Physical education teaching auxiliary system based on motion identification technology and implementation method of physical education teaching auxiliary system

Info

Publication number
CN102243687A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
teaching
education
system
physical
movement
Prior art date
Application number
CN 201110102571
Other languages
Chinese (zh)
Inventor
刘思杨
宁岩
牛涛
王略志
陈拥权
Original Assignee
安徽寰智信息科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention provides a physical education teaching auxiliary system based on a motion identification technology and an implementation method of the physical education teaching auxiliary system. The system is applicable to a personal computer (PC) or an embedded host. The system comprises a movement data collection module, a movement data acquisition module, an identification and training module and a virtual teaching environment module. The device is characterized in that: a micro-inertia measurement unit and an inertia parameter extraction unit are arranged in the movement data collection module; and a movement information resolving unit transmits data which is output by the inertia parameter extraction unit to a multi-sensor data fusion unit for resolving. The movement situation of a target is reflected comprehensively in an inertia tracking mode and an optical tracking mode, so a tracking range is effectively expanded, measurement accuracy is improved, and the problems that the integral information of the target cannot be acquired in the inertia tracking mode, complicated movement identification cannot be performed and sensitivity is poor are solved. A brand new teaching mode is provided for physical education teaching, and a physical education teaching method is digitalized, multi-media and scientifically standardized.

Description

一种基于动作识别技术的体育教学辅助系统及其实现方法 Implementation motion recognition technique based on PE and Teaching System

技术领域 FIELD

[0001] 本发明涉及人机交互、动作识别以及计算机辅助教学领域,尤其涉及一种体育教学辅助系统的构建方法。 [0001] The present invention relates to human-computer interaction, and computer aided instruction operation recognition, and more particularly relates to a method for constructing PE Teaching System.

背景技术 Background technique

[0002] 目前,运动追踪的方法根据传感元件的不同分为:惯性追踪、光学追踪、力和机械式追踪、电磁式追踪、声学追踪等等。 [0002] Currently, depending on the method of tracking the movement of the sensor elements are divided into: inertial tracking, optical tracking, tracking forces and mechanical, electromagnetic tracking, acoustic tracking and the like. 目前,在人机交互领域比较常用的运动追踪技术是惯性追踪技术和光学追踪技术。 Currently, in the field of human-computer interaction more commonly used motion tracking technology inertial tracking technology and optical tracking technology. 惯性追踪技术,通过在目标上设置惯性测量单元,测量得到加速度、角速度等数据,以此为基础使用数学工具解算,得到目标的运动情况。 Inertial tracking technology, by providing an inertial measurement unit on the target, measured acceleration, angular velocity data, as a basis for solving mathematical tools used, to give the target movement. 惯性追踪的特点是实现简单,抗干扰性强;缺点是不能全面地获取被追踪目标的运动特征,只能有限和局部地反映被追踪目标的运动特点。 Inertia track is characterized by simple, strong anti-interference; drawback is that the movement can not fully access features of the target being tracked, and only partially reflect the limited movement characteristics of the target being tracked. 光学追踪技术,通过对目标上特定光点的监视和跟踪来完成运动追踪的任务。 Optical tracking technology, through a specific light spot on a target of monitoring and tracking the motion track to complete tasks. 理论上,对于空间的任意一个点,只要它能同时被两台摄像机所见, 则根据同一瞬间两摄像机所拍摄的图像和摄像机参数,即可以确定这一时刻该点的空间位置。 Theoretically, for any point of space, as long as it can be seen simultaneously two cameras, the camera parameters and the image captured by the camera at the same instant two, i.e., the spatial position may be determined that the point in time. 当摄像机以足够高的速率连续拍摄时,从图像序列中就可以得到该点的运动轨迹。 When the camera is at a sufficiently high speed continuous shooting, the image sequence can be obtained of the trajectory point. 其中图像的处理采用的是三维图象重建技术,即通过摄像机记录图像,通过数字化处理形成虚拟物体,然后通过三维空间标定,确定物体的空间位置。 Wherein the image processing is used in three-dimensional image reconstruction technique, i.e., the image recording by the camera, the virtual object is formed by digital processing, and then by three-dimensional calibration, to determine the spatial position of the object. 光学追踪技术的特点是能全面地反映物体的运动情况,精度高;缺点是实现较为困难,且追踪的范围较小。 Characteristics of optical tracking technology is to fully reflect the movement of the object with high precision; disadvantage is more difficult to achieve, and the smaller the tracking range.

[0003] CN10115888公开了一种基于计算机视觉的虚拟体育系统及其实现方法,用于通用计算机,利用计算机视觉来识别人体以及体育器械的运动状态和动作模式,并将动作模式反馈给计算机,通过计算机的处理,控制虚拟体育运动中的角色做出相应的动作。 [0003] CN10115888 discloses a computer vision system and virtual sports implement method for a general purpose computer, computer vision to identify the state of body motion and sports equipment and the operation mode, and the operation mode back to the computer, by processing computer, the virtual control role sport make the appropriate action. 该发明可以更好地提高全民健身运动的普及程度,但缺点是对于实际动作的识别范围较小。 The invention may be better to increase the degree of the fitness, but the drawback is the smaller range for the actual movement identification.

发明内容 SUMMARY

[0004] 本发明的目的是提供一种基于动作识别技术的体育教学辅助系统及其实现方法, 利用人机交互技术以及光学追踪与惯性追踪相结合的方法,能够有效扩大运动追踪范围并及时反馈运动信息,实现较大范围内特定运动信息的采集与处理,并将之应用于计算机虚拟辅助体育教学。 [0004] The object of the present invention is to provide a motion recognition technology PE Teaching System and its implementation method based on the use of human-computer interaction method for an optical tracking and combining inertial tracking, motion tracking range can be expanded efficiently and timely feedback sports information acquisition and processing to achieve the specific movement of a wide range of information, and apply computer-assisted virtual physical education.

