CN102214944B - 一种ups电源的系统增益控制方法 - Google Patents

一种ups电源的系统增益控制方法 Download PDF

Info

Publication number
CN102214944B
CN102214944B CN201010162238.6A CN201010162238A CN102214944B CN 102214944 B CN102214944 B CN 102214944B CN 201010162238 A CN201010162238 A CN 201010162238A CN 102214944 B CN102214944 B CN 102214944B
Authority
CN
China
Prior art keywords
llc
resonant converter
series resonant
enter step
llc series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010162238.6A
Other languages
English (en)
Other versions
CN102214944A (zh
Inventor
刘芳
卫中俊
糜晓宇
吴逊兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vertiv Corp
Original Assignee
Liebert Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebert Corp filed Critical Liebert Corp
Priority to CN201010162238.6A priority Critical patent/CN102214944B/zh
Priority to US13/080,341 priority patent/US20110241430A1/en
Publication of CN102214944A publication Critical patent/CN102214944A/zh
Application granted granted Critical
Publication of CN102214944B publication Critical patent/CN102214944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

本发明的一种UPS电源的系统增益控制方法,其包括以下步骤:S1:检测PFC单元,以判断是否启动LLC,如果是,进入步骤S2,否则,进入步骤S7;S2:启动LLC;S3:检测市电,以判断是否将市电切换到电池,如果是,进入步骤S4,否则,进入步骤S5;S4:在第一预设时间T1内,以大于谐振频率一预设值的工作频率,对LLC进行定频调节,并将积分量清零;在第一预设时间T1和第二预设时间T2之间,对LLC进行定频调节,进入步骤S8;S5:判断LLC是否过载,如果是,进入步骤S6,否则,进入步骤S7;S6:以等于谐振频率的工作频率,对LLC进行定频调节,并将积分量清零;进入S8;S7:对LLC进行正常的PI调节;S8:结束。实时检测PFC的运行情况,在PFC出现异常时,启动LLC,并在LLC工作过程中,根据负载对LLC进行调节,使得系统增益保持在ZVS区域的单调下降区间。

