CN102205940A - Bicrystal electrothermal actuator for MEMS (Micro-electromechanical System) - Google Patents

Bicrystal electrothermal actuator for MEMS (Micro-electromechanical System) Download PDF

Info

Publication number
CN102205940A
CN102205940A CN2011101032862A CN201110103286A CN102205940A CN 102205940 A CN102205940 A CN 102205940A CN 2011101032862 A CN2011101032862 A CN 2011101032862A CN 201110103286 A CN201110103286 A CN 201110103286A CN 102205940 A CN102205940 A CN 102205940A
Authority
CN
China
Prior art keywords
layer
electrothermal
silicon
actuator
bimetallic actuator
Prior art date
Application number
CN2011101032862A
Other languages
Chinese (zh)
Inventor
吕永佳
娄文忠
宋荣昌
赵越
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to CN2011101032862A priority Critical patent/CN102205940A/en
Publication of CN102205940A publication Critical patent/CN102205940A/en

Links

Abstract

The invention relates to a bimetallic electrothermal actuator which works when being energized. Particularly the main body of the electrothermal actuator comprises three layers of materials, namely the upper and the lower layers of materials with large thermal expansion coefficient difference and an electrothermal layer material sandwiched between the materials with large thermal expansion coefficient; for being matched with the MEMS (Micro-electromechanical System) processing process and increasing the structure efficiency, the electrothermal actuator completely consists of eight layers of materials. The processing process used in the invention comprises the steps of depositing, etching, vapor deposition/sputtering, doping and cutting. According to the working principle of the electrothermal actuator, after the electrothermal actuator is energized, the electrothermal layer generates joule heat so that the bimetallic electrothermal actuator generates offchip buckling deformation under the action of the thermal expansion coefficient difference of the upper and the lower layers of materials to finally realizethe purpose of actuating. The electrothermal actuator with the advantages of low power consumption and fast response can be used repeatedly in a severe environment.

Description

MEMS电热双晶体致动器 MEMS electrothermal actuators bicrystal

技术领域: FIELD:

[0001] 本发明涉及的是一种在通电状态下工作的双金属电热致动器,具体的说是一种采用微机电系统(MEMS)加工工艺加工的,由两层膨胀系数不同的材料组成的悬臂梁式结构, 在通电时,电加热层产生焦耳热,从而使双金属致动器产生片外的翘曲变形,是一种可反复利用的、低功耗的、快速响应的致动器。 [0001] The present invention relates to one of the working bimetallic heating in an energized state of the actuator, specifically a micro-electromechanical systems (MEMS) process for processing, the expansion coefficients of two different materials the cantilever structure, when energized, the electric heating layer to generate Joule heat, so that the bimetallic actuator warpage deformation of the outer sheet, the use of a reusable, low power consumption, fast response to actuation of device.

背景技术: Background technique:

[0002] 随着社会的不断发展和和技术的不断更新,人们对于产品的要求不断提高,这使得产品功能超群的同时降低其成本成为人们必须面对的相互矛盾的一个要求。 [0002] With the continuous updating and continuous development of society and technology, people constantly improve the product requirements, which makes the product superior functionality while reducing its cost to become a mutually contradictory requirements that people must face. 解决这一难题的方法之一就是采用微机电系统(MEMS,Micro Electromechanical System)。 One solution to this problem is the use of micro-electromechanical systems (MEMS, Micro Electromechanical System). 它使得系统和产品向着小型化、智能化和集成化的方向发展,可以预见:MEMS会给人类社会带来另一次技术革命,它将对21世纪的科学技术、生产方式和人类生产质量产生深远影响,是关系到国家科技发展、国防安全和经济繁荣的一项关键技术。 It makes systems and products towards miniaturization, intelligent and integrated direction, it can be predicted: MEMS human society will bring another technological revolution that could have far-reaching for science and technology, production methods and quality of human production in the 21st century impact is related to the national science and technology development, national security and economic prosperity of a key technology.