[0005] 本发明解决其技术问题所采用的技术方案是:一种基于动作识别技术的体育教学辅助系统,用于PC或嵌入式主机,其包括运动数据采集模块、运动数据获取模块、辨识与训练模块、虚拟教学环境模块组成, [0005] aspect of the present invention to solve the technical problem is that: an action recognition PE teaching aids based system for embedded PC or host, which comprises a motion data acquisition module, motion data acquisition module, and identification training modules, virtual learning environment modules,

[0006] 所述的运动数据采集模块进一步包括:特定波长点光源、不少于二个摄像头; The [0006] motion data acquisition module further comprises: a point light source of a specific wavelength, not less than two cameras;

[0007] 所述的运动数据获取模块进一步包括:图像特征提取单元、三维空间定位单元、运动信息解算单元、多传感器数据融合单元; The motion [0007] The data acquisition module further comprises: image feature extracting unit, three-dimensional positioning unit, the motion information calculating unit solutions, multi-sensor data fusion unit;

[0008] 所述的辨识与训练模块进一步包括:动作模式数据采集模块、训练模块、辨识单元; [0008] Identification and said training module further comprises: an operation mode data acquisition module, a training module recognition unit;

[0009] 所述的虚拟教学环境模块包括一动作模式标准库、一动作解析单元、一虚拟教学环境、一显示设备; [0009] The virtual environment module comprises a teaching operation mode standard libraries, a motion analysis unit, a virtual learning environment, a display device;

[0010] 其特征在于:在所述的运动数据采集模块中还是设有一微惯性测量单元和一惯性参数提取单元,微惯性测量单元与被测目标绑定,用于测量被测目标的惯性参数,供运动数据获取模块处理,所述的微惯性测量单元通过无线信号与所述的惯性参数提取单元信号输入端连接;所述的运动信息解算单元对惯性参数提取单元输出的数据传输到多传感器数据融合单元作解算处理。 [0010] wherein: in said motion data acquisition module is provided with an inertial measurement unit and a micro-inertia parameter extraction unit, and the measured MIMU target-bound, for measuring inertial parameters of the measured object , motion data acquisition module for processing said micro-inertial measurement unit is connected via a wireless signal inertia parameter extraction unit according to a signal input terminal; the motion information of the data transmission unit solver inertia parameter extraction unit to output the multi sensor data fusion means for solving process.

[0011] 所述的运动数据获取模块,其中所述的三维空间定位单元利用标记点在两个摄像头内成像的位置,利用双目视觉算法得到标记点的三维空间坐标,所述多传感器数据融合单元采用基于DS证据理论的多传感器数据融合算法对运动目标的惯性参数和三维空间坐标作处理,获取目标的动作模式数据。 [0011] The motion data acquisition module, wherein the three-dimensional space by using a positioning unit of the imaging marker in the two camera positions, binocular vision algorithms to obtain three-dimensional coordinates of the marker, the multi-sensor data fusion unit with the operation mode data and the inertial parameters of moving objects based on the three-dimensional spatial coordinates for processing multi-sensor data fusion algorithm DS theory, acquired target.

[0012] 所述的虚拟教学环境模块,其中: [0012] The virtual environment teaching module, wherein:

[0013] 所述动作模式标准库用于供动作解析单元解析动作模式的范本;所述的动作模式标准库包括特定体育运动动作模式标准库、非特定动作模式标准库和连续动作模型库; [0013] The operation mode of the standard library templates used for analysis operation mode motion analysis unit; said operation mode comprises standard library specific standard library sports operating mode, the operation mode nonspecific standard libraries and continuous action model library;

[0014] 所述动作解析单元用于解析动作模式数据的辨识结果; [0014] The operation of the parsing unit for parsing the identification result data of the operation mode;

[0015] 所述虚拟教学环境为人机互动平台,用于提供体育教学方案; The [0015] virtual learning environment for human-computer interaction platform for delivering physical education programs;

[0016] 所述显示设备用于反馈运动动作模式辨识的解析结果、显示人机交互动作状态, 其输入端与计算机连接; [0016] The analysis result display apparatus for feedback motion pattern recognition operation, the operation state of the interactive display, an input terminal connected to the computer;

[0017] 所述的特定体育运动动作模式标准库,以体育运动项目的基本动作为主,包括乒乓球的基本动作、网球基本动作、高尔夫挥杆动作、保龄球掷球动作、跑步的抬腿动作等; [0017] The operation mode of the particular sport standard library to the basic operation of the main sports items, comprising a basic operation of the ping-pong, tennis basic operation, golf swing, Bowling throw operation, running the operation leg Wait;

[0018] 所述的非特定动作模式标准库,是根据体育教学要求定制特殊应用的动作模型库,包括鞍马运动员基本动作、体操、体育教学动漫游戏类应用的动作等; [0018] The non-standard library specific operation mode, based on the teaching customized sports action model library for special applications, comprising a basic operation athletes horse, gymnastics, sports teaching animation game type applications like action;

[0019] 所述的连续动作模型库,为辅助体育教学特定功能而设计的由系列动作组成的组合动作库,它基于特定动作模型库和非特定模型库,包括体操、舞蹈、武术、健身气功等一套完整的动作。 Continuous action model library [0019] The combination of action library consisting of a series of actions to assist physical education specific function and design, which is based on specific and non-specific action model library model library, including gymnastics, dance, martial arts, Qigong a complete set of actions.

[0020] 一种基于动作识别技术的虚拟体育教学辅助系统的构建方法,其包括以下步骤: [0020] A method of constructing a virtual sports teaching operation based on recognition of the assistance system, comprising the steps of:

[0021] A、将标记点与被测目标绑定,将摄像头安装在指定区域的正前方,用于捕捉指定区域的图像、获取标记点运动的惯性参数; [0021] A, measured with the target-bound markers, the camera is mounted in front of the specified region, for capturing an image of the designated region, extracting inertial motion parameter marker;

[0022] B、采集数字图像并输入通用计算机,得到目标运动的数字图像;采集标记点运动的惯性参数; [0022] B, input digital image acquisition and a general purpose computer, a digital image to obtain target motion; acquisition marker motion inertial parameters;

[0023] C、对采集的惯性参数和数字图像进行解算和多传感器融合,获取标记点运动方式; [0023] C, and the inertial parameters of the collected digital images and other multi-sensor fusion, obtaining marker motion;

[0024] D、根据标记点运动方式识别其运动模式,传送给虚拟体育教学环境,并反馈输出相应的交互动作状态,对输出的交互动作状态进行统计,并与预设的体育教学指标进行比对和解析,得到动作修正方案如位置、速度、角度等方面,并将结果输出在显示设备上。 [0024] D, motion markers identified according to its motion pattern transmitted to the virtual PE Environment, and the feedback output corresponding to the operation state of interaction, the interaction of the state of the output of the statistics, and the ratio of a predetermined index Physical Education to parse and obtain the operation correction scheme such aspects position, speed, angle, etc., and outputs the result on a display device.