Description

一种UPS电源的系统增益控制方法
技术领域
本发明涉及系统增益控制,更具体地说,涉及一种UPS电源的系统增益控制方法。
背景技术
谐振变换器以其大功率、高效率和高功率密度等优点在开关电源技术应用中得到广泛的研究和关注,LLC串联谐振变换电路作为一种特殊的电路拓扑,既能够满足高频化的要求,又能达到较高的变换效率,已经被业界广泛采用。工程上常用的LLC串联谐振变换电路一般用在降压场合,其应用已经较为成熟。
LLC串联谐振变换器具有输入电压范围宽,输出功率范围宽的特点,然而UPS应用一个重要的特性就是不间断输出,因而在工业应用中其输出功率范围要广的多,因而LLC串联谐振变换器的单调工作范围能否能适应宽工作范围还是一个巨大的挑战。
如图2所示的为LLC的增益曲线具有两个谐振点,随着负载和输入电压的不同,其电压增益的变化趋势不是同步的,尤其是当负载较重,输入电压较低时,增益曲线很容易进入ZCS(零电流)区间,这个区间是系统正常运行所不能接受的。
发明内容
本发明要解决的技术问题在于,针对现有技术的UPS电源中LLC串联谐振变换器其增益存在从ZVS(零电压)区域跨越到ZCS(零电流)区域等缺陷,提供一种UPS电源的系统增益控制方法。
本发明解决其技术问题所采用的技术方案是:构造一种UPS电源的系统增益控制方法,用于对LLC串联谐振变换器进行单调性调节,其包括以下步骤:
S1:检测PFC单元,以判断是否启动LLC串联谐振变换器,如果是,进入步骤S2,否则,进入步骤S8;
S2:启动LLC串联谐振变换器;
S3:检测市电,以判断是否将市电切换到电池单元,如果是,进入步骤S4,否则,进入步骤S5;
S4:在第一预设时间T1内,以大于谐振频率一预设值的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零;在第一预设时间T1和第二预设时间T2之间,以等于谐振频率的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零,进入步骤S8;
S5:判断LLC串联谐振变换器是否过载,如果是,进入步骤S6,否则,进入步骤S7;
S6:以等于谐振频率的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零;进入步骤S8;
S7:对LLC串联谐振变换器进行正常的PI调节;
S8:结束。
在本发明所述的UPS电源的系统增益控制方法中,在所述步骤S4中,以大于谐振频率15kHz的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零。
在本发明所述的UPS电源的系统增益控制方法中,在所述步骤S5中,所述过载包括高压过载和低压过载。
在本发明所述的UPS电源的系统增益控制方法中,所述步骤S2包括以下步骤:
S21:判断LLC串联谐振变换器是否处于运行状态,如果是,进入步骤S3;否则,进入步骤S22;
S22:对LLC串联谐振变换器执行软启动。
在本发明所述的UPS电源的系统增益控制方法中,所述第一预设时间T1为10~20毫秒,第二预设时间T2为30~40毫秒。
实施本发明的UPS电源的系统增益控制方法,具有以下有益效果:在UPS电源运行过程中,实时检测PFC单元的运行情况,在PFC单元出现异常时,启动LLC串联谐振变换器,并在LLC串联谐振变换器工作过程中,实时检测其负载情况,根据负载对LLC串联谐振变换器进行调节,使得系统增益保持在ZVS区域的单调下降区间。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明UPS电源的系统框图;
图2是图1所示的LLC增益曲线的结构示意图;
图3是本发明UPS电源的系统增益控制方法的流程图。
具体实施方式
对于采用单电压环控制的LLC串联谐振变换器,PI(积分比例)控制器本身对单调性的要求是非常严格的,一旦控制输出跨越了增益曲线的非单调区间,那么原有的负反馈会变成正反馈,使得输出彻底被拉垮,即母线输出将被持续拉垮直到关机。但是LLC串联谐振变换器的工作点跨越增益曲线的非单调区间的方式不是唯一的,以输出过载为例,若将负载逐渐加重,则工作点可能随着图2中1所示的路线,若突加过载,则从动态到稳态的过渡过程可能以图2中2所示的路线,这两种不同的加载方式导致了两种截然相反的结果。本发明的创新点在于从LLC串联谐振变换器的增益曲线的额定工作点出发,根据不同的负载状态,在其周围设定了一系列的限定条件使得工作点不超出单调范围。
首先要明确LLC串联谐振变换器工作的重载工况,对于UPS来说,LLC串联谐振变换器的作用之一是在市电不能正常工作的情况下维持输出,因此市电切电池工况对于LLC串联谐振变换器来说相当于瞬态负载较重;另外,当切到电池侧后,电池电压会逐渐降低,若此时加过载,那么LLC串联谐振变换器很容易进入不单调区间;最后,若在电池侧突加突卸过载,则动态负载会更大。
如图1所示,在本发明的UPS电源中,在正常工作时,市电经整流滤波电路1处理后,通过PFC单元2为逆变器3进行供电。在该UPS电源的运行过程中,控制电路4实时检测PFC的工作状态,当PFC单元出现异常时,控制电路4检测LLC串联谐振变换器5是否已经工作,即是否已经处于运行状态,如果LLC串联谐振变换器5还未工作,控制电路4将对其执行软启动,使其工作达到稳定的工作状态;如果LLC串联谐振变换器5已经处于运行状态了,此时,控制电路4将检测市电,例如市电电压、电流、幅值、负载等等,以确定市电是否能进行正常供电,如果未出现异常,则判断市电可正常工作,此时,由市电和电池6联合为逆变器3进行供电;在市电和电池6联合为逆变器3工作的过程中,实时检测LLC串联谐振变换器5是否存在过载,即高压过载或低压过载,当LLC串联谐振变换器5存在过载时,控制电路4将以等于LLC串联谐振变换器5的谐振频率的工作频率,对LLC串联谐振变换器5进行定频调节,同时积分量清零;当LLC串联谐振变换器5并未存在过载时,对LLC串联谐振变换器5进行正常的PI调节;当市电出现异常时,将市电切换到电池6单元,对逆变器3进行供电,此过程分为两个阶段:第一阶段为切换过程,第二阶段为切换完成过程,其中,从市电切换到电池6单元侧开始计时到第一预设时间T1内为切换过程,T1的取值要保证谐振电流和电压应力较小;从第一预设时间T1到第二预设时间T2为切换完成过程,其中,T2的取值要保证切换过程的连续性;在一优选实施例中,T1为10~20毫秒,T2为30~40毫秒,在具体操作时,在第一阶段,此时控制电路4将以大于LLC串联谐振变换器5的谐振频率的工作频率,对LLC串联谐振变换器5进行定频调节,同时积分量清零;在第二阶段,控制电路对LLC串联谐振变换器5进行正常的PI调节。通过以上的控制即可使得该UPS的系统增益仅在ZVS区域的单调递减。
如图3所示,其具体工作步骤为:
S1:检测PFC单元2,以判断是否启动LLC串联谐振变换器5,如果是,进入步骤S2,否则,进入步骤S8;
启动LLC串联谐振变换器5主要考虑市电切电池6前,系统(主要是母线电压)处于比较恶劣(即系统负载过重)的状况,如果切到电池6侧而LLC串联谐振变换器5的驱动电路不进行特别处理(非PI调节),那么对于LLC串联谐振变换器5来说将是非常恶劣的状态(LLC负载过重),有可能导致器件损坏等。其主要启动条件为以下两种:
1、PFC故障,当PFC由于硬件电路断开等原因导致PFC不能正常工作,母线电压较低时,可启动LLC串联谐振变换器;
2、市电当前电压带不起当前负载,此时PFC没有能力再继续维持母线工作时,可启动LLC串联谐振变换器5。
S2:启动LLC串联谐振变换器5;具体可包括:
S21:判断LLC串联谐振变换器5是否处于运行状态,如果是,进入步骤S3;否则,进入步骤S22;
S22:对LLC串联谐振变换器5执行软启动;
当启动LLC串联谐振变换器5后,市电和LLC串联谐振变换器联合为逆变器供电;
S3:在市电和LLC串联谐振变换器联合为逆变器供电过程中,实时检测市电,通过采样市电电压、市电电流、逆变电压、逆变电流和母线电压,再计算市电电压有效值和频率,求取负载功率和母线电压有效值,从而检测出市电是处于正常工作状态还是处于异常工作状态,以此为依据,以判断是否将市电切换到电池单元,如果是,进入步骤S4,否则,进入步骤S5;
市电本振带过载,市电本振工作时,母线电压纹波较大,母线电压瞬时值有可能会很低时,可进行市电切电池。
S4:当开始计时到第一预设T1时间内,以大于谐振频率一预设值的工作频率,在一优选实施例中,可选大于谐振频率15kHz的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零;当达到第一预设时间T1时到第二预设时间T2内,以等于谐振频率的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零,进入步骤S8;市电切电池需要定频调节的条件是母线电压较低,因此凡属于母线电压较低,需要切到电池侧的工况都需要定频调节。
关于市电切到电池侧后的定频调节为:
1、切到电池侧后定频调节的时间,至少需要调节到可以保证LLC串联谐振变换器工作在单调区间内。
2、切到电池后,系统就处在了电池侧,因此市电切电池的这种状态要转换到纯电池侧状态,因此应考虑完全成为电池侧工作的时间:
2.1要保证时间不能太长,否则,LLC串联谐振变换器的输出会不适应负载的切换;
2.2时间也不能太短,否则状态的切换会导致LLC串联谐振变换器的谐振电流和母线电压输出不连续。
S5:判断LLC串联谐振变换器是否过载,如果是,进入步骤S6,否则,进入步骤S7;
S6:以等于谐振频率的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零;进入步骤S8;
S7:对LLC串联谐振变换器进行正常的PI调节;
S8:结束。
本发明是通过几个具体实施例进行说明的,本领域技术人员应当明白,在不脱离本发明范围的情况下,还可以对本发明进行各种变换及等同替代。另外,针对特定情形或具体情况,可以对本发明做各种修改,而不脱离本发明的范围。因此,本发明不局限于所公开的具体实施例,而应当包括落入本发明权利要求范围内的全部实施方式。