[0003] 微致动器作为MEMS器件的一个重要分支,近几年得到了广泛的重视和不断的发展。 [0003] an important branch microactuator as MEMS devices, in recent years, attention has been widely and constant development. 各种不同致动原理的微器件层出不穷,在众多致动原理中,电磁与压电元件具有较高的能量密度与适于高频,步进控制,但控制系统较复杂且能量消耗大,且制造成本大,元件稳定性差;静电驱动较简单致动距离受到限制;超音速致动的问题则主要在结构共振带来的破坏;由于元件尺寸缩小,尺寸效应使得热膨胀所造成的机械应变变得甚为可观且作用力大;由此开发了一种利用焦耳热产生翘曲变形的电热致动器,它具有变形大、低功耗、反应快等特点。 Various principles of the micro-device actuation endless, many actuation principle, the piezoelectric element having a high magnetic energy density and suitable for high frequency, step control, but the control system is complicated and the energy consumption, and manufacturing costs, poor stability element; simple electrostatic driving actuator distance is limited; supersonic actuated problems are mainly in the damage caused by structural resonances; as downsizing element, such that the size effect of the mechanical strain caused by the thermal expansion becomes large and very substantial force; whereby the Joule heat developed a warpage electrothermal actuator, which has a large deformation, low power consumption, fast response characteristics.

发明内容: SUMMARY:

[0004] 本发明的目的是提供一种基于微机电系统(MEMQ体加工与表面加工工艺、在通电状态下工作的变形大、功耗小、反应快的双金属电热致动器。 [0004] The object of the present invention is to provide a microelectromechanical system (MEMQ body was processed with the surface processing based on the deformation work in large power state, low power consumption, fast response electrothermal bimetallic actuator.

[0005] 本发明的目的是这样实现的:电热致动器由主体三层材料构成,上下两层热膨胀系数差异较大的材料和一种夹在热膨胀系数较大材料中间的电加热层材料。 [0005] The object of the present invention is implemented as follows: an electric actuator body is constituted by three layers of material, two layers of large differences in thermal expansion coefficient material and a sandwich material of large thermal expansion coefficient electric heating layer material. 结合MEMS工艺,并且进一步提高效率,故致动器自下而上依次淀积-淀积-蒸镀/溅射-淀积-淀积并掺杂-淀积-蒸镀/溅射的钝化层-热膨胀系数较小的无掺杂的多晶硅-热膨胀系数较大的金属铝层-氮化硅绝缘层-掺杂使其电阻变小的多晶硅层-氮化硅绝缘层-热膨胀系数较大的金属铝层。 Binding MEMS process, and further improve the efficiency, it is deposited in this order from the actuator - deposition - deposition / sputter - deposition - deposited and doped - depositing - passivation deposition / sputtering layer - a small thermal expansion coefficient of undoped polysilicon - the thermal expansion coefficient of the metal aluminum layer - insulating layer of silicon nitride - its resistance becomes smaller doped polysilicon layer - insulating layer of silicon nitride - a large coefficient of thermal expansion metal aluminum layer. 其特征是:一种在通电情况下电加热层产生焦耳热,焦耳热使上下两层热膨胀系数不同的材料组成的整体结构产生翘曲变形的电热致动器。 Wherein: A case of power an electrical heating layer to generate Joule heat, Joule heat so that different thermal expansion coefficients of two layers of material to produce an overall configuration warpage electric actuator. 在硅片上表面氧化钝化层,然后在钝化层上淀积多晶硅,蒸镀/溅射金属铝,淀积氮化硅绝缘层,淀积多晶硅层并掺杂,将掺杂后的多晶硅片进行光刻形成所需形状,再在这层多晶硅层上淀积绝缘层氮化硅,连同基底将以上六层切割成所需图形,再一次蒸镀/溅射另一半金属铝层并光刻出这层的形状。 Polysilicon on a silicon wafer surface after passivation oxide layer, and polysilicon is deposited, the deposition / sputtering aluminum on the passivation layer, a silicon nitride insulating layer is deposited and doped polysilicon layer, doped sheet photolithography to form the desired shape, and then a silicon nitride layer is deposited on this insulating layer a polysilicon layer, along with the six above substrates cut into a desired pattern, again the deposition / sputtering the metal aluminum layer and the other half of the light this layer is carved shape. 完成以上所有步骤后将底层基片硅层进行负光刻胶光刻,去除部分致动器底部的硅基片层,形成所需形状。 Silicon layer underlying substrate after the completion of all the steps above negative photoresist photolithography, removing portions of the silicon substrate layer at the bottom of the actuator actuator, the desired shape. 本发明还可以包括这样一些结构特征:[0006] 1、所述的电热致动器的基底材料是硅基半导体材料<100>或硅基半导体材料<110> ; The present invention may also include such structural features: [0006] 1, the base material of the electric actuator is a silicon semiconductor material of <100> silicon-based semiconductor material or the <110>;