[0025] 所述的步骤C还包括:在图像特征提取单元,首先通过二值算法提取目标运动的特征构图,对特征构图求取其重心,得到特征构图中心位置;接着根据对所选特征的计算, 建立特征之间的对应关系; Step C [0025] The further comprising: image feature extraction means extracts a feature is first patterned by target motion binary algorithm, the center of gravity of the characteristic composition is obtained, to obtain the center position of the characteristic composition; then based on the selected feature calculation, correspondence between the features;

[0026] 所述步骤C还包括:对所述步骤B中获取的标记点运动方式和惯性参数,通过DS 证据理论的多传感器数据融合算法,得到反映目标运动特征的一致性数据。 [0026] The said step C further comprising: a movement pattern of markers and the inertial parameters obtained in step B, the multi-sensor data fusion algorithm DS theory, yield consistent motion feature data reflecting target. [0027] 所述步骤D还包括: [0027] The said step D further comprises:

[0028] D1、采集各种样本动作模式数据,对采集到的样本动作模式数据进行标注; [0028] D1, various sample collection operation pattern data, the collected sample data for the operation mode annotation;

[0029] D2、逐一从所述样本动作模式数据中提取出反映其本质特征的特征向量; [0029] D2, extracted one by one reflecting the essential characteristics of a feature vector from said motion pattern data sample;

[0030] D3、根据所述特征向量划分所属类别区域,使得划分后的各个不同类别区域中只包含同类样本的特征向量,建立从特征向量到所属类别之间映射关系的分类器; [0030] D3, according to the feature vector belongs to the category area division, so that the various regions of the divided category contains only a sample of similar feature vectors from the feature vector to establish the mapping between Category classification;

[0031] D4、对待检测的动作模式数据进行处理,提取其特征向量; [0031] D4, to treat motion pattern data detection process is performed to extract feature vectors;

[0032] D5、将待检测的作模式数据的特征向量输入到所述分类器,分类器根据其特征向量进行判别,得到该待检测的作模式数据的辨识结果。 [0032] D5, the mode of feature vector data to be detected is input to the classifier, the classifier judgment is made based feature vectors, obtained as the recognition result of the pattern data to be detected.

[0033] D6、动作模式数据的辨识结果输入到虚拟教学环境和动作解析单元中,通过显示设备,反馈输出运动状态。 [0033] D6, the identification result is input to the operation mode data and motion analysis virtual environment teaching unit, through the display device, the feedback output motion.

[0034] 所述步骤D2还包括: [0034] The step D2 further comprises:

[0035] D21、对所述样本动作模式数据进行预处理,得到训练数据; [0035] D21, the sample data preprocessing operation mode, to obtain training data;

[0036] D22、从训练数据中提取反映训练数据本质特征的特征成分; [0036] D22, extracts the essential characteristics of the training data reflecting the features from the training data component;

[0037] D23、将所述特征成分进行组合,得到所述特征向量。 [0037] D23, wherein the components are combined, to obtain the feature vector.

[0038] 所述步骤D4还包括: [0038] D4 further comprises the step of:

[0039] D41、对所述待检测的动作模式数据进行预处理,得到辨识数据; [0039] D41, operation data of the pattern to be detected is pretreated to obtain identification data;

[0040] D42、从辨识数据中提取反映辨识数据本质特征的特征成分; [0040] D42, reflect the essential characteristics extracting identification data from the identification data, wherein component;

[0041] D43、将所述特征成分进行组合,得到所述特征向量。 [0041] D43, wherein the components are combined, to obtain the feature vector.

[0042] 所述步骤D6还包括: [0042] D6 further comprising the step of:

[0043] D61、自定义不同类别的标准动作模式,建立动作模式标准库; [0043] D61, a custom different classes standard operating mode, the operation mode establish standard library;

[0044] D62、将标准动作模式和体育运动教学步骤自定义为教学方案,并输入虚拟体育教学环境中; [0044] D62, and a standard operation mode sport teaching programs for teaching step custom, and enter the virtual environment Physical Education;

[0045] D63、将辨识结果输入到虚拟体育教学环境中,实现人机交互运动状态;以动作模式标准库为参照标准,对辨识结果进行解析,得到动作修正方案; [0045] D63, the recognition result to the virtual physical education environment, the realization of human-computer interaction motion; operation mode to the standard library as a reference standard analytical results of identification to obtain a revised action plan;

[0046] D64、将动作修正方案和动作模式数据辨识结果输入到显示设备。 [0046] D64, the operation program and correcting the operation pattern data recognition result to the display device.

[0047] 本发明的有益效果:由于采用在原来的光学追踪方式下增加了惯性追踪方式其综合后使反映目标运动情况,有效扩大了追踪范围,提高了测量的精度,解决了惯性追踪无法获取目标整体信息、不能做复杂的运动识别、敏感性差的问题,同时也解决光学追踪技术还原真实性差、有效追踪范围小以及阻挡影响的问题。 [0047] Advantageous effects of the present invention: As a result of increasing the inertial tracking method in the original optical tracking method after synthesis so that reflects the target movement, effectively expanding the tracking range, to improve the measurement accuracy, to solve the inertia track can not be obtained overall objective information, can not do complex motion recognition, poor sensitivity of the issue, while also addressing the problem of optical tracking technology to restore the authenticity of the poor, small-scale and effective tracking of the impact of the barrier. 本发明还具有很强的实用性,为体育教学提供一种全新的教学模式,让体育运动教学方法趋于数字化、多媒体化和科学标准化。 The present invention also has a strong practical, provide a new model for teaching physical education, sports teaching methods tend to make digitized, multimedia and scientific standardization.

[0048] 以下将结合附图和实施例,对本发明进行较为详细的说明。 [0048] The accompanying drawings and the following embodiments, the present invention will be described in more detail.

附图说明 BRIEF DESCRIPTION

[0049] 图1为本发明基于动作识别技术的体育辅助教学系统示意框图。 [0049] Fig 1 a schematic block diagram of a motion recognition PE CAI System Based on the present disclosure.

[0050] 图2为本发明运动数据采集模块示意框图。 [0050] Fig 2 a schematic block diagram of a data acquisition module of the present invention.

[0051] 图3为本发明运动数据获取模块示意框图。 [0051] Fig 3 a schematic block diagram of a motion data acquisition module of the present invention.

[0052] 图4为本发明辨识与训练模块示意框图。 [0052] The schematic block diagram of FIG. 4 and identification training module of the present invention.

[0053] 图5为本发明虚拟教学环境模块示意框图。 [0053] Fig 5 a schematic block diagram of a virtual environment module teaching of the present invention.

[0054] 图6为图5的局部放大示意框图。 [0054] FIG. 6 is a partially enlarged schematic block diagram of FIG. [0055] 图7为本发明总体结构的示意框图。 [0055] Figure 7 a schematic block diagram illustrating the overall configuration of the present invention. 具体实施方式 detailed description

[0056] 实施例1,如图1、图7所示,一种基于动作识别技术的体育教学辅助系统,用于PC 或嵌入式主机,其包括运动数据采集模块1、运动数据获取模块2、辨识与训练模块3、虚拟教学环境模块3组成; [0056] Example 1, FIG. 1, FIG. 7, an action recognition technology PE teaching aids based system for embedded PC or host, which comprises a motion data acquisition module 1, motion data acquisition module 2, identification and training module 3, a virtual learning environment composed of 3 modules;

[0057] 如图2所示,所述的运动数据采集模块1进一步包括:特定波长点光源11、不少于二个摄像头12 ; [0057] 2, motion data acquisition module of claim 1 further comprising: a specific wavelength point light source 11, the camera 12 is not less than two;

[0058] 如图3所示,所述的运动数据获取模块2进一步包括:图像特征提取单元21、三维空间定位单元22、运动信息解算单元23、多传感器数据融合单元M ; [0058] As shown in FIG. 3, the motion data acquisition module 2 further comprising: image feature extraction unit 21, three-dimensional positioning unit 22, the motion information calculating unit 23 solution, multi-sensor data fusion unit M;

[0059] 运动数据获取模块2,其中所述的三维空间定位单元22利用标记点在两个摄像头12内成像的位置,利用双目视觉算法得到标记点的三维空间坐标,所述的多传感器数据融合单元M采用基于DS证据理论的多传感器数据融合算法对运动目标的惯性参数和三维空间坐标作处理,获取目标的动作模式数据。 [0059] The motion data acquisition module 2, wherein the three-dimensional space using the positioning unit 22 at a position marker 12 in the two imaging cameras, binocular vision algorithms to obtain three-dimensional coordinates of the marker, the multi-sensor data fusion unit M using the operation mode data and the inertial parameters of moving objects based on the three-dimensional spatial coordinates for processing multi-sensor data fusion algorithm DS theory, acquired target.

[0060] 如图4所示,所述的辨识与训练模块3进一步包括:动作模式数据采集模块31、训练模块32、辨识单元33 ; [0060] 4, said identification training module 3 further comprising: operation mode data acquisition module 31, training module 32, a recognition unit 33;

[0061] 如图5所示,所述的虚拟教学环境模块4包括一动作模式标准库41、一动作解析单元42、一虚拟教学环境43、一显示设备44 ; As shown in [0061] FIG. 5, the virtual environment module 4 comprises a teaching operation mode standard library 41, a motion analysis unit 42, a virtual learning environment 43, a display device 44;

[0062] 所述的虚拟教学环境模块4,其中:所述动作模式标准库41用于供动作解析单元解析动作模式的范本;所述动作解析单元42用于解析动作模式数据的辨识结果;所述虚拟教学环境43为人机互动平台,用于提供体育教学方案;所述显示44设备用于反馈运动动作模式辨识的解析结果、显示人机交互动作状态,其输入端与计算机连接; [0062] The virtual environment teaching module 4, wherein: the standard operation mode for the operation of model library 41 for parsing unit parsing operation mode; motion analysis unit 42 is the result of the analysis operation for recognizing pattern data; the said virtual learning environment for the human-machine interactive platform 43, for providing PE teaching programs; the display device 44 for moving the operation mode feedback analysis result of the recognition, the operation state of the interactive display, an input terminal connected to the computer;

[0063] 如图2所示,在所述的运动数据采集模块1中还是设有一微惯性测量单13元和一惯性参数提取单元14,微惯性测量单元13与被测目标绑定,用于测量被测目标的惯性参数,供运动数据获取模块2处理,所述的微惯性测量单元13通过无线信号与所述的惯性参数提取单元14信号输入端连接;所述的运动信息解算单元23对惯性参数提取单元14输出的数据传输到多传感器数据融合单元M作解算处理。 [0063] 2, in the motion data acquisition module 1 is provided with a micro-element and the inertial measurement unit 13 a inertia parameter extraction unit 14, an inertial measurement unit 13 and the micro test target-bound for measuring inertial parameters of the measured object, motion data acquisition module for the second processing, a signal input terminal 14 of the micro-inertial measurement unit 13 by the inertial parameters of the radio signal and the extraction unit; said motion information calculating unit 23 solution inertial parameters of the data transmission unit 14 outputs to the multi-sensor data fusion unit M for processing resolver extraction.

[0064] 如图6所示,所述的动作模式标准库41包括特定体育运动动作模式标准库45、非特定动作模式标准库46和连续动作模型库47。 As shown in [0064] FIG. 6, the operation mode of the standard library 41 include specific sports operating mode standard library 45, the operation mode of the standard library nonspecific continuous action model library 46 and 47.

[0065] 所述的特定体育运动动作模式标准库45,以体育运动项目的基本动作为主,包括乒乓球的基本动作、网球基本动作、高尔夫挥杆动作、保龄球掷球动作、跑步的抬腿动作等。 [0065] The operation mode of the particular sport standard library 45, to the basic operation of the main sports items, including basic operation of the ping-pong, tennis basic operation, golf swing, Bowling throw operation, running leg action and so on.

[0066] 所述非特定动作模式标准库46,是根据体育教学要求定制特殊应用的动作模型库,包括鞍马运动员基本动作、体操、体育教学动漫游戏类应用的动作等. [0066] The operation mode nonspecific standard library 46, is customized in accordance with the teaching of Physical action model library for special applications, comprising a basic operation athletes horse, gymnastics, sports teaching animation game type applications like action.

[0067] 所述连续动作模型库47,为辅助体育教学特定功能而设计的由系列动作组成的组合动作库,它基于特定动作模型库和非特定模型库,包括体操、舞蹈、武术、健身气功等一套完整的动作。 The [0067] continuous action model library 47, a series of actions by the combined action of the library is composed of auxiliary teaching specific function of sport and design, which is based on specific and non-specific action model library model library, including gymnastics, dance, martial arts, Qigong a complete set of actions.

[0068] 运动数据采集模块1主要用于采集运动目标的数字图像和惯性参数,该模块中特定波长点光源11为发出单色光的点光源,图像采集设备为可见光摄像头,微惯性测量单元13与被测目标绑定并通过无线信号与惯性参数提取单元14信号输入端连接,特定波长点光源11的光信号则由摄像头采集,摄像头12输出端与图像特征提取单元21输入端连接, 运动数据采集模块1采集的运动数据输入运动数据获取模块2中运动信息解析单元23和图像特征提取单元21,供运动数据获取模块2分析处理。 [0068] The athletic data collection module 1 is mainly used for collecting digital image and the moving target inertial parameters, the module specific wavelength point light source 11 to emit monochromatic light of a point light source, the image capture device is a visible light camera 13 MIMU and extracting the target binding and the measured signal input unit 14 is connected via a wireless signal with the inertia parameter, the point light source of a specific wavelength by the optical signal captured by the camera 11, the camera 12 and the output of the image feature extraction unit 21 connected to the input terminal, the motion data athletic data collection module 1 input motion data acquisition module acquiring motion information analyzing unit 2 23, and image feature extracting unit 21, motion data acquisition module 2 for analysis.

[0069] 实施例2如图1、图7所示,一种基于动作识别技术的体育教学辅助系统,用于PC 或嵌入式主机,其包括运动数据采集模块1、运动数据获取模块2、辨识与训练模块3、虚拟教学环境模块4组成。 [0069] Example 2 1, FIG. 7 A PHYSICAL teaching aid system based on motion recognition technology, or for the embedded host PC, which includes a motion data acquisition module 1, motion data acquisition module 2, identification and training module 3, a virtual learning environment composed of 4 modules.

[0070] 目标在所述显示设备44正面运动,与目标绑定的所述微惯性测量单元13将测量得到一组运动数据,经惯性参数提取单元14处理后得到运动惯性参数,通过无线传输模块传送至所述运动信息解算单元23 ;运动数据采集模块1中特定波长点光源11为发出单色光的点光源,图像采集设备为不少于二个的可见光摄像头,特定波长点光源的光信号则由摄像头采集,摄像头12输出端与图像特征提取单元21输入端连接。 [0070] The target of the display device 44 MIMU positive movement, and the target 13 bound to a measured set of motion data, inertial parameter extraction unit 14 obtained after the processing inertia parameter, the wireless transmission module the motion information is transmitted to the resolver unit 23; the motion data acquisition module in a specific wavelength point light source 11 to emit monochromatic light of a point light source, the image pickup apparatus is not less than two of the visible light camera, a point source of light of a specific wavelength signal acquisition by the camera, the camera 12 and the output of the image feature extraction unit 21 connected to the input terminal. 运动数据采集模块1 采集的运动数据输入运动数据获取模块2中运动信息解析单元23和图像特征提取单元21, 供运动数据获取模块2分析处理。 Motion datum receiving motion data acquisition module 1 motion data acquisition module acquiring motion information analyzing unit 2 23, and image feature extracting unit 21, motion data acquisition module 2 for analysis.

[0071] 运动信息解算单元23对所获数据进行解算并将结果传送至多传感器数据融合单元M ;图像特征提取单元21对所获视频图像进行二值算法得到运动目标的特征构图,三维空间定位单元22通过运算变换,得到运动目标的三维空间坐标,并将其传送至多传感器数据融合单元M ;多传感器数据融合单元M将得到的数据信息采用基于DS证据理论的多传感器数据融合算法对运动目标的惯性参数和三维空间坐标作处理,获取目标的动作模式数据。 [0071] The motion information resolver unit 23 obtained data resolver and passes the resultant sensor data fusion unit up to M; image feature extracting unit 21 obtained video image characteristic composition binary algorithm moving object, the three-dimensional space the positioning unit 22 by calculation transformation, the three-dimensional coordinates of the moving object, and sensor data fusion unit which transmits up to M; data unit M multi-sensor data fusion using the obtained multi-sensor data fusion algorithm based on DS theory motion inertial parameters and the three-dimensional coordinates of the target for processing, the operation mode data acquired target.

[0072] 辨识与训练模块3,通过动作模式数据采集模块31采集各种动作模式样本数据, 由训练模块32对样本模式数据进行预处理,得到训练数据。 [0072] and identification training module 3, the operation mode by the data acquisition module 31 sample data acquisition various operation modes, the preprocessing module 32 is trained on the sample pattern data, the training data is obtained. 图4中的分类器从训练数据中提取反映数据本质特征的特征向量并根据特征向量对其进行分类,建立从特征向量到所属类别之间映射关系的分类器;辨识单元33对经运动数据获取模块2分析得到的待检测的动作模式数据进行预处理,得到辨识数据,从辨识数据中提取特征向量并输入到图4所述分类器中,分类器根据其特征向量进行判别,得到对待辨识动作模式数据的辨识结果。 Categories in FIG. 4 extracts data reflect the essential characteristics of a feature vector from the training data and the feature vectors of their classification, the classifier to establish the mapping between feature vectors from the Category; identification unit 33 acquires the motion data operation mode data detecting module 2 to be obtained by analyzing a pretreatment to obtain identification data, extracting a feature vector from the identification data and input to the FIG. 4 classifier, the classifier is determined based on its eigenvector, the identification operation are treated pattern recognition result data.

[0073] 自定义不同类别的标准动作模式,建立动作模式标准库41,有:如乒乓球的基本动作、网球基本动作、高尔夫挥杆动作、保龄球掷球动作、跑步的抬腿动作等以体育运动项目的基本动作为主的特定体育运动动作模式标准库45,如鞍马运动员基本动作、体操、体育教学动漫游戏类应用的动作等根据体育教学要求定制特殊应用的非特定动作模式标准库46,以及基于特定动作模型库和非特定模型库为辅助体育教学特定功能而设计的由系列动作组成的续动作模型库47,包括体操、舞蹈、武术、健身气功等一套完整的动作。 [0073] from the standard operation mode define different categories, the establishment of the operation mode of the standard library 41, are: basic movements such as table tennis, tennis basic movements, golf swing, bowling, bocce action, running and other sports leg action the basic action sports-oriented sports specific operation mode of the standard library 45, basic movements such as pommel horse athletes, gymnastics, physical education class animation and game applications and other custom application-specific actions based on physical education requirements unspecified operation mode of the standard library 46, and continued action model library consisting of a series of actions based on specific and non-specific action model library model libraries for specific teaching aid designed function of sport 47, including gymnastics, dance, martial arts, Qigong a complete set of actions.

[0074] 将标准动作模式和体育运动教学步骤自定义为教学方案,并输入虚拟体育教学环境中;将辨识结果输入到虚拟教学环境43中,实现人机交互运动状态;以动作标准模式库为参照标准,由动作解析单元42对辨识结果进行解析,得到动作修正方案(如位置、速度、 角度等方面),并将结果输出在显示设备44。 [0074] The standard operating mode and sports teaching steps to customize the program for teaching, physical education and enter the virtual environment; the recognition result to 43 virtual learning environment, to achieve human-computer interaction motion; motion to standard mode library reference standard, 42 pairs of analyzing the motion analysis unit identification result, the operation to obtain the correction scheme (e.g., position, speed, angle, etc.), and outputs the result on the display device 44.

[0075] 由于采用在原来的光学追踪方式下增加了惯性追踪方式其综合后使反映目标运动情况,有效扩大了追踪范围,提高了测量的精度,解决了惯性追踪无法获取目标整体信息、不能做复杂的运动识别、敏感性差的问题,同时也解决光学追踪技术还原真实性差、有效追踪范围小以及阻挡影响的问题。 [0075] As a result of increased inertial tracking method In the original optical tracking mode after its comprehensive the reflection of the target movement, effectively expanding the tracking range, improve the measurement accuracy, to solve the inertia track can not get goals overall information and can not do complex motion recognition, the problem of poor sensitivity, while also addressing the problem of optical tracking technology authenticity difference reduction, effective tracking of small and blocking effects. 本发明还具有很强的实用性,为体育教学提供一种全新的教学模式,让体育运动教学方法趋于数字化、多媒体化和科学标准化。 The present invention also has a strong practical, provide a new model for teaching physical education, sports teaching methods tend to make digitized, multimedia and scientific standardization.

Claims (10)

1. 一种基于动作识别技术的体育教学辅助系统,用于PC或嵌入式主机,其包括运动数据采集模块、运动数据获取模块、辨识与训练模块、虚拟教学环境模块组成,所述的运动数据采集模块进一步包括:特定波长点光源、不少于二个摄像头; 所述的运动数据获取模块进一步包括:图像特征提取单元、三维空间定位单元、运动信息解算单元、多传感器数据融合单元;所述的辨识与训练模块进一步包括:动作模式数据采集模块、训练模块、辨识单元; 所述的虚拟教学环境模块包括一动作模式标准库、一动作解析单元、一虚拟教学环境、 一显示设备;其特征在于:在所述的运动数据采集模块中还是设有一微惯性测量单元和一惯性参数提取单元,微惯性测量单元与被测目标绑定,用于测量被测目标的惯性参数,供运动数据获取模块处理,所述的微惯性测量 A motion recognition technique based on physical teaching aid system for the PC or embedded host that includes motion data acquisition module, motion data acquisition module, and identification training module, a virtual environment teaching modules, said motion data acquisition module further comprises: a point light source of a specific wavelength, the camera is not less than two; the motion data acquisition module further comprises: image feature extracting unit, three-dimensional positioning unit, the motion information calculating unit solutions, multi-sensor data fusion unit; the identification and said training module further comprises: an operation mode data acquisition module, a training module recognition unit; the teaching of the virtual environment module comprises a standard library operation mode, a motion analysis unit, a virtual learning environment, a display device; the characterized in that: in said motion data acquisition module is provided with an inertial measurement unit and a micro-inertia parameter extraction unit, and the measured MIMU target-bound, for measuring inertial parameters of the measured object, motion data for processing module obtaining said MIMU 元通过无线信号与所述的惯性参数提取单元信号输入端连接;所述的运动信息解算单元对惯性参数提取单元输出的数据传输到多传感器数据融合单元作解算处理。 Cellular units extracted by the signal input terminal of inertial parameters of the radio signal; said motion information calculating unit solutions inertia parameter extraction unit outputs transmission data to the multi-sensor data fusion means for solving process.
2.如权利要求1所述的一种基于动作识别技术的体育教学辅助系统,其特征在于:所述的运动数据获取模块,其中所述的三维空间定位单元利用标记点在两个摄像头内成像的位置,利用双目视觉算法得到标记点的三维空间坐标,所述多传感器数据融合单元采用基于DS证据理论的多传感器数据融合算法对运动目标的惯性参数和三维空间坐标作处理, 获取目标的动作模式数据。 2. An operation according to Claim 1 recognition system based on physical teaching aids, characterized in that: said motion data acquisition module, wherein the three-dimensional space by using a positioning unit in the imaging marker two cameras position, binocular vision algorithms to obtain the three-dimensional spatial coordinates of the marker, the multi-sensor data fusion unit based multi-sensor data DS theory and inertial parameters of three-dimensional coordinates of the moving object as fusion algorithm, and obtain the target operation mode data.
3.如权利要求1所述的一种基于动作识别技术的体育教学辅助系统,其特征在于:所述的虚拟教学环境模块,其中:所述动作模式标准库用于供动作解析单元解析动作模式的范本;所述的动作模式标准库包括特定体育运动动作模式标准库、非特定动作模式标准库和连续动作模型库; 所述动作解析单元用于解析动作模式数据的辨识结果; 所述虚拟教学环境为人机互动平台,用于提供体育教学方案; 所述显示设备用于反馈运动动作模式辨识的解析结果、显示人机交互动作状态,其输入端与计算机连接;所述的特定体育运动动作模式标准库,以体育运动项目的基本动作为主,包括乒乓球的基本动作、网球基本动作、高尔夫挥杆动作、保龄球掷球动作、跑步的抬腿动作等;所述的非特定动作模式标准库,是根据体育教学要求定制特殊应用的动作模型库,包 3. An operation according to Claim 1 recognition system based on physical teaching aids, wherein: the virtual environment teaching module, wherein: the operation mode for the operation of the standard library for parsing unit parsing operation mode template; said operation mode comprises standard library specific standard library sport operation mode, the operation mode of the non-specific standard libraries and continuous action model library; the motion analysis result of the analysis unit for recognizing operation pattern data; said virtual teaching human-computer interaction environment for the platform, for providing PE teaching programs; the analysis result display apparatus for feedback motion pattern recognition operation, the display state of the interactive operation, an input terminal connected to the computer; the specific sport operation mode standard library to the basic operation of the main sports programs, including a basic operation of the ping-pong, tennis basic operation, golf swing, throw a bowling operation, the leg running operation and the like; a particular operation mode of the non-standard library It is customized according to specific application requirements Physical Education action model library package 鞍马运动员基本动作、体操、体育教学动漫游戏类应用的动作等;所述的连续动作模型库,为辅助体育教学特定功能而设计的由系列动作组成的组合动作库,它基于特定动作模型库和非特定模型库,包括体操、舞蹈、武术、健身气功等一套完整的动作。 Pommel horse athletes basic movements, gymnastics, sports action and other teaching animation and game type applications; continuous action of the model library, the library consists of a combination of the action series of actions consisting of Athletics Teaching designed for a specific function, it is based on specific actions and model library non-specific model libraries, including a complete set of actions gymnastics, dance, martial arts, Qigong and so on.
4. 一种基于动作识别技术的虚拟体育教学辅助系统的构建方法,其包括以下步骤:A、将标记点与被测目标绑定,将摄像头安装在指定区域的正前方,用于捕捉指定区域的图像、获取标记点运动的惯性参数;B、采集数字图像并输入通用计算机,得到目标运动的数字图像;采集标记点运动的惯性参数;C、对采集的惯性参数和数字图像进行解算和多传感器融合,获取标记点运动方式;D、根据标记点运动方式识别其运动模式,传送给虚拟体育教学环境,并反馈输出相应的交互动作状态,对输出的交互动作状态进行统计,并与预设的体育教学指标进行比对和解析,得到动作修正方案如位置、速度、角度等方面,并将结果输出在显示设备上。 A method of constructing a virtual PE based Teaching System motion recognition technology, which comprises the following steps: A, and measured the target-bound markers, the camera is mounted in front of the designated area, the designated area for capturing image acquisition inertial parameters marker movement; B, digital image acquisition and entering a general purpose computer, to obtain a digital image of the object movement; inertia parameter collection marker movement; C, collected inertia parameter and a digital image solver and multi-sensor fusion, obtaining marker motion; D, identify the motion pattern in accordance with the marker motion transmitted to the virtual PE environment, and the feedback output corresponding to the interaction state of the interactive operation status output statistics, and pre Physical Education indicators were aligned and disposed parsing, terms such as correction scheme to obtain the operation position, speed, angle, etc., and outputs the result on a display device.
5.如权利要求4所述的基于动作识别技术的虚拟体育教学辅助系统的构建方法,其特征在于:所述的步骤C还包括:在图像特征提取单元,首先通过二值算法提取目标运动的特征构图,对特征构图求取其重心,得到特征构图中心位置;接着根据对所选特征的计算,建立特征之间的对应关系; 5. Construction assistance system based on the virtual PE teaching operation recognition method according to claim 4, wherein: said step C further comprises: image feature extraction unit, extracting object motion by the first binary algorithm wherein the composition, wherein the composition of the center of gravity is obtained, wherein the composition to obtain the center position; then calculated according to the selected feature, correspondence between the features;
6.如权利要求4所述的基于动作识别技术的虚拟体育教学辅助系统的构建方法,其特征在于:所述步骤C还包括:对所述步骤B中获取的标记点运动方式和惯性参数,通过DS 证据理论的多传感器数据融合算法,得到反映目标运动特征的一致性数据。 6. The method based on the constructed virtual PE teaching assistance system as claimed in claim motion recognition technology, wherein: said step C further comprising: a marker motion and inertia parameters acquired in said step B, multi-sensor data fusion algorithm DS evidence theory to obtain consistent data reflect the objectives of the movement characteristics.
7.如权利要求4所述的基于动作识别技术的虚拟体育教学辅助系统的构建方法,其特征在于:所述步骤D还包括:D1、采集各种样本动作模式数据,对采集到的样本动作模式数据进行标注; D2、逐一从所述样本动作模式数据中提取出反映其本质特征的特征向量; D3、根据所述特征向量划分所属类别区域,使得划分后的各个不同类别区域中只包含同类样本的特征向量,建立从特征向量到所属类别之间映射关系的分类器; D4、对待辨识动作模式数据进行处理,提取其特征向量;D5、将待辨识动作模式数据的特征向量输入到所述分类器,分类器根据其特征向量进行判别,得到对该待辨识动作模式数据的辨识结果。 7. The method based on the constructed virtual PE teaching assistance system as claimed in claim motion recognition technology, wherein: said step D further comprises: Dl, various sample collection operation pattern data, the operation of the collected samples tagging pattern data; D2 of, one by one reflecting the essential characteristics extracted feature vector from said motion pattern data sample; each of the different categories of regions D3, divided according to the feature vector belongs to the category area division so that only contain the same feature vector samples, the classifier to establish the mapping between feature vectors from the category; D4, treat the operation mode identification data is processed to extract the feature vector; D5, the motion pattern data to be recognized is input to the feature vector classifier, the classifier judgment is made based feature vector, the recognition result to be obtained pattern data identifying operation. D6、动作模式数据的辨识结果输入到虚拟教学环境和动作解析单元中,通过显示设备, 反馈输出运动状态。 D6, the identification result is input to the operation mode data and motion analysis virtual environment teaching unit, through the display device, the feedback output motion.
8.如权利要求7所述的基于动作识别技术的虚拟体育教学辅助系统的构建方法,其特征在于:所述步骤D2还包括:D21、对所述样本动作模式数据进行预处理,得到训练数据; D22、从训练数据中提取反映训练数据本质特征的特征成分; D23、将所述特征成分进行组合,得到所述特征向量。 8. The method of claim 7 constructed based virtual PE teaching assistance system as claimed in claim motion recognition technology, wherein: said step D2 further comprises: D21, the sample data preprocessing operation mode, to obtain training data ; D22, extracting the essential characteristics reflecting the training data from the training data characteristic components; D23, wherein the components are combined, to obtain the feature vector.
9.如权利要求7所述的基于动作识别技术的虚拟体育教学辅助系统的构建方法,其特征在于:所述步骤D4还包括:D41、对所述待辨识动作模式数据进行预处理,得到辨识数据; D42、从辨识数据中提取反映辨识数据本质特征的特征成分; D43、将所述特征成分进行组合,得到所述特征向量。 9. The method of claim 7 constructed based virtual PE teaching assistance system as claimed in claim motion recognition technology, wherein: said step D4 further comprises: D41, the operation pattern data to be recognized is pretreated to obtain identification data; D42, extracting the essential characteristics data reflecting the identification data from the identification characteristic components; D43, wherein the components are combined, to obtain the feature vector.
10.如权利要求7所述的基于动作识别技术的虚拟体育教学辅助系统的构建方法,其特征在于:所述步骤D6还包括:D61、根据辨识数据的特征向量,自定义不同类别的标准动作模式,建立动作模式标准库;D62、将标准动作模式和体育运动教学步骤自定义为教学方案,并输入虚拟体育教学环境中;D63、将辨识结果输入到虚拟体育教学环境中,现实人机交互运动状态;以标准动作库为参照标准,对辨识结果进行解析,得到动作修正方案;D64、将动作修正方案和动作模式数据辨识结果输入到显示设备。 As claimed in claim 7 virtual PE teaching assistance operation recognition system based on the construction method, characterized in that: further comprising the step D6: D61, identification data of the feature vector, standard custom actions of different classes model, and establish the operating mode of the standard library; D62, the standard operation mode and sports teaching steps to customize the program for teaching, physical education and enter the virtual environment; D63, the recognition result to the virtual environment, physical education, realistic human-computer interaction motion; standard action library reference standard analytical results of the identification, the operation to obtain the correction program; D64, correcting the operation program and the operation pattern data recognition result to the display device.

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104316A1 (en) * 2012-01-09 2013-07-18 Zienon Electronic Technology (Xi'an) Co., Ltd. Method and device for filter-processing imaging information of emission light source
CN103212192A (en) * 2012-01-24 2013-07-24 精工爱普生株式会社 Motion analysis system and a motion analysis method
CN104066483A (en) * 2012-01-31 2014-09-24 高夫准株式会社 Virtual golf simulation apparatus and method for supporting generation of virtual green
CN102989163A (en) * 2012-11-23 2013-03-27 安徽寰智信息科技股份有限公司 Action recognition-based bowling bowl training auxiliary system
CN102989121A (en) * 2012-11-23 2013-03-27 安徽寰智信息科技股份有限公司 Action recognition-based Alzheimer's disease preventing and rehabilitation training system
CN102989126B (en) * 2012-11-23 2016-03-09 安徽寰智信息科技股份有限公司 Children's hand-eye coordination training and evaluation system based on motion recognition
CN102989121B (en) * 2012-11-23 2015-06-24 安徽寰智信息科技股份有限公司 Action recognition-based Alzheimer's disease preventing and rehabilitation training system
CN102989126A (en) * 2012-11-23 2013-03-27 安徽寰智信息科技股份有限公司 Action recognition-based child hand and eye coordination training and evaluating system
CN103106411A (en) * 2012-12-13 2013-05-15 徐玉文 Tennis motion capturing and analyzing method
CN103176606A (en) * 2013-04-15 2013-06-26 北京唯创视界科技有限公司 Plane interaction system and method based on binocular vision recognition
CN103176606B (en) * 2013-04-15 2016-03-16 上海图漾信息科技有限公司 Flat-screen interactive system and method based on binocular visual identity
CN103456197A (en) * 2013-09-18 2013-12-18 重庆创思特科技有限公司 Wireless intelligent somatosensory interaction front end for teaching
CN103578135B (en) * 2013-11-25 2017-01-04 恒德数字舞美科技有限公司 Stage interactive systems integration and realization of virtual images and real scene combining
CN103578135A (en) * 2013-11-25 2014-02-12 恒德数字舞美科技有限公司 Virtual image and real scene combined stage interaction integrating system and realizing method thereof
CN104486595A (en) * 2014-12-25 2015-04-01 安徽寰智信息科技股份有限公司 Video acquisition and processing method for bowling teaching and training
CN104506829A (en) * 2014-12-25 2015-04-08 安徽寰智信息科技股份有限公司 Video acquisition and processing device for bowling teaching and training
CN104486591A (en) * 2014-12-26 2015-04-01 安徽寰智信息科技股份有限公司 Video acquisition and processing method for table tennis teaching and training
CN104581065A (en) * 2014-12-29 2015-04-29 安徽寰智信息科技股份有限公司 Video acquisition and processing method for hockey ball hitting instruction and training
CN105498188A (en) * 2016-02-01 2016-04-20 郑州华信学院 Physical activity monitoring device

Similar Documents

Publication Publication Date Title
Gavrila et al. Vision-based pedestrian detection: The protector system
Andriluka et al. People-tracking-by-detection and people-detection-by-tracking
US7036094B1 (en) Behavior recognition system
Aggarwal et al. Human activity recognition from 3d data: A review
US20120070070A1 (en) Learning-based pose estimation from depth maps
US20100208038A1 (en) Method and system for gesture recognition
US20130236089A1 (en) Learning-based estimation of hand and finger pose
US20110052006A1 (en) Extraction of skeletons from 3d maps
Lai et al. A gesture-driven computer interface using Kinect
Han et al. Enhanced computer vision with microsoft kinect sensor: A review
Ryoo et al. An overview of contest on semantic description of human activities (SDHA) 2010
Chaquet et al. A survey of video datasets for human action and activity recognition
US20090060352A1 (en) Method and system for the detection and the classification of events during motion actions
US20090220124A1 (en) Automated scoring system for athletics
JP2011065652A (en) Sign based man-machine interaction
Bloom et al. G3d: A gaming action dataset and real time action recognition evaluation framework
Zhang et al. Real-time human motion tracking using multiple depth cameras
US20080285807A1 (en) Apparatus for Recognizing Three-Dimensional Motion Using Linear Discriminant Analysis
US20110025834A1 (en) Method and apparatus of identifying human body posture
CN101098465A (en) Moving object detecting and tracing method in video monitor
CN101145201A (en) Quick target identification and positioning system and method
EP0847201A1 (en) Real time tracking system for moving bodies on a sports field
US20110085704A1 (en) Markerless motion capturing apparatus and method
CN102982557A (en) Method for processing space hand signal gesture command based on depth camera
US8775916B2 (en) Validation analysis of human target

Legal Events

Date Code Title Description
C06 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)