Claims (5)

1.一种UPS电源的系统增益控制方法,用于对LLC串联谐振变换器进行单调性调节,其特征在于,包括以下步骤:
S1:检测PFC单元,以判断是否启动LLC串联谐振变换器,如果是,进入步骤S2,否则,进入步骤S8;
S2:启动LLC串联谐振变换器;
S3:检测市电,以判断是否将市电切换到电池单元,如果是,进入步骤S4,否则,进入步骤S5;
S4:在第一预设时间T1内,以大于谐振频率一预设值的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零;在第一预设时间T1和第二预设时间T2之间,以等于谐振频率的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零,进入步骤S8;
S5:判断LLC串联谐振变换器是否过载,如果是,进入步骤S6,否则,进入步骤S7;
S6:以等于谐振频率的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零;进入步骤S8;
S7:对LLC串联谐振变换器进行正常的PI调节;
S8:结束。
2.根据权利要求1所述的UPS电源的系统增益控制方法,其特征在于,在所述步骤S4中,以大于谐振频率15kHz的工作频率,对LLC串联谐振变换器进行定频调节,并将积分量清零。
3.根据权利要求1所述的UPS电源的系统增益控制方法,其特征在于,在所述步骤S5中,所述过载包括高压过载和低压过载。
4.根据权利要求1~3任一所述的UPS电源的系统增益控制方法,其特征在于,所述步骤S2包括以下步骤:
S21:判断LLC串联谐振变换器是否处于运行状态,如果是,进入步骤S3;否则,进入步骤S22;
S22:对LLC串联谐振变换器执行软启动。
5.根据权利要求1~3任一所述的UPS电源的系统增益控制方法,其特征在于,所述第一预设时间T1为10~20毫秒,第二预设时间T2为30~40毫秒。
CN201010162238.6A 2010-04-06 2010-04-06 一种ups电源的系统增益控制方法 Active CN102214944B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201010162238.6A CN102214944B (zh) 2010-04-06 2010-04-06 一种ups电源的系统增益控制方法
US13/080,341 US20110241430A1 (en) 2010-04-06 2011-04-05 Method for controlling system gain of ups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010162238.6A CN102214944B (zh) 2010-04-06 2010-04-06 一种ups电源的系统增益控制方法

Publications (2)

Publication Number Publication Date
CN102214944A CN102214944A (zh) 2011-10-12
CN102214944B true CN102214944B (zh) 2015-09-02

Family

ID=44708770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010162238.6A Active CN102214944B (zh) 2010-04-06 2010-04-06 一种ups电源的系统增益控制方法

Country Status (2)

Country Link
US (1) US20110241430A1 (zh)
CN (1) CN102214944B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236822B (zh) * 2013-04-27 2015-05-27 北京航天控制仪器研究所 一种挠性四轴平台全方位启动闭合方法
US10014714B2 (en) 2014-03-05 2018-07-03 Vartiv S.R.L. System and method for uninterruptible power supply intelligent transfer
CN106787793A (zh) * 2016-12-15 2017-05-31 广东百事泰电子商务股份有限公司 基于pfc与llc谐振的智能全桥修正波电压转换电路
CN108667299B (zh) * 2017-03-31 2020-04-03 沃尔缇夫能源系统公司 一种提高llc谐振变换器可靠性的方法及相关装置
CN111222228B (zh) * 2019-12-27 2024-02-06 科华恒盛股份有限公司 控制llc的工作频率的方法及终端设备
CN111509981B (zh) * 2019-12-30 2021-11-05 中国船舶重工集团公司第七0九研究所 一种llc谐振变换器的频率自适应控制方法及系统
CN112003480B (zh) * 2020-09-01 2022-11-08 亚瑞源科技(深圳)有限公司 一种具有过载控制的转换装置及其过载控制方法
CN114336939B (zh) * 2021-12-30 2023-06-16 盈帜科技(常州)有限公司 一种判断市电过压欠压的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657957A (zh) * 2007-01-22 2010-02-24 电力集成公司 级联的pfc和谐振模功率变换器
CN101685980A (zh) * 2008-09-27 2010-03-31 力博特公司 一种用于ups的基于llc的全桥零电压开关升压谐振变换器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291383A (en) * 1992-09-02 1994-03-01 Exide Electronics Corporation Simplified UPS system
US6069412A (en) * 1993-03-29 2000-05-30 Powerware Corporation Power factor corrected UPS with improved connection of battery to neutral
US5680034A (en) * 1995-09-22 1997-10-21 Toko, Inc. PWM controller for resonant converters
US6122181A (en) * 1998-05-21 2000-09-19 Exide Electronics Corporation Systems and methods for producing standby uninterruptible power for AC loads using rectified AC and battery
JP2000197347A (ja) * 1998-12-25 2000-07-14 Hitachi Ltd 電源装置
DE19942794A1 (de) * 1999-09-08 2001-03-15 Philips Corp Intellectual Pty Konverter mit Hochsetzstelleranordnung
NZ511145A (en) * 2001-04-12 2003-11-28 Invensys Energy Systems Nz Ltd Overcurrent protection by current sensing of switched mode power supply
DE10126925A1 (de) * 2001-06-01 2002-12-05 Philips Corp Intellectual Pty Schaltungsanordnung mit einer Regelschaltung
EP2050185B1 (en) * 2006-08-10 2020-12-23 Eaton Intelligent Power Limited A cyclo-converter and methods of operation
US7796406B2 (en) * 2007-07-31 2010-09-14 Lumenis Ltd. Apparatus and method for high efficiency isolated power converter
KR101471133B1 (ko) * 2008-01-31 2014-12-09 페어차일드코리아반도체 주식회사 공진형 컨버터
KR101832246B1 (ko) * 2008-03-25 2018-02-26 델타 일렉트로닉스, 인크. 부하 조건의 영역에 있어서 효율적으로 작동하는 전력 변환기 시스템
US7742318B2 (en) * 2008-06-10 2010-06-22 Virginia Tech Intellectual Properties, Inc. Multi-element resonant converters
WO2010010418A1 (en) * 2008-07-25 2010-01-28 Osram Gesellschaft mit beschränkter Haftung A resonant converter with improved overload protection and corresponding method
US8279628B2 (en) * 2008-07-25 2012-10-02 Cirrus Logic, Inc. Audible noise suppression in a resonant switching power converter
KR100975925B1 (ko) * 2008-07-25 2010-08-13 삼성전기주식회사 어댑터 전원장치
KR101478352B1 (ko) * 2008-11-28 2015-01-06 페어차일드코리아반도체 주식회사 비정상 스위칭 감시 장치 및 감시 방법
US8803485B2 (en) * 2009-03-25 2014-08-12 Alieva, Inc. High efficiency adaptive power conversion system and method of operation thereof
US9166488B2 (en) * 2009-10-30 2015-10-20 Delta Electronics Inc. Method and apparatus for resetting a resonant converter
US20110211370A1 (en) * 2010-03-01 2011-09-01 Texas Instruments Incorporated Systems and Methods of Resonant DC/DC Conversion
CN102214997B (zh) * 2010-04-07 2013-11-06 光宝电子(广州)有限公司 谐振变换装置与谐振变换器的控制模块及其方法
EP2381570B1 (en) * 2010-04-20 2013-01-02 DET International Holding Limited Resonant capacitor clamping circuit in resonant converter
US8363427B2 (en) * 2010-06-25 2013-01-29 Greecon Technologies Ltd. Bi-directional power converter with regulated output and soft switching
US8698354B2 (en) * 2010-11-05 2014-04-15 Schneider Electric It Corporation System and method for bidirectional DC-AC power conversion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101657957A (zh) * 2007-01-22 2010-02-24 电力集成公司 级联的pfc和谐振模功率变换器
CN101685980A (zh) * 2008-09-27 2010-03-31 力博特公司 一种用于ups的基于llc的全桥零电压开关升压谐振变换器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
会论文集》.2007, *
方志行等.高效率LLC谐振直流转换器.《中国电工技术学会电&#63882 *
电子学会第十届学术&#63886 *

Also Published As

Publication number Publication date
CN102214944A (zh) 2011-10-12
US20110241430A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
CN102214944B (zh) 一种ups电源的系统增益控制方法
CN103715906B (zh) 谐振转换器混合控制方法、谐振转换器系统及混合控制器
CN102916437A (zh) 一种并网变流器软并网方法
CN103701191A (zh) 一种ups及其供电方法
CN102361345B (zh) 一种燃料电池不间断电源无缝切换控制方法
CN101860070B (zh) 机车空调高频软开关不间断电源及其实现方法
CN102255356A (zh) 高效率的不间断电源
Yan et al. An efficient isolated bi-directional half bridge resonant DC/DC converter
CN107681649B (zh) 一种控制直流微电网母线电压稳定的方法
CN115473435A (zh) 光伏空调系统及其控制方法、光伏空调
CN201682316U (zh) 机车空调高频软开关不间断电源
CN104484004A (zh) 一种在线式ups的控制装置及在线式ups
CN202612060U (zh) 一种空气压缩机
CN105529933A (zh) Dsp控制器和具有其的三电平全桥llc变换器及控制方法
CN213425855U (zh) 电力节能保护器
CN202602542U (zh) 宽范围稳压稳频电源
CN111384848A (zh) 电源变换器启动控制方法、装置和电源变换器启动系统
CN202190217U (zh) 一种核电站用行车大车行走变频器制动单元管理电路
CN114156954B (zh) 适用于并联背靠背运行方式的换流站调试控制装置及方法
CN105337325A (zh) 一种ups电路
Yu et al. Linear Extended State Observer Based Current Sensorless Control for DAB Converters to Improve Bus Voltage Transient Response
CN111277000B (zh) 一种柔性励磁系统动态顶值电压控制方法
CN103812211A (zh) 一种基于随网变参的智能电网无缝快切系统及方法
CN211791255U (zh) 电源变换器启动控制装置及电源变换器启动系统
CN216216589U (zh) 用于钛镁铝金属表面改性处理的微弧氧化电源装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Columbo Road, Ohio, Dearborn 1050

Patentee after: Vitamin Corporation

Address before: Columbo Road, Ohio, Dearborn 1050

Patentee before: Libot Inc.