[0007] 2、所述的电热致动器中热膨胀系数较大的材料可以是铝也可以是铜或金等MEMS 常用金属材料; [0007] 2, the material of the larger electrothermal actuator may be a coefficient of thermal expansion of aluminum may be used such as copper or gold MEMS metal material;

[0008] 3、所述的电热致动器中热膨胀系数较小的材料可以是多晶硅也可以是硅或二氧化硅; [0008] 3, the electric actuator is small coefficient of thermal expansion may be polysilicon material may be silicon or silicon dioxide;

[0009] 微机电系统(MEMQ加工工艺使用光刻、刻蚀和化学气相沉积等技术在批量制造微系统的微结构上有明显优势。本发明通过对电热致动器材料选择,结构制造工艺的设计, 可以通过施加外界电压使电热致动器快速响应产生一定的翘曲变形,达到致动目的。此结构整体厚度小于200um表面尺寸小于IX 1mm2。同时通过MEMS工艺加工制作的电热致动器可以在同一硅基底上集成,以达到系统集成的目的。此种致动器的主要优点可以归结为: [0009] Microelectromechanical systems (MEMQ photolithography processing, etching and chemical vapor deposition technique has obvious advantages in mass production on the microstructures of the system. The present invention electrothermal actuator material selection, a manufacturing process of the structure design can be made by applying external voltage electric actuator in response to a certain fast warping, to achieve the purpose of actuation. this structure is smaller than the overall thickness of the surface size of less than 200um IX 1mm2. MEMS process by simultaneously manufacture electrothermal actuator may be integrated on the same silicon substrate, in order to achieve the main advantages of the system integration objects such actuators can be summarized as:

[0010] 1.电热致动器功耗很小 [0010] 1. The electric power consumption is small actuator

[0011] 2.电热致动器响应快 [0011] 2. The electric actuator in response to fast

[0012] 3.实现片外位移 [0012] 3. The displacement of the outer sheet to achieve

[0013] 4.变形较大,致动力较大 [0013] 4. The large deformation, large actuation force

[0014] 5.结构简单,可多次重复使用 Simple [0014] 5. The structure can be used repeatedly

[0015] 6.可以用于光路信号遮断等其他场合 [0015] 6. The optical signals may be used for other occasions blocking

[0016] 7.避免信号电压干扰 [0016] 7. The voltage signal to avoid interference

[0017] 8.能够在外界环境温度很低的状态下工作 [0017] 8. capable of operating at very low ambient temperature state

[0018] 电热致动器的输出位移可随材料选择的不同,整体尺寸的变化而变化,所以可以在MEMS系统整体设时针对需要灵活调整。 Different [0018] The electric actuator output displacement with the material selected may be, changes the overall size varies, it is possible to be flexibly adjusted for when the MEMS overall system design.

附图说明: BRIEF DESCRIPTION OF:

[0019] 图1、双金属电热致动器结构三维图; [0019] FIG 1, electrothermal bimetal actuator structure three-dimensional view;

[0020] 图2、电加热层结构三维图; [0020] FIG. 2, three-dimensional structure of the electrical heating layer;

具体实施方案: Specific embodiments:

[0021] 下面结合附图举例对本发明做更详细的描述:结合图1、2,本发明中的电热致动器实施方案的组成包括硅基底(1)、二氧化硅钝化层O)、无掺杂多晶硅(3)、金属铝、电加热层的下表面的绝缘钝化层氮化硅(5)、电加热层即掺杂后的多晶硅(6)、电加热层上表面的绝缘钝化层氮化硅(7)、金属铝(8)。 [0021] By way of example in conjunction with the accompanying drawings of the present invention is described in more detail: in conjunction with FIGS. 1 and 2, in the present invention embodiment consisting of an electric actuator embodiment includes a silicon substrate (1), silicon dioxide passivation layer O), undoped polycrystalline silicon (3), an insulating blunt metal aluminum, an insulating silicon nitride passivation layer (5) of the lower surface of the electric heating layer, polysilicon layer, i.e., the doped electrically heated (6), the surface of the electric heating layer a silicon nitride layer (7), aluminum (8). 首先在双面抛光的硅片<100>上生长二氧化硅钝化层(¾,目的是阻止后续步骤中的腐蚀,其中氧化炉温度1150°C,水浴温度95〜97°C,氧气流量lL/min ;下一步在钝化层上淀积一层多晶硅,作为热膨胀系数较小的那一层;然后就要开始热膨胀系数较大一层的加工,在其中间还有用绝缘层包裹电加热层。在多晶硅上蒸镀/溅射金属铝层;然后在金属铝层上淀积电加热层下表面的氮化硅绝缘层;之后再次淀积多晶硅,并对其掺杂,使其达到所需电阻值,并利用对多晶硅电加热层涂胶、光刻、反应离子深刻蚀的方法形成电加热层形状。光刻工艺流程:涂胶> 前烘> 曝光> 显影> 坚膜> 腐蚀> 去胶,由于掩膜与形成的图形一致所以选择正光刻胶光刻。在未显影的光刻胶的保护下利用反应离子深刻蚀的方式形成所需的电加热层形状;最后再次淀积电加热层上表面的氮化 First, the double-sided polished silicon wafer grown <100> silicon dioxide passivation layer (¾, is designed to discourage the subsequent etching steps, wherein the oxidizing furnace temperature of 1150 ° C, the water bath temperature 95~97 ° C, oxygen flow lL / min; Next the passivation layer deposited on the layer of polysilicon, a small thermal expansion coefficient as the layer; then begin large thermal expansion coefficient processing layer, in which there is wrapped with an insulating layer between the heating layer of electrically in the polysilicon deposition / aluminum layer sputtered metal; and depositing a silicon nitride layer on the surface of the lower insulating layer on an electrically heated metal aluminum layer; again after the polysilicon is deposited, and its doping, to reach the desired the resistance value, and the shape of the electric heating layer is formed using the polysilicon layer electric heating coating, photolithography, deep reactive ion etching process in photolithography: gumming> prebaked> exposure> development> hardened> corrosion> ashing Since the mask pattern is formed with uniform positive resist photolithography so selected to form the desired shape of the electric heating layer using deep reactive ion etching in a manner protected undeveloped photoresist; finally depositing electrically heated again upper surface of the nitride layer 绝缘层;将以上(1) (2) (3) (4) (5) (6) (7)层进行切割,目的是形成如图所示的矩形条状;最后蒸镀/溅射另外一半金属铝层,再通过光刻、涂胶、反应离子深刻蚀的手段将其形成如图的形状。留出一个位置进行标准的开孔工艺,目的是施加电压。最后将底层基片硅层(1)进行负光刻胶光刻,去除部分致动器底部的硅基片层。这样就形成最终的双金属电热致动器。 Insulating layer; the above (1) (2) (3) (4) (5) (6) (7) layer is cut, formed object is a rectangular strip as shown in FIG; final evaporation / sputtering the other half metal aluminum layer, and then by photolithography, gluing, deep reactive ion etching means to form a shape shown in FIG. opening position leaving a standard process, object of the applied voltage. Finally, the silicon layer underlying substrate ( 1) of negative photoresist lithography, removing a portion of the bottom of the silicon sheet actuator actuator. Thus the final electrothermal bimetallic actuator.

[0022] 电热致动器的工作过程如下:在平时状态下,即不上电的状态下,电热致动器不产生变形,即使有干扰信号电压也因为有绝缘层氮化硅的保护使其避免产生不正常工作状态,并且也避免了电压直接加载到热膨胀系数较大的金属层上产生大量热使其熔化。 [0022] The electric actuator during operation is as follows: In the normal state, i.e. the state without power, electric actuator is not deformed even when the interfering signal voltage as a protective insulating layer of silicon nitride so to avoid abnormal operation state, and also to avoid the voltage is applied directly to the thermal expansion coefficient of the metal layer to melt a large amount of heat. 在工作状态时,对其施加电压,电加热层多晶硅处于通电状态,产生焦耳热,由于上下两层材料的热膨胀系数之差使整个结构因为焦耳热迅速响应产生翘曲变形,完成致动。 In operation state, a voltage is applied thereto, the electric heating layer of polycrystalline silicon in an energized state, Joule heat is generated due to the thermal expansion coefficient errand upper and lower layers of the entire structure since the material quickly in response to the Joule heat generated warpage, complete actuation.

Claims (9)

1. 一种在通电状态下工作的双金属电热致动器,包括起主要作用的三层材料,热膨胀系数较大的金属铝层,热膨胀系数较小的无掺杂多晶硅层,电阻较小的掺杂的多晶硅电加热层,为了提高效率,配合MEMS加工工艺,又多出二氧化硅钝化层,和两层包裹电加热层的氮化硅绝缘层。 1. A two-three layers of material in a metal heating work energized state actuator, comprising play a major role, the thermal expansion coefficient of the metal aluminum layer, a small thermal expansion coefficient undoped polysilicon layer, a lower resistance electrically heating the doped polysilicon layer, in order to improve efficiency, with the MEMS processing technology, the addition of the silicon dioxide passivation layer, and a silicon nitride insulating layer electrically heated two-layer wrap. 其装配特征是:在硅片上表面氧化钝化层;然后在钝化层上淀积无掺杂多晶硅层、蒸镀/溅射一半的金属铝层、淀积氮化硅绝缘层、淀积掺杂的多晶硅电加热层(并光刻出相应形状)、淀积氮化硅绝缘层(对电加热层形成包裹);对以上几层包括硅基片进行切割,形成所需形状;然后再蒸镀/溅射另一半金属铝层,光刻出相应形状;在留出的氮化硅层空位上进行标准开孔工艺;最后将硅基片刻蚀出相应形状。 Which assembly is characterized in: a passivation oxide layer on the surface of a silicon wafer; non-doped polysilicon layer is then deposited, the deposition / sputtering half metal aluminum layer on the passivation layer, a silicon nitride insulating layer is deposited electrically heating the doped polysilicon layer (and the corresponding shape of photolithography), a silicon nitride insulating layer (electric heating layer is formed on the package); the above layers comprising a silicon substrate is cut to form the desired shape; then evaporation / sputtering the metal aluminum layer and the other half, the corresponding shape of photolithography; standard opening process on the silicon nitride layer leaving a gap; and finally etching the silicon moment corresponding shape.
2.根据权利要求1所述的双金属电热致动器,其特征是:所用基板材料是硅基半导体材料<100>或硅基半导体材料<110>。 According to claim 1, said electrothermal bimetallic actuator, characterized in that: the substrate material is a silicon semiconductor material is <100> silicon semiconductor material, or <110>.
3.根据权利要求1所述的双金属电热致动器,其特征是:电加热层通过光刻形成特定的U型,提高加热效率,电加热层由两层氮化硅绝缘层包裹,与金属铝层绝缘,且直接加工在铝层中间。 The glow bimetallic actuator of claim 1, characterized in the claims: electrical heating layer is formed by photolithography particular U-shaped, heating efficiency is improved, electric heating layer consists of two layers of silicon nitride insulating layer is wrapped, and an insulating layer of aluminum metal, and directly processed in the intermediate layer of aluminum.
4.根据权利要求1所述的双金属电热致动器,其特征是:利用反应离子深刻蚀的加工方法,从硅基下表面刻蚀出相应形状,用来保证双金属电热致动器有足够的位移空间。 According to claim 1, said electrothermal bimetallic actuator, characterized in that: using deep reactive ion etching processing method, the silicon surface is etched from a corresponding shape, to ensure that the bimetallic actuator has an electric sufficient displacement space.
5.根据权利要求1所述的双金属电热致动器,其特征是:通过光刻最后一层金属铝层后,在绝缘层氮化硅层上留有空位,将进行标准开孔工艺,作为电源输入端。 The glow bimetallic actuator of claim 1, characterized in the claims: by the last layer of the metal aluminum layer photolithography, leaving vacancies in the silicon nitride layer on the insulating layer, the standard opening process, as the power supply input.
6.根据权利要求1所述的双金属电热致动器,其特征是:充当热膨胀系数较大的金属铝层还可以由铜、金等当前主流MEMS金属材料代替。 1 6. The electrothermal bimetallic actuator, which is characterized in accordance with claim: act as a thermal expansion coefficient of the metal aluminum layer may also be replaced by the current mainstream MEMS metallic material such as copper, gold and the like.
7.根据权利要求1所述的双金属电热致动器,其特征是:充当热膨胀系数较小的无掺杂多晶硅层可以由硅,二氧化硅等当前主流MEMS材料代替。 The glow bimetallic actuator of claim 1, characterized in the claims: acts as a low coefficient of thermal expansion of the undoped polysilicon layer may be replaced by the current mainstream silicon MEMS materials, such as silica.
8.根据权利要求1所述的双金属电热致动器,其特征是:此双金属电热致动器尺寸可以在MEMS系统整体设计时针对需要灵活调整。 According to claim 1, electrothermal bimetallic actuator, characterized in that: This bimetallic actuator heating can be flexibly adjusted for the size of the overall system design MEMS.
9.根据权利要求1所述的双金属电热致动器,其特征是:此双金属电热致动器尺寸可以在MEMS系统整体设时针对需要灵活调整。 According to claim 1, said electrothermal bimetallic actuator, characterized in that: This bimetallic actuator heating can be flexibly adjusted for size when MEMS overall system design.
CN2011101032862A 2011-04-25 2011-04-25 Bicrystal electrothermal actuator for MEMS (Micro-electromechanical System) CN102205940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101032862A CN102205940A (en) 2011-04-25 2011-04-25 Bicrystal electrothermal actuator for MEMS (Micro-electromechanical System)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101032862A CN102205940A (en) 2011-04-25 2011-04-25 Bicrystal electrothermal actuator for MEMS (Micro-electromechanical System)

Publications (1)

Publication Number Publication Date
CN102205940A true CN102205940A (en) 2011-10-05

Family

ID=44695046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101032862A CN102205940A (en) 2011-04-25 2011-04-25 Bicrystal electrothermal actuator for MEMS (Micro-electromechanical System)

Country Status (1)

Country Link
CN (1) CN102205940A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045497A (en) * 2013-03-15 2014-09-17 娄文忠 Micro-actuator processing method integrating MEMS and pyrotechnic agent instillation process
CN105271099A (en) * 2015-09-18 2016-01-27 北京理工大学 MEMS (Micro Electro Mechanical Systems) electro-thermal actuator and manufacturing process thereof
CN105823370A (en) * 2016-04-02 2016-08-03 浙江大学 Thermally-driven MEMS passive vibration strengthened heat transfer device and heat transfer method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104784A1 (en) * 2002-06-07 2003-12-18 Cantion A/S A cantilever sensor with a current shield and a method for its production
CN1502545A (en) * 2002-11-20 2004-06-09 国际商业机器公司 MEMS encapsulated structure and method of making same
CN1675124A (en) * 2002-06-17 2005-09-28 霍尼韦尔国际公司 Microelectromechanical device with integrated conductive shield
CN101027741A (en) * 2004-09-01 2007-08-29 爱德万测试株式会社 Bimorph element, bimorph switch, mirror element, and method for manufacturing these
CN101512702A (en) * 2006-09-11 2009-08-19 卢森特技术有限公司 Micro-acutuator and locking switch
CN101602479A (en) * 2008-06-11 2009-12-16 芯巧科技股份有限公司;梁伟成 Capacitive sensing device and manufacture method thereof
WO2010034552A2 (en) * 2008-09-25 2010-04-01 Robert Bosch Gmbh Micromechanical component and method for the production thereof
CN101738355A (en) * 2009-12-08 2010-06-16 西安交通大学 Micro electro mechanical system (MEMS) technology-based viscosity transducer chip and preparation method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104784A1 (en) * 2002-06-07 2003-12-18 Cantion A/S A cantilever sensor with a current shield and a method for its production
CN1675124A (en) * 2002-06-17 2005-09-28 霍尼韦尔国际公司 Microelectromechanical device with integrated conductive shield
CN1502545A (en) * 2002-11-20 2004-06-09 国际商业机器公司 MEMS encapsulated structure and method of making same
CN101027741A (en) * 2004-09-01 2007-08-29 爱德万测试株式会社 Bimorph element, bimorph switch, mirror element, