform manipulator zone controllers; [0023] S-4: Analyzing region manipulator controller and the mobile internet zone controller if the controller receives an instruction of motion planning, it is not re-determined: it is then carried S-5; [0024] S-5: Analyzing joint if the drive module and the wheel drive module zero position detector, a zero position detection is performed, and then returns the S-4, is not then be S-6; [0025] S-6: a joint drive module and the wheel driving module receives each corresponding the corresponding instruction region manipulator controller and the mobile platform region controller; [0026] S-7: reading module and a joint driving roller drive information received by the module; by a motion control algorithm, the control module joint drive joint motion, 子驱动模块控制轮子运动;[0027] S-8:判断关节驱动模块所驱动的关节和轮子驱动模块所驱动的轮子是否正常工作,正常工作则分别发送信息至第一信息采集反馈器和第二信息采集反馈器,非正常工作则分别启动第一自我保护单元和第二自我保护单元,再分别发送信息至第一信息采集反馈器和第二信息采集反馈器;[0028] S-9:判断第一信息采集反馈器和第二信息采集反馈器是否接收到关节和轮子的状态息,是则进行S-10,不是则返回S-7 ;[0029] S-1O:发送关节驱动模块所驱动的关节和轮子驱动模块所驱动的轮子的状态信息至相应的机械臂区域控制器和移动平台区域控制器,再返回S-2。 Sub driving wheel motion control module; [0027] S-8: Analyzing articulated joint driving module and driven wheels driven wheel driving module is working properly, then normal operation are transmitted to the first information and the second feedback information collection feedback information collection, a non-work, respectively activating the first unit and the second self-protection self-protection unit, and then are transmitted to the first information and the second feedback information collecting feedback information collecting unit; [0028] S-9: Analyzing a first and a second feedback information collection collecting feedback information whether the received state information of the joints and the wheels, are then carried S-10, S-7 is not returned; [0029] S-1O: transmitting a joint driving module drives state joints and the wheels driven wheel driving module information corresponding to the manipulator controller and the mobile platform region regional controller, and then return to S-2. [0030] 由于采用上述技术方案,本发明由各种模块单元按一定的拓扑结构拼接而成,降低了整个系统的复杂性;同时,模块化的设计使系统在硬件发生改变的情况下,仅需改动与它相连的总线配置,大大减少了系统硬件改动所需的时间,能非常方便地增加或减少机器人的自由度,增强了系统的可拓展性。 [0030] Since the above technical solution, the present invention consists of various modular units according to a certain topology splicing, reducing the complexity of the overall system; the same time, the modular design of the system occurs in the case of changing the hardware, only required changes connected with its bus configuration, greatly reducing the time required for hardware changes to the system, can easily increase or decrease the degree of freedom robot, enhanced scalability of the system. 当系统出现故障时,只需查出哪个模块出现故障,便可将该模块进行相应的处理或替换,使系统的维护和修改变得非常方便。 When the system fails, simply find out which module fails, the module can make the appropriate treatment or replacement, maintenance and modification of the system has become very convenient. 同时,当某一关节出现故障时,移动机械臂可通过自身调整使得另外的关节协调控制完成工作任务,提高了移动机械臂控制系统的鲁棒性。 Meanwhile, when a failure joint, by moving the robot arm itself may be further adjusted so that coordinated control of the joint to complete tasks, improves the robustness of the control system of the manipulator movement. [0031] 本发明采用CAN-bus通讯方式解决了传统控制器点对点数据传输方式中传输效率低和接口电路复杂的问题,有利于移动机械臂模块的组成,并具有可拓展性,提高了移动机械臂控制系统的抗干扰性,尤其是提高了远程操作时的抗干扰性。 [0031] The present invention employs the CAN-bus communication transmission efficiency is low and to solve the complex problems of the conventional interface circuit point to point data transfer controller, the manipulator modules facilitate movement of the composition, and having scalability, improved mechanical movement immunity boom control system, in particular to improve the anti-interference when the remote operation. [0032] 本发明采用分级式结构,在工业计算机与机械臂区域控制器和移动平台区域控制器之间加入运动规划控制器,通过运动规划控制器对机械臂区域控制器和移动平台区域控制器协调控制,有效地解决了机械臂子系统和移动平台子系统之间的耦合问题,充分发挥了移动机械臂移动和操作功能的优点。 [0032] The present invention employs a hierarchical structure, the added motion planning between a controller and an industrial computer manipulator controller and the mobile platform region regional controller, manipulator controller by the motion planning zone controller and zone controllers mobile platform coordinated control, effectively solve the problem of the coupling between the robot arm subsystem and the mobile platform subsystems, the advantages of the full operation of the mobile arm is moved and function. [0033] 本发明采用DSP芯片作为核心处理器,不仅具有数字信号处理器的优点,同时又具有微控制器的特点,无论在运算速度和数据的处理能力上都可满足运动控制的高实时性要求,为完成复杂的实时运动控制算法提供了可靠的平台,也使得移动机械臂的实时运动规划能力得到加强。 [0033] The present invention employs a DSP chip as the core processor, a digital signal processor only has the advantages, but also has the characteristics of a microcontroller, both in computing speed and processing capability of the data can satisfy the high real-time motion control requirements, to provide a reliable platform for the completion of complex real-time motion control algorithms, real-time motion programming capability also makes mobile manipulator has been strengthened. [0034] 本发明采用以太网方式与上位机进行通讯,不仅具有传输速率高、信息量大、兼容性强和编址灵活方便等显著优点,且可通过以太网将系统接入局域网或者英特网,从而实现系统的远程控制,提高了系统控制的灵活性和使用价值。 [0034] The embodiment of the present invention using Ethernet with the host computer to communicate, not only has a high transmission rate, amount of information, compatibility and flexible addressing and other significant advantages, and may access the system via Ethernet LAN or Intel network, enabling remote control system and improves the flexibility and value system control. [0035] 因此,本发明具有易于修改、可拓展、重构和添加配置、鲁棒性好、协调控制能力强、实时运动规划和远程操作时抗干扰能力强的特点。 [0035] Accordingly, the present invention has easy to modify, scalable, reconfigurable and add configuration, robustness, control coordination ability, strong anti-jamming capability and real-time motion planning remote operation features. 可广泛用于工业机器人、机械臂、空间机器人、类人机器人等具有多个自由度模块的机器人控制系统。 It can be widely used for a robot having a plurality of degrees of freedom modules industrial robot, manipulator, robot, humanoid robot control system. 附图说明[0036] 图1是本发明的一种结构示意图;[0037] 图2是图1中的电源模块3的电路连接示意图;[0038] 图3是图1中的运动规划控制器2的电路连接示意图;[0039] 图4是图1中的机械臂区域控制器4的电路连接示意图;[0040] 图5是图1中的移动平台区域控制器9的电路连接示意图;[0041] 图6是图1中的关节驱动|旲块5的电路连接不意图;[0042] 图7是图1中的轮子驱动模块8的电路连接示意图;[0043] 图8是图1中的第一信息采集反馈器6的电路连接示意图;[0044] 图9是图1中的第二信息采集反馈器7的电路连接示意图;[0045] 图10是运动规划控制软件的主流程示意图。 BRIEF DESCRIPTION [0036] FIG. 1 is a schematic view of the present invention; [0037] FIG. 2 is a circuit 3 of the power module connection diagram in FIG. 1; [0038] FIG. 3 is a plan of Figure 1 the motion controller 2 a circuit connection diagram; [0,039] FIG. 4 is a circuit area of ​​the robot arm controller 4 a connection diagram in FIG.; [0040] FIG. 5 is a circuit area of ​​a mobile platform controller connection diagram of FIG. 19; [0041] FIG 6 is a joint driving in FIG. 1 | Dae block circuit 5 is connected not intended; [0042] FIG. 7 is a circuit block 8 in FIG wheel drive connection diagram; [0043] FIG 8 is a first in FIG. information gathering feedback circuit connection diagram 6; [0044] FIG. 9 is a connection diagram of FIG 1 the second information acquisition circuit 7 is fed back; [0045] FIG. 10 is a front schematic flow diagram of the motion control software planning. 具体实施方式[0046] 下面结合附图和具体实施方式对本发明作进一步的描述,并非对其保护范围的限制:[0047] 实施例1[0048] 一种用于可拓展模块化的移动机械臂控制系统。 DETAILED DESCRIPTION [0046] DETAILED DESCRIPTION OF THE DRAWINGS embodiments and further description of the invention, not limitation of its scope: [0047] Example 1 [0048] A mobile manipulators for modular expansion Control System. 其结构示意图如图1所示:工业计算机I通过以太网以有线方式与I个运动规划控制器2连接;运动规划控制器2通过CAN-bus分别与2个机械臂区域控制器4和2个移动平台区域控制器9连接;每个机械臂区域控制器4各自通过CAN-bus分别与2个关节驱动模块5连接;每个关节驱动模块5分别与各自对应的第一信息采集反馈器6连接;每2个第一信息采集反馈器6分别与各自对应的关节驱动模块5连接的机械臂区域控制器4连接。 Its structure is shown in Fig.1: Ethernet I industrial computer in a wired manner via the I 2 a motion planning controller; motion planning CAN-bus controller 2 via each zone controller with two robot arms 2 and 4 the controller 9 is connected to mobile platform region; each robot arm 4 are each zone controller connected to the two articulation drive module 5 via CAN-bus, respectively; a first joint drive information each corresponding to each module 5, respectively 6 is connected to the feedback gathering ; each of the first two feedback information collecting unit 6 are respective joint drive module corresponding to the zone controller 5 is connected to the robot arm 4 is connected. 每个移动平台区域控制器9各自通过CAN-bus分别与2个轮子驱动模块8连接;每个轮子驱动模块8分别与各自对应的第二信息采集反馈器7连接;每2个第二信息采集反馈器7分别与各自对应的轮子驱动模块8连接的移动平台区域控制器9连接。 Each zone controller 9 each mobile platform with two driving wheels, respectively, by CAN-bus connection module 8; each driving wheel module 8 respectively corresponding to each of the second information collection feedback connection 7; 2 per second information collection feedback 7 respectively corresponding to the respective mobile platform module driving wheel 8 connected to the zone controller 9 is connected. 电源模块3与运动规划控制器2、每个机械臂区域控制器4、每个移动平台区域控制器9、每个关节驱动模块5、每个轮子驱动模块8、每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接。 3 and motion planning module power controller 2, each zone controller robot arm 4, each zone controller 9 moving platform, each joint drive module 5, each wheel drive module 8, each of the first feedback information collecting unit 6 and each second feedback information collecting unit 7 are connected [0049] 运动规划控制软件嵌入在运动规划控制器2中。 [0049] The motion planning control motion planning software embedded in the controller 2. [0050] 所述的电源模块3包括直流电源13、第一电压转换芯片12、第二电压转换芯片11和第三电压转换芯片10。 [0050] The power module 3 includes a DC power supply 13, a first voltage converter chip 12, the second voltage converter chip 11 and the third voltage converter chip 10. 直流电源13与第一电压转换芯片12的INPUT端口连接,第一电压转换芯片12的OUTPUT端口与第二电压转换芯片11的INPUT端口连接,第二电压转换芯片11的OUTPUT端口与第三电压转换芯片10的INPUT端口连接。 DC power source 13 and the first voltage conversion chip INPUT port 12, a first voltage converter chip OUTPUT port and the second voltage converter chip 12 INPUT port 11, second port OUTPUT voltage converter chip 11 and the third voltage converter INPUT port 10 of the chip. 第一电压转换芯片12的输出端口OUTPUT与每个轮子驱动模块8和每个关节驱动模块5分别连接,第二电压转换芯片11的输出端口OUTPUT与每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接,第三电压转换芯片10的输出端口OUTPUT与每个运动规划控制器2、每个机械臂区域控制器4和每个移动平台区域控制器9分别连接。 A first voltage converter chip output ports OUTPUT 12 with each wheel of each drive module 8 and the joint 5 are connected to the driving module, the second output port of the voltage converter chip OUTPUT 11 with each of the first feedback information collection, and each 6 the second feedback information collecting unit 7 are connected to the third voltage converter chip output ports oUTPUT 10 with each motion planning controller 2, each zone controller robot arm 4 and each mobile platform region 9 is connected to the controller. 第一电压转换芯片12的输出端口OUTPUT的输出电压为+12V,第二电压转换芯片11的输出端口OUTPUT的输出电压为+5V,第三电压转换芯片10的输出端口OUTPUT的输出电压为+3.3V。 A first output port OUTPUT voltage converter chip 12 is the output voltage of + 12V, an output port OUTPUT second voltage converter chip 11 is the output voltage of + 5V, the output port of the third voltage OUTPUT chip 10 converts the output voltage of +3.3 V. [0051] 所述的运动规划控制器2包括第一DSP芯片14、以太网控制器15、以太网连接器16 和第一CAN 通讯模块17。 [0051] The motion planning controller 2 includes a first DSP chip 14, Ethernet controller 15, an Ethernet connector 16 and the first CAN communication module 17. 第一DSP 芯片14 的XCLK0UT、GP10B7、XINT1、XINT2、SPISM0、SPIS0MI和SPICLK引脚分别与以太网控制器15的0SC1、6、Jm,函Z、S1、S0和SCK弓丨脚对应连接,第一DSP芯片14的CANTX和CANRX引脚分别与第一CAN通讯模块17的TXD和RXD引脚对应连接,运动规划控制软件嵌入在第一DSP芯片14中;以太网控制器15的TP0UT+、TP0UT_、TPIN+ 和TPIN_ 引脚分别与以太网连接器16 的TP_0UT+、TP_0UT_、TP_IN+ 和TP_IN_引脚对应连接。 The first DSP XCLK0UT chip 14, GP10B7, XINT1, XINT2, SPISM0, SPIS0MI SPICLK pins and are connected to the 0SC1,6 15, of Jm, the letter Z, S1, S0 and SCK Shu foot arch corresponding to the Ethernet controller, the first CANTX a DSP chip 14 and the pins are electrically connected CANRX TXD and RXD pin corresponding to the first CAN communication module 17, the motion planning control software embedded in the first DSP chip 14; TP0UT Ethernet controller 15 +, TP0UT_, TPIN + and pins respectively TPIN_ Ethernet connector 16 TP_0UT +, TP_0UT_, TP_IN + TP_IN_ pins and the corresponding connector. 第一DSP芯片14的VDDIO引脚、以太网控制器15的VDD引脚和以太网连接器16的TX_CT引脚分别与电源模块3连接•'第一CAN通讯模块17通过CAN-bus与每个机械臂区域控制器4和每个移动平台区域控制器9连接,以太网连接器16的Jl〜J8输出端通过双绞线与工业计算机I连接。 The first DSP chip VDDIO pin 14, the Ethernet controller and the Ethernet VDD pin connector 15 TX_CT pins 16 are respectively connected to the power module 3 • 'a first module 17 via the CAN communication with each of the CAN-bus manipulator controller 4 and the area of ​​each zone controller 9 is connected to mobile platform, Jl~J8 an output terminal connected to the Ethernet via a twisted pair 16 is connected to the industrial computer I. [0052] 所述的机械臂区域控制器4包括第二DSP芯片18和第二CAN通讯模块19。 [0052] The controller of the robotic arm 4 comprises a second region 18 and the second DSP chip CAN communication module 19. 第二DSP芯片18的CANTX和CANRX引脚分别与第二CAN通讯模块19的TXD和RXD引脚对应连接;第二DSP芯片18的10PA2和10PA3引脚分别与每个第一信息采集反馈器6连接;第二CAN通讯模块19通过CAN-bus与运动规划控制器2和每个关节驱动模块5连接;第二DSP芯片18的VDDIO引脚与电源模块3连接。 And a second pin CANTX CANRX DSP chip 18 are connected to the TXD and RXD pin corresponding to the second CAN communication module 19; a second DSP chip 10PA2 were collected and 10PA3 pins 6 and the feedback information of each of the first 18 ; a second CAN communication module 19 drives via CAN-bus controller and motion planning module 2 and each joint 5 is connected; VDDIO pin and the second power module 3 is connected to the DSP chip 18. [0053] 所述的移动平台区域控制器9包括第三DSP芯片20和第三CAN通讯模块21。 [0053] The mobile platform controller 9 includes a third region 20 and the third DSP chip CAN communication module 21. 第三DSP芯片20的CANTX和CANRX引脚分别与第三CAN通讯模块21的TXD和RXD引脚对应连接;第三DSP芯片20的10PA2和10PA3引脚分别与每个第二信息采集反馈器7连接,第三CAN通讯模块21通过CAN-bus与运动规划控制器2和每个轮子驱动模块8连接;第三DSP芯片20的VDDIO引脚与电源模块3连接。 The third DSP chip and CANRX CANTX pins 20 are connected to the TXD and RXD pin corresponding to the third CAN communication module 21; and the third DSP chip 10PA2 10PA3 pins respectively each second feedback information collection 20 7 connector, a third CAN communication module 21 of each wheel 2 and drive module 8 is connected via CAN-bus controller and motion planning; VDDIO third DSP chip pins 3 and the power module 20 is connected. [0054] 所述的关节驱动模块5包括第四DSP芯片22、第一光电稱合模块23、第一电机驱动模块24和第一自我保护单元25。 Joint driving the [0054] 5 includes a fourth module 22 DSP chip, bonding said first photovoltaic module 23, a first module 24 and a first motor driving unit 25 self-protection. 第四DSP芯片22的PWMl和PWM2引脚分别与第一光电藕合模块23的AN0DE1和AN0DE2引脚对应连接,第四DSP芯片22的10PE3引脚与第一自我保护单元25的ENABLE BRAKE引脚连接,第一光电藕合模块23的OVl和0V2引脚分别与第一电机驱动模块24的BHI和BLI引脚对应连接,第一自我保护单元25的BRAKEl和BRAKE2引脚分别与第一电机驱动模块24的OUTl和0UT2引脚对应连接。 The fourth DSP chip PWMl and PWM2 pins 22 are connected to a first pin AN0DE2 AN0DE1 corresponding optical coupling module 23, the fourth pin and the first DSP chip 10PE3 ENABLE BRAKE self-protection unit 22 25 Pin connector, a first optical coupling module OVl 23 and 0V2 pins are connected to a first pin BLI BHI corresponding motor driving module 24, and a first self-protection unit BRAKEl BRAKE2 pins 25 are driven and the first motor OUTl and 0UT2 module 24 connected to the corresponding pin. 第四DSP芯片22通过CAN-bus与机械臂区域控制器4连接,第四DSP芯片22的APP1_SENS0R和APP2_SENS0R弓丨脚分别与各自对应的第一信息采集反馈器6连接,第四DSP芯片22的VDDIO引脚、第一光电耦合模块23的VCC引脚和第一电机驱动模块24的VCC引脚分别与电源模块3连接。 The fourth DSP chip 22 is connected through CAN-bus controller and the robot arm region 4, and the fourth DSP chip APP1_SENS0R APP2_SENS0R Shu bow leg 22, respectively corresponding to each of the first feedback information collection unit 6 is connected to the fourth DSP chip 22 VDDIO pins, a first photocoupler module VCC pin 23 and a first motor driving module VCC pin 24 are connected to the power module 3. [0055] 所述的轮子驱动模块8包括第五DSP芯片26、第二光电耦合模块27、第二电机驱动模块28和第二自我保护单元29。 Wheels [0055] The drive module 8 includes a fifth DSP chip 26, the second photocoupler 27 module, the second module 28 and the second motor driving unit 29 self-protection. 第五DSP芯片26的PWMl和PWM2引脚分别与第二光电藕合模块27的AN0DE1和AN0DE2引脚对应连接, 第五DSP芯片26的10PE3引脚与第二自我保护单元29的ENABLE_BRAKE引脚连接,第二光电藕合模块27的OVl和0V2引脚分别与第二电机驱动模块28的BHI和BLI引脚对应连接,第二自我保护单元29的BRAKEl和BRAKE2引脚分别与第二电机驱动模块28的OUTl和0UT2引脚对应连接。 PWMl and PWM2 fifth pin DSP chip 26 are connected to the second pin AN0DE2 AN0DE1 corresponding optical coupling module 27, the DSP chip 26 10PE3 fifth pin of the second self-protection element 29 is connected to pin ENABLE_BRAKE , OVl second optical coupling module 27 and the pins are electrically connected BHI 0V2 corresponding pins BLI second motor driving module 28, BRAKEl second self-protection unit 29 and the second pins are BRAKE2 motor drive module 0UT2 OUTl 28 and the corresponding pin connection. 第五DSP芯片26通过CAN-bus与移动平台区域控制器9连接;第五DSP芯片26的APP1_SENS0R和APP2_SENS0R引脚分别与各自对应的第二信息采集反馈器7连接,第五DSP芯片26的VDDIO引脚、第二光电耦合模块27的VCC引脚和第二电机驱动模块28的VCC引脚分别与电源模块3连接。 Fifth DSP chip 26 is connected through CAN-bus controller 9 and the mobile platform region; and a second information APP1_SENS0R APP2_SENS0R fifth pin DSP chip 26 respectively corresponding to the respective feedback acquisition 7 is connected, VDDIO fifth DSP chip 26 pin, second photocoupler module VCC pin 27 and a second motor drive module 28 are respectively VCC pin 3 connected to the power module. [0056] 所述的第一信息采集反馈器6包括第一滞回比较器30和第一光电编码器31。 [0056] The first feedback information collecting unit 6 comprises a first hysteresis comparator 30 and a first photoelectric encoder 31. 第一滞回比较器30的IA和2A引脚分别与第一光电编码器31的XA和XB引脚对应连接;第一滞回比较器30的IY和2Y引脚分别与机械臂区域控制器4连接,第一光电编码器31的XFSIPUTA和XFSIPUTB引脚分别与各自对应的关节驱动模块5连接,第一滞回比较器30的VCC引脚和第一光电编码器31的VCC引脚分别与电源模块3连接。 A first hysteresis comparator 30 IA and 2A XA and XB pins are pins corresponding to the first photoelectric encoder 31 is connected; a first hysteresis comparator IY and 2Y pins 30 respectively manipulator zone controller 4 is connected, and a first photoelectric encoder XFSIPUTA XFSIPUTB pins 31 are connected to the respective drive module 5 corresponds to the joint, a first hysteresis comparator (VCC) and a first photoelectric encoder pin VCC pin 30 and 31 respectively 3 is connected to the power module. [0057] 所述的第二信息采集反馈器7包括第二滞回比较器32和第二光电编码器33。 [0057] The second feedback information collecting unit 7 comprises a second hysteresis comparator 32 and the second photoelectric encoder 33. 第二滞回比较器32的IA和2A引脚分别与第二光电编码器33的XA和XB引脚对应连接;第二滞回比较器32的IY和Ti引脚分别与移动平台区域控制器9连接,第二光电编码器33的XFSIPUTA和XFSIPUTB引脚分别与各自对应的轮子驱动模块8连接,第二滞回比较器32的VCC引脚和第二光电编码器33的VCC引脚分别与电源模块3连接。 IA second hysteresis comparator 32 and the second photoelectric 2A pins are encoders XA and XB is connected to the corresponding pin 33; IY of the second hysteresis comparator 32 and the pins are Ti controller and the mobile platform region 9 is connected, and a second optical encoder XFSIPUTA XFSIPUTB driving pins 33 are connected to the respective modules 8 corresponding to the wheels, a second hysteresis comparator VCC pin 32 and the second photoelectric encoder VCC pin 33, respectively 3 is connected to the power module. [0058] 所述的运动规划控制软件的主流程为:[0059] S-1:初始化,进入循环;[0060] S-2:判断运动规划控制器2是否接收到工业计算机I的指令,不是则关节驱动模块5驱动的关节和轮子驱动模块8驱动的轮子停止运动,是则进行S-3 ;[0061] S-3:运动规划控制器2发送指令至每个机械臂区域控制器4和移动平台区域控制器9 ;[0062] S-4:判断机械臂区域控制器4和移动平台区域控制器9是否接收到运动规划控制器2的指令,不是则重新判断:是则进行S-5 ;[0063] S-5:判断关节驱动模块5和轮子驱动模块8是否进行零位置检测,是则进行零位置检测,再返回S-4,不是则进行S-6 ;[0064] S-6:关节驱动模块5和轮子驱动模块8分别接收各自对应的机械臂区域控制器4和移动平台区域控制器9相应的指令;[0065] S-7:读取关节驱动模块5和轮子驱动模块8接收到的信息;通过运动控制算法,关节驱动模块5 [0058] The motion planning software for main process control: [0059] S-1: initialization, into circulation; [0060] S-2: 2 controller determines whether the motion planning instruction received I industrial computer, not 5 the joint driving module drives the roller drive module 8 and the joint driving wheel stops moving is performed is the S-3; [0061] S-3: planning motion command to each controller 2 transmits the robot arm 4 and the zone controller mobile internet zone controller 9; [0062] S-4: Analyzing the robot arm 4 and the zone controllers mobile internet zone controller 9 receives an instruction whether the motion planning controller 2, not re-determined: S-5 is then carried out ; [0063] S-5: Analyzing joint driving module 5 and a wheel drive module 8 if the zero position detection, zero the position detection is performed, and then returns the S-4, not proceeds S-6; [0064] S-6 : the joint 5 and the drive module drive wheel manipulator module 8 receives a respective zone controllers corresponding to each instruction region 4 and the mobile platform controller 9; [0065] S-7: 5 reading a joint drive module 8 and the wheel driving module received information; by a motion control algorithm, the joint drive module 5 控制关节动作,轮子驱动模块8控制轮子运动;[0066] S-8:判断关节驱动模块5所驱动的关节和轮子驱动模块8所驱动的轮子是否正常工作,正常工作则分别发送信息至第一信息采集反馈器6和第二信息采集反馈器7,非正常工作则分别启动第一自我保护单元25和第二自我保护单元29,再分别发送信息至第一信息采集反馈器6和第二信息采集反馈器7 ;[0067] S-9:判断第一信息采集反馈器6和第二信息采集反馈器7是否接收到关节和轮子的状态信息,是则进行S-10,不是则返回S-7 ;[0068] S-1O:发送关节驱动模块5所驱动的关节和轮子驱动模块8所驱动的轮子的状态信息至相应的机械臂区域控制器4和移动平台区域控制器9,再返回S-2。 Controlling the operation of the joint, the wheel driving wheel motion control module 8; [0066] S-8: determining a joint driving module 5 and a driven wheel driving module joints 8 driven wheel is working properly, then normal operation are transmitted to the first information collecting feedback information 6 and the second feedback information collecting unit 7, respectively, the abnormal operation unit 25 activates the first and second self-protection self-protection unit 29, and then transmits feedback information to the first information collection unit 6 and the second information, respectively, feedback acquisition unit 7; [0067] S-9: collecting state information determines the first feedback information and the second information collection 6 7 whether the received feedback joint and wheels, is performed is S-10, S- not return 7; [0068] S-1O: transmitting a joint driving module 5 and a driven wheel driving state joints driven wheel module 8 information to the appropriate zone controller robot arm 4 and the mobile platform region controller 9, and then return to S -2. [0069] 实施例2[0070] —种用于可拓展模块化的移动机械臂控制系统。 [0069] Example 2 [0070] - a control system for a mobile manipulator species scalable modular. 工业计算机I通过以太网以无线方式与2个运动规划控制器2分别连接;每个运动规划控制器2各自通过CAN-bus分别与3〜6个机械臂区域控制器4和3〜6个移动平台区域控制器9连接;每个机械臂区域控制器4各自通过CAN-bus分别与I个关节驱动模块5连接;每个关节驱动模块5分别与各自对应的第一信息采集反馈器6连接;每3〜6个第一信息采集反馈器6分别与各自对应的关节驱动模块5连接的机械臂区域控制器4连接。 I industrial computer wirelessly with two motion planning controller 2 are connected via Ethernet; plan each motion controller 2 respectively 3 ~ 6 robotic arms each zone controller and a CAN-bus 4 by 3 ~ 6 mobile the controller 9 is connected to the platform region; each zone controller 4 are each manipulator module 5 are connected via a CAN-bus driver and I joints; each joint drive module 5 with the first feedback information corresponding to each acquisition device 6 is connected; 3 ~ 6 each of first feedback information collecting unit 6 are respective joint drive module corresponding to the zone controller 5 is connected to the robot arm 4 is connected. 每个移动平台区域控制器9各自通过CAN-bus分别与I个轮子驱动模块8连接;每个轮子驱动模块8分别与各自对应的第二信息采集反馈器7连接;每3〜4个第二信息采集反馈器7分别与各自对应的轮子驱动模块8连接的移动平台区域控制器9连接。 Each zone controller 9 moving platform driven by a CAN-bus are each respectively connected to the I-th wheel module 8; each driving wheel module 8 respectively corresponding to each of the second information acquisition unit 7 is connected to the feedback; every 3 to 4 second a feedback information collecting unit 7, respectively corresponding to the respective mobile platform module driving wheel 8 connected to the zone controller 9 is connected. 电源模块3与每个运动规划控制器2、每个机械臂区域控制器4、每个移动平台区域控制器9、每个关节驱动模块5、每个轮子驱动模块8、每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接。 The power module 3 and the controller 2 of each motion planning, each zone controller robot arm 4, each zone controller 9 moving platform, each joint drive module 5, each wheel drive module 8, each of the first information collection 6 and each second feedback information collecting feedback filter 7 is connected. [0071] 其余同实施例1。 [0071] Example 1 remaining the same. [0072] 实施例3[0073] 一种用于可拓展模块化的移动机械臂控制系统。 [0072] Example 3 [0073] embodiment of a mobile robot arm control system for modular expansion. 工业计算机I通过以太网以无线方式与3个运动规划控制器2分别连接;每个运动规划控制器2各自通过CAN-bus分别与I个机械臂区域控制器4和I个移动平台区域控制器9连接;每个机械臂区域控制器4各自通过CAN-bus分别与I个关节驱动模块5连接;每个关节驱动模块5分别与各自对应的第一信息采集反馈器6连接;每个第一信息采集反馈器6分别与各自对应的关节驱动模块5连接的机械臂区域控制器4连接。 Industrial Computer I 2 are wirelessly connected to the controller 3 via Ethernet motion planning; plan each motion controller with 2 I each independently robotic arms 4 and the zone controllers I via mobile platform region CAN-bus controller 9 is connected; and each zone controller robot arm 4 are connected to each drive module I joints 5 through CAN-bus; each joint drive module 5, respectively corresponding to each of the first feedback information collecting device 6 is connected; and each of the first a feedback information collecting unit 6 respectively corresponding to the respective joint drive module zone controller 5 is connected to the robot arm 4 is connected. 每个移动平台区域控制器9各自通过CAN-bus分别与I个轮子驱动模块8连接;每个轮子驱动模块8分别与各自对应的第二信息采集反馈器7连接;每个第二信息采集反馈器7分别与各自对应的轮子驱动模块8连接的移动平台区域控制器9连接。 Each zone controller 9 moving platform driven by a CAN-bus are each respectively connected to I-wheel module 8; each driving wheel module 8 respectively corresponding to each of the second information collection feedback connection 7; each second feedback information collection 7 respectively corresponding to the respective mobile platform module driving wheel 8 connected to the zone controller 9 is connected. 电源模块3与每个运动规划控制器2、每个机械臂区域控制器4、每个移动平台区域控制器9、每个关节驱动模块5、每个轮子驱动模块8、每个第一信息采集反馈器6和每个第二信息采集反馈器7分别连接。 Power controller module 3 and 2 to each motion planning, each robot arm 4 zone controllers, each zone controller 9 moving platform, each joint drive module 5, each of the roller drive module 8, each of the first information collection 6 and each second feedback information collecting feedback filter 7 is connected. [0074] 其余同实施例1。 [0074] Example 1 remaining the same. [0075] 本具体实施方式由各种模块单元按一定的拓扑结构拼接而成,降低了整个系统的复杂性;同时,模块化的设计使系统在硬件发生改变的情况下,仅需改动与它相连的总线配置,大大减少了系统硬件改动所需的时间,能非常方便地增加或减少机器人的自由度,增强了系统的可拓展性。 [0075] DETAILED embodiment of the present embodiment by the various modular units according to a certain topology splicing, reducing the complexity of the overall system; the same time, the modular design makes the system in case of a hardware change, and it only changes connected to the bus configuration, greatly reducing the time required for the system hardware changes can easily decrease or increase the degree of freedom of the robot, enhanced scalability of the system. 当系统出现故障时,只需查出哪个模块出现故障,便可将该模块进行相应的处理或替换,使系统的维护和修改变得非常方便。 When the system fails, simply find out which module fail, the module can make the appropriate treatment or replacement, maintenance and modifications of the system becomes very convenient. 同时,当某一关节出现故障时,移动机械臂可通过自身调整使得另外的关节协调控制完成工作任务,提高了移动机械臂控制系统的鲁棒性。 Meanwhile, when a failure joint, by moving the robot arm itself may be further adjusted so that coordinated control of the joint to complete tasks, improves the robustness of mobile manipulator control system. [0076] 本具体实施方式采用CAN-bus通讯方式解决了传统控制器点对点数据传输方式中传输效率低和接口电路复杂的问题,有利于移动机械臂模块的组成,并具有可拓展性,提高了移动机械臂控制系统的抗干扰性,尤其是提高了远程操作时的抗干扰性。 [0076] DETAILED DESCRIPTION present CAN-bus communication using low transmission efficiency and to solve the interface controller circuit complex problems of the conventional data transmission point, the manipulator modules facilitate movement of the composition, and having scalability, improved immunity mobile manipulator control system, in particular to improve the noise immunity of the remote operation. [0077] 本具体实施方式采用分级式结构,在工业计算机I与机械臂区域控制器4和移动平台区域控制器9之间加入运动规划控制器2,通过运动规划控制器2对机械臂区域控制器4和移动平台区域控制器9协调控制,有效地解决了机械臂子系统和移动平台子系统之间的耦合问题,充分发挥了移动机械臂移动和操作功能的优点。 [0077] DETAILED DESCRIPTION The present hierarchical structure, the industrial robot arm region I and the computer controllers and the mobile platform region 4 was added controller 9 motion planning between the controller 2, 2 by the motion planning region robot arm controller 4 and the moving platform region coordinated controller 9 controls, to effectively solve the problem of the coupling between the robot arm subsystem and the mobile platform subsystems, the advantages of the full operation of the mobile arm is moved and function. [0078] 本具体实施方式采用DSP芯片作为核心处理器,不仅具有数字信号处理器的优点,同时又具有微控制器的特点,无论在运算速度和数据的处理能力上都可满足运动控制的高实时性要求,为完成复杂的实时运动控制算法提供了可靠的平台,也使得移动机械臂的实时运动规划能力得到加强。 [0078] DETAILED DESCRIPTION The present embodiment uses DSP chip as the processor core, not only has the advantage of a digital signal processor, but also has the characteristics of a microcontroller, both in computing speed and processing power can meet the high data movement control real-time requirements for the completion of complex real-time motion control algorithm provides a reliable platform also makes real-time motion planning capabilities of the mobile manipulator has been strengthened. [0079] 本具体实施方式采用以太网方式与上位机进行通讯,不仅具有传输速率高、信息量大、兼容性强和编址灵活方便等显著优点,且可通过以太网将系统接入局域网或者英特网,从而实现系统的远程控制,提高了系统控制的灵活性和使用价值。 [0079] DETAILED DESCRIPTION Ethernet present embodiment with the host computer to communicate not only with a high transmission rate, amount of information, addressing compatibility and other significant advantages flexibility, and may be a LAN or Ethernet access system Internet, enabling remote control system and improves the flexibility and value systems controlled. [0080] 因此,本具体实施方式具有易于修改、可拓展、重构和添加配置、鲁棒性好、协调控制能力强、实时运动规划和远程操作时抗干扰能力强的特点。 [0080] Accordingly, this specific embodiment has easy to modify, scalable, reconfigurable and add configuration, robust, coordinated control ability, strong anti-jamming capability real-time motion planning and remote operation features. 可广泛用于工业机器人、机械臂、空间机器人、类人机器人等具有多个自由度模块的机器人控制系统。 It can be widely used for a robot having a plurality of degrees of freedom modules industrial robot, manipulator, robot, control systems and other humanoid robots.

Claims (7)

1.一种用于可拓展模块化的移动机械臂控制系统,其特征在于:工业计算机(I)通过以太网以有线或无线方式与I〜3个运动规划控制器(2)分别连接;每个运动规划控制器(2)各自通过CAN-bus分别与I〜6个机械臂区域控制器(4)和I〜6个移动平台区域控制器(9)连接;每个机械臂区域控制器(4)各自通过CAN-bus分别与I〜6个关节驱动模块(5)连接;每个关节驱动模块(5)分别与各自对应的第一信息采集反馈器(6)连接;每I〜6个第一信息采集反馈器(6)分别与各自对应的关节驱动模块(5)连接的机械臂区域控制器(4)连接;每个移动平台区域控制器(9)各自通过CAN-bus分别与2〜4个轮子驱动模块(8)连接;每个轮子驱动模块(8)分别与各自对应的第二信息采集反馈器(7)连接;每2〜4个第二信息采集反馈器(7)分别与各自对应的轮子驱动模块(8)连接的移动平台区域控制器(9)连接;电源模块(3)与每 1. A method for scalable modular control system of a mobile robot arm, characterized in that: Industrial Computer (I) with a wired or wireless manner I~3 motion planning controllers (2) are connected via Ethernet; Per planning motion controller (2) are connected to each zone controller I~6 robotic arms (4) and the zone controller I~6 mobile platform (9) CAN-bus; each zone controller manipulator ( 4) CAN-bus are each connected by joints respectively I~6 drive module (5); each joint drive module (5) respectively corresponding to each of the first feedback information collection unit (6); each of a I~6 manipulator controller of the first area information collecting feedback device (6) respectively corresponding to a respective joint drive module (5) is connected (4) is connected; and each zone controller mobile platform (9) are each respectively by the CAN-bus 2 ~ 4 wheels driving module (8); a second module information for each drive wheel (8) respectively corresponding to each of the feedback acquisition unit (7) is connected; 2 ~ 4 per second feedback information collecting unit (7), respectively mobile platform area controller (9) connected to the respective corresponding driving wheel module (8) is connected; the power module (3) with each 运动规划控制器(2)、每个机械臂区域控制器(4)、每个移动平台区域控制器(9)、每个关节驱动模块(5)、每个轮子驱动模块(8)、每个第一信息采集反馈器(6)和每个第二信息采集反馈器(7)分别连接; 运动规划控制软件嵌入在运动规划控制器(2)中; 所述的关节驱动模块(5)包括第四DSP芯片(22)、第一光电稱合模块(23)、第一电机驱动模块(24)和第一自我保护单元(25);第四DSP芯片(22)的PWMl和PWM2引脚分别与第一光电藕合模块(23)的ANODEl和AN0DE2引脚对应连接,第四DSP芯片(22)的10PE3引脚与第一自我保护单元(25)的ENABLE_BRAKE引脚连接,第一光电藕合模块(23)的OVl和0V2引脚分别与第一电机驱动模块(24)的BHI和BLI引脚对应连接,第一自我保护单元(25)的BRAKEl和BRAKE2引脚分别与第一电机驱动模块(24)的OUTl和0UT2引脚对应连接; 第四DSP芯片(22)通过CAN-bu s与机械臂区域控制器(4)连接,第四DSP Motion Planning controller (2), each zone controller robot arm (4), each mobile platform zone controller (9), each joint drive module (5), each wheel drive module (8), each a first feedback information collection unit (6) and each second feedback information collecting unit (7) are connected; motion planning motion planning control software embedded in the controller (2); said joint drive module (5) comprises a first four DSP chips (22), said first engagement photovoltaic module (23), a first motor drive module (24) and a first self-protection unit (25); and a fourth DSP chips (22) respectively PWMl and PWM2 pins a first optical coupling module (23) is connected to the corresponding ANODEl and AN0DE2 pins, a first pin is internally connected to the self-protection element (25) of the fourth ENABLE_BRAKE DSP chip (22) 10PE3, a first optical coupling module (23) and the OVl 0V2 pins are connected to the first motor drive module (24) and a corresponding amount of BHI BLI pins, BRAKEl first self-protection element (25) and with the first pin BRAKE2 motor drive module ( 24) OUTl and 0UT2 corresponding connector pin; fourth DSP chips (22) are connected by CAN-bu s zone controller robot arm (4) a fourth DSP 片(22)的APP1_SENS0R和APP2_SENS0R引脚分别与各自对应的第一信息采集反馈器(6)连接,第四DSP芯片(22)的VDDIO引脚、第一光电耦合模块(23)的VCC引脚和第一电机驱动模块(24)的VCC引脚分别与电源模块(3)连接; 所述的轮子驱动模块(8)包括第五DSP芯片(26)、第二光电稱合模块(27)、第二电机驱动模块(28)和第二自我保护单元(29);第五DSP芯片(26)的PWMl和PWM2引脚分别与第二光电藕合模块(27)的ANODEl和AN0DE2引脚对应连接,第五DSP芯片(26)的10PE3引脚与第二自我保护单元(29)的ENABLE_BRAKE引脚连接,第二光电藕合模块(27)的OVl和0V2引脚分别与第二电机驱动模块(28)的BHI和BLI引脚对应连接,第二自我保护单元(29)的BRAKEl和BRAKE2引脚分别与第二电机驱动模块(28)的OUTl和0UT2引脚对应连接; 第五DSP芯片(26)通过CAN-bus与移动平台区域控制器(9)连接;第五DSP芯片(26)的APP1_SENS0R和APP2_SENS0R引脚分别与各自 Sheet (22) and APP2_SENS0R APP1_SENS0R pins with the first feedback information corresponding to each acquisition device (6) is connected to the fourth DSP chip (22) of the VDDIO pins, a first photo coupler module (23) of the VCC pin and a first motor driving module (24) are connected to the VCC pin of the power supply module (3); said driving wheels module (8) comprises a V DSP chip (26) engagement said second photovoltaic module (27), the second motor drive module (28) and a second self-protection unit (29); V DSP chips (26) of the PWMl and PWM2 pins are connected to the second optical coupling module (27) and the corresponding AN0DE2 pins ANODEl fifth DSP chip (26) is connected to the second lead pin 10PE3 self-protection element (29) ENABLE_BRAKE, OVl second optical coupling module (27) and respectively second pins 0V2 motor drive module ( 28) BHI BLI and the corresponding connecting pin, a second self-protection unit (29) and BRAKE2 BRAKEl pins are connected to a second motor drive module (28) the corresponding pin OUTl and 0UT2; fifth DSP chips (26 ) connected by a CAN-bus controller to the mobile platform region (nine); V DSP chip (26) and APP2_SENS0R APP1_SENS0R respective pins, respectively 应的第二信息采集反馈器(7)连接,第五DSP芯片(26)的VDDIO引脚、第二光电耦合模块(27)的VCC引脚和第二电机驱动模块(28)的VCC引脚分别与电源模块(3)连接; 所述的运动规划控制软件的主流程为: S-1:初始化,进入循环; S-2:判断运动规划控制器(2)是否接收到工业计算机(I)的指令,不是则关节驱动模块(5)驱动的关节和轮子驱动模块(8)驱动的轮子停止运动,是则进行S-3 ;S-3:运动规划控制器(2)发送指令至每个机械臂区域控制器(4)和移动平台区域控制器(9); S-4:判断机械臂区域控制器(4)和移动平台区域控制器(9)是否接收到运动规划控制器(2)的指令,不是则重新判断:是则进行S-5 ; S-5:判断关节驱动模块(5)和轮子驱动模块(8)是否进行零位置检测,是则进行零位置检测,再返回S-4,不是则进行S-6 ; S-6:关节驱动模块(5)和轮子驱动模块(8)分别接收各自对应的机械臂区域 A second feedback information to be collected (7) is connected to the fifth DSP chip (26) of the VDDIO pins, a second photo coupler module (27) and the VCC pin of the second motor drive module (28) of the VCC pin are respectively connected to the power module (3); the motion planning control software main flow is: S-1: initialization, into circulation; S-2: Analyzing motion planning controller (2) whether an industrial computer (I) instruction, not the joint drive module (5) and the driving wheel driving module joints (8) stops moving the driving wheel, is then carried S-3; S-3: planning motion controller (2) sending instructions to each manipulator control region (4) and the mobile platform region controller (9); S-4: Analyzing manipulator zone controller (4) and mobile platforms zone controllers (9) whether a motion planning controller (2) instruction, it is not re-determined: it is then carried S-5; S-5: determining a joint driving module (5) and the wheel driving module (8) detecting whether or not the zero position, the zero position is detected is performed, and then returns S- 4, is performed not S-6; S-6: a joint drive module (5) and the wheel driving module (8) receive the respective corresponding region of the robot arm 制器(4)和移动平台区域控制器(9)相应的指令; S-7:读取关节驱动模块(5)和轮子驱动模块(8)接收到的信息;通过运动控制算法,关节驱动模块(5)控制关节动作,轮子驱动模块(8)控制轮子运动; S-8:判断关节驱动模块(5)所驱动的关节和轮子驱动模块(8)所驱动的轮子是否正常工作,正常工作则分别发送信息至第一信息采集反馈器(6)和第二信息采集反馈器(7),非正常工作则分别启动第一自我保护单元(25)和第二自我保护单元(29),再分别发送信息至第一信息采集反馈器(6)和第二信息采集反馈器(7); S-9:判断第一信息采集反馈器(6)和第二信息采集反馈器(7)是否接收到关节和轮子的状态信息,是则进行S-10,不是则返回S-7 ; S-1O:发送关节驱动模块(5)所驱动的关节和轮子驱动模块(8)所驱动的轮子的状态信息至相应的机械臂区域控制器(4)和移动平台区域控制器(9),再返 Corresponding instruction is made (4) and the mobile platform region controllers (9); S-7: reading a joint driving module (5), and information received from the roller drive module (8); by a motion control algorithm, the joint driving module (5) a control joint motion, the wheel driving module (8) controlling wheel movement; S-8: Analyzing joint driving module (5) driven by the joints and the wheels driving module (8) driven wheel is working properly, the normal operation of the are transmitted to the first information collection feedback information (6) and a second feedback information collecting unit (7), respectively, the abnormal operation of the first self-start protection unit (25) and a second self-protection element (29), respectively, then transmitting feedback information to the first information collection unit (6) and a second feedback information collecting unit (7); S-9: determining a first feedback information collection unit (6) and a second feedback information collection device (7) whether the received joint and status information wheel, is then carried S-10, instead of the S-7 returns; S-1O: transmitting a joint driving module (5) of status information driven joints and wheel driving module (8) driven by wheels to the respective zone controller robot arm (4) and the controller moving platform region (9), and then back S-2。 S-2.
2.根据权利要求1所述的用于可拓展模块化的移动机械臂控制系统,其特征在于所述的电源模块⑶包括直流电源(13)、第一电压转换芯片(12)、第二电压转换芯片(11)和第三电压转换芯片(10);直流电源(13)与第一电压转换芯片(12)的INPUT端口连接,第一电压转换芯片(12)的OUTPUT端口与第二电压转换芯片(11)的INPUT端口连接,第二电压转换芯片(11)的OUTPUT端口与第三电压转换芯片(10)的INPUT端口连接; 第一电压转换芯片(12)的输出端口OUTPUT与每个轮子驱动模块(8)和每个关节驱动模块(5)分别连接,第二电压转换芯片(11)的输出端口OUTPUT与每个第一信息采集反馈器(6)和每个第二信息采集反馈器(7)分别连接,第三电压转换芯片(10)的输出端口OUTPUT与每个运动规划控制器(2)、每个机械臂区域控制器(4)和每个移动平台区域控制器(9)分别连接;` 第一电压转换芯片(12)的输出端口OUTPUT的 The manipulator control system for moving the scalable modular claimed in claim 1, wherein said power source comprises a DC power supply module ⑶ (13), (12), a second voltage of the first voltage converter chip converter chip (11) and a third voltage converter chip (10); a DC power supply (13) INPUT port connected to the first voltage converter chip (12), a first voltage converter chip (12) and the OUTPUT port of the second voltage converter chip (11) INPUT port, a second voltage converter chip (11) and the third port of the oUTPUT voltage converter chip (10) INPUT port; a first voltage converter chip (12) and an output port of each wheel oUTPUT driving module (8) and each joint drive module (5) are respectively connected to the second voltage converter chip (11) of each of the first output port oUTPUT feedback information collection unit (6) and each second feedback information collection unit (7) are connected, a third voltage converter chip (10) with each output port oUTPUT motion planning controller (2), each zone controller robot arm (4) and a zone controller for each mobile platform (9) are connected; `a first voltage converter chip (12) of the output port oUTPUT 出电压为+12V,第二电压转换芯片(11)的输出端口OUTPUT的输出电压为+5V,第三电压转换芯片(10)的输出端口OUTPUT的输出电压为+3.3V。 Voltage is + 12V, the second chip voltage converter (11) output port of the output voltage OUTPUT is + 5V, the third voltage converter chip (10) output port of the output voltage OUTPUT + 3.3V.
3.根据权利要求1所述的用于可拓展模块化的移动机械臂控制系统,其特征在于所述的运动规划控制器⑵包括第一DSP芯片(14)、以太网控制器(15)、以太网连接器(16)和第一CAN 通讯模块(17);第一DSP 芯片(14)的XCLK0UT、GP10B7、XINT1、XINT2、SPISM0、SPIS0MI和SPICLK引脚分别与以太网控制器(15)的OSCUd、/AT,而Z、S1、S0和SCK引脚对应连接,第一DSP芯片(14)的CANTX和CANRX引脚分别与第一CAN通讯模块(17)的TXD和RXD引脚对应连接,运动规划控制软件嵌入在第一DSP芯片(14)中;以太网控制器(15)的TP0UT+、TP0UT_、TPIN+ 和TPIN_ 引脚分别与以太网连接器(16)的TP OUT+、TP 0UT_、TP IN+和TP IN_引脚对应连接;第一DSP芯片(14)的VDDIO引脚、以太网控制器(15)的VDD引脚和以太网连接器(16)的TX_CT引脚分别与电源模块(3)连接;第一CAN通讯模块(17)通过CAN-bus与每个机械臂区域控制器(4)和每个移动平台区域控制器(9)连接, According to claim scalable modular mobile manipulator control system of claim 1, wherein said motion plan ⑵ controller comprises a first DSP chip (14), Ethernet controller (15), Ethernet connection (16) and a first CAN communication module (17); a first DSP chip (14) XCLK0UT, GP10B7, XINT1, XINT2, SPISM0, SPIS0MI SPICLK pins, respectively, and Ethernet controller (15) OSCUd, / AT, and Z, S1, S0 and SCK pins corresponding connector, a first DSP chip (14) and the CANTX CANRX pins are connected to the first CAN communication module (17) corresponding to the TXD and RXD pin, motion planning control software embedded in the first DSP chip (14); TP0UT Ethernet controller (15) +, TP0UT_, TPIN + and TPIN_ respectively Ethernet connector pins (16) of the TP OUT +, TP 0UT_, TP iN + TP and the corresponding connection pin IN_; a first DSP chip (14) of the pin VDDIO, Ethernet controller (15) and the VDD pin Ethernet connector (16) of the pins are TX_CT power module (3 ) is connected; a first CAN communication module (17) through the CAN-bus and each zone controller robot arm (4) and a zone controller for each mobile platform (9) is connected, 以太网连接器(16)的Jl〜J8输出端通过双绞线与工业计算机(I)连接。 Jl~J8 Ethernet connector output terminal (16) connected by a twisted pair industrial computer (I).
4.根据权利要求1所述的用于可拓展模块化的移动机械臂控制系统,其特征在于所述的机械臂区域控制器(4)包括第二DSP芯片(18)和第二CAN通讯模块(19);第二DSP芯片(18)的CANTX和CANRX引脚分别与第二CAN通讯模块(19)的TXD和RXD引脚对应连接; 第二DSP芯片(18)的10PA2和10PA3引脚分别与每个第一信息采集反馈器(6)连接;第二CAN通讯模块(19)通过CAN-bus与运动规划控制器⑵和每个关节驱动模块(5)连接;第二DSP芯片(18)的VDDIO引脚与电源模块(3)连接。 The manipulator control system for moving the modular expansion of claim 1, wherein said manipulator control region (4) comprises a second DSP chip (18) and a second CAN communication module (19); a second DSP chip (18) and CANTX CANRX pins are connected to the second CAN communication module (19) corresponding to the TXD and RXD pin; DSP chips a second (18) pins are 10PA2 and 10PA3 connected to each of the first feedback information collection unit (6); a second CAN communication module (19) connected by a CAN-bus controller and motion planning ⑵ and each joint drive module (5); a second DSP chip (18) the VDDIO pin and the power module (3) is connected.
5.根据权利要求1所述的用于可拓展模块化的移动机械臂控制系统,其特征在于所述的移动平台区域控制器(9)包括第三DSP芯片(20)和第三CAN通讯模块(21);第三DSP芯片(20)的CANTX和CANRX引脚分别与第三CAN通讯模块(21)的TXD和RXD引脚对应连接; 第三DSP芯片(20)的10PA2和10PA3引脚分别与每个第二信息采集反馈器(7)连接,第三CAN通讯模块(21)通过CAN-bus与运动规划控制器(2)和每个轮子驱动模块(8)连接;第三DSP芯片(20)的VDDIO引脚与电源模块(3)连接。 The manipulator control system for moving the scalable modular claimed in claim 1, wherein the moveable platform area controller (9) comprises a third DSP chip (20) and the third communication module CAN (21); a third DSP chip (20) and the CANTX CANRX TXD and RXD pins are connected to the third corresponding pin CAN communication module (21); a third DSP chips (20) of the pins are 10PA2 and 10PA3 is connected to each of the second feedback information acquisition unit (7), a third CAN communication module (21) connected by a CAN-bus controller and motion planning (2) and the drive module each wheel (8); a third DSP chip ( 20) the VDDIO pin and the power module (3) is connected.
6.根据权利要求1所述的用于可拓展模块化的移动机械臂控制系统,其特征在于所述的第一信息采集反馈器(6)包括第一滞回比较器(30)和第一光电编码器(31);第一滞回比较器(30)的IA和2A引脚分别与第一光电编码器(31)的XA和XB引脚对应连接; 第一滞回比较器(30)的IY和2Y引脚分别与机械臂区域控制器(4)连接,第一光电编码器(31)的XFSIPUTA和XFSIPUTB引脚分别与各自对应的关节驱动模块(5)连接,第一滞回比较器(30)的VCC引脚和第一光电编码器(31)的VCC引脚分别与电源模块(3)连接。 The manipulator control system for moving the scalable modular claimed in claim 1, wherein said first feedback information collecting unit (6) comprises a first hysteresis comparator (30) and a first photoelectric encoder (31); a first hysteresis comparator (30) of the pins IA and 2A are respectively connected to the first optical encoder (31) corresponding to XA and XB pin; a first hysteresis comparator (30) IY and 2Y the pins are connected to the zone controller robot arm (4), a first photoelectric encoder (31) XFSIPUTA XFSIPUTB and the corresponding pins are connected to respective joint drive module (5), a first hysteresis comparator (30) a first and a VCC pin photoelectric encoder (31) are connected to the VCC pin of the power module (3).
7.根据权利要求1所述的用于可拓展模块化的移动机械臂控制系统,其特征在于所述的第二信息采集反馈器(7)包括第二滞回比较器(32)和第二光电编码器(33);第二滞回比较器(32)的IA和2A引脚分别与第二光电编码器(33)的XA和XB引脚对应连接; 第二滞回比较器(32)的IY和2Y引脚分别与移动平台区域控制器(9)连接,第二光电编码器(33)的XFSIPUTA和XFSIPUTB引脚分别与各自对应的轮子驱动模块⑶连接,第二滞回比较器(32)的VCC引脚和第二光电编码器(33)的VCC引脚分别与电源模块(3)连接。 The manipulator control system for moving the scalable modular claimed in claim 1, wherein said second feedback information collecting unit (7) comprises a second hysteresis comparator (32) and a second photoelectric encoder (33); a second hysteresis comparator (32) IA and 2A are respectively connected to the pins of the second optical encoder (33) corresponding to XA and XB pins; and a second hysteresis comparator (32) IY and 2Y the pins are connected to the mobile platform region controller (9), a second optical encoder (33) and XFSIPUTB XFSIPUTA pins are connected to their corresponding drive wheel module ⑶, a second hysteresis comparator ( 32) VCC pin and a second optical encoder (33) are connected to the VCC pin of the power module (3).
CN 201110160108 2011-06-14 2011-06-14 Mobile mechanical arm control system used for extendable modularization CN102248536B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110160108 CN102248536B (en) 2011-06-14 2011-06-14 Mobile mechanical arm control system used for extendable modularization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110160108 CN102248536B (en) 2011-06-14 2011-06-14 Mobile mechanical arm control system used for extendable modularization

Publications (2)

Publication Number Publication Date
CN102248536A CN102248536A (en) 2011-11-23
CN102248536B true CN102248536B (en) 2013-07-24

Family

ID=44976287

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110160108 CN102248536B (en) 2011-06-14 2011-06-14 Mobile mechanical arm control system used for extendable modularization

Country Status (1)

Country Link
CN (1) CN102248536B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092153A (en) * 2012-12-19 2013-05-08 中国电子科技集团公司第三十四研究所 Distributed control device of laser device multi-channel optical fiber system
CN104097197A (en) * 2013-04-08 2014-10-15 上海优爱宝机器人技术有限公司 Modular robot
CN103240739B (en) * 2013-05-07 2015-04-15 武汉科技大学 Automatic switching control method for decentralization and centralization of mobile manipulators
CN104669269A (en) * 2013-11-26 2015-06-03 中国科学院沈阳自动化研究所 Efficient and extensible autonomous control system for high-complexity underwater robot
CN106489262A (en) * 2014-07-03 2017-03-08 阿特拉斯·科普柯工业技术公司 Be conducive to method and the node communicating between the tool server in Work tool communication system and multiple tool controllers
CN105082136A (en) * 2015-10-07 2015-11-25 陈超 Plug-and-play tentacle robot control system
CN105196294B (en) * 2015-10-29 2017-03-22 长春工业大学 Reconfigurable mechanical arm decentralized control system and control method adopting position measuring

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218709A (en) 1989-12-28 1993-06-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Special purpose parallel computer architecture for real-time control and simulation in robotic applications
CN101045299A (en) 2007-04-12 2007-10-03 武汉科技大学 Independent joint control device for modularized robot based on DSP
CN101045298A (en) 2007-04-12 2007-10-03 武汉科技大学 Apparatus for controlling movement programming of multi-freedom robot
CN101045297A (en) 2007-04-12 2007-10-03 武汉科技大学 Distribution multiple freedom robot controlling system
CN101053954A (en) 2007-04-29 2007-10-17 东北大学 Control system for modular robot based on CAN bus
CN201489361U (en) 2009-09-27 2010-05-26 贾恒石 Extensible zone controller based on CAN bus
CN101751038A (en) 2008-12-05 2010-06-23 沈阳新松机器人自动化股份有限公司 Navigation control device of mobile robot
CN101817182A (en) 2010-03-30 2010-09-01 杭州电子科技大学 Intelligent moving mechanical arm control system
CN201716570U (en) 2009-12-18 2011-01-19 中国科学院沈阳自动化研究所 Modularized reconstructible robot joint module control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920373B2 (en) * 2001-04-13 2005-07-19 Board Of Trusstees Operating Michigan State University Synchronization and task control of real-time internet based super-media
US20080046121A1 (en) * 2006-08-17 2008-02-21 Innovati, Inc. Developing system of re-configurable modularized robot

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218709A (en) 1989-12-28 1993-06-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Special purpose parallel computer architecture for real-time control and simulation in robotic applications
CN101045299A (en) 2007-04-12 2007-10-03 武汉科技大学 Independent joint control device for modularized robot based on DSP
CN101045298A (en) 2007-04-12 2007-10-03 武汉科技大学 Apparatus for controlling movement programming of multi-freedom robot
CN101045297A (en) 2007-04-12 2007-10-03 武汉科技大学 Distribution multiple freedom robot controlling system
CN101053954A (en) 2007-04-29 2007-10-17 东北大学 Control system for modular robot based on CAN bus
CN101751038A (en) 2008-12-05 2010-06-23 沈阳新松机器人自动化股份有限公司 Navigation control device of mobile robot
CN201489361U (en) 2009-09-27 2010-05-26 贾恒石 Extensible zone controller based on CAN bus
CN201716570U (en) 2009-12-18 2011-01-19 中国科学院沈阳自动化研究所 Modularized reconstructible robot joint module control device
CN101817182A (en) 2010-03-30 2010-09-01 杭州电子科技大学 Intelligent moving mechanical arm control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王明辉等.可重构机器人体系结构及模块化控制体系的实现.《仪器仪表学报》.2006,第27卷(第10期),第1179页第3-10段及附图2.

Also Published As

Publication number Publication date
CN102248536A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
Edsinger-Gonzales et al. Domo: A force sensing humanoid robot for manipulation research
JP2011067943A (en) Interactive robot control system and method of use
Bai et al. Adaptive motion coordination: Using relative velocity feedback to track a reference velocity
Magnenat et al. ASEBA: A modular architecture for event-based control of complex robots
Nesnas et al. CLARAty: An architecture for reusable robotic software
US20150224644A1 (en) Robot
Liu et al. The modular multisensory DLR-HIT-Hand: hardware and software architecture
CN100451881C (en) Double generator redundancy control system
Bejczy et al. Universal computer control systems (uccs) for space telerobots
Liu et al. The modular multisensory DLR-HIT-Hand
KR101818570B1 (en) Method of controlling an automated work cell
Xiang et al. General-weighted least-norm control for redundant manipulators
Zhang et al. Variable joint-velocity limits of redundant robot manipulators handled by quadratic programming
CN100587639C (en) Real time multiple task distributive control system based on VME bus
CN102637036A (en) Combined type bionic quadruped robot controller
CN101655708A (en) Intelligent vehicle carrier and control system and control method thereof
DE102010045345A1 (en) Embedded system and method for diagnosis, prognosis and health management for a humanoid robot
US8322250B2 (en) Humanoid robot and shoulder joint assembly thereof
CN104440864B (en) A kind of master-slave mode remote operating industrial robot system and its control method
CN104460675A (en) Control system of stacking transfer robot
CN101549494B (en) Monomer automatic transformable robot with self-assembly characteristic
KR20090049651A (en) Embedded robot control system
CN101216711A (en) Amphibious mechanical crab step control device and control method
CN100568131C (en) Multiple axle movement controller based on MPC5200
CN101352854B (en) Remote operation planar redundant manipulator automated guided intelligent element, system and method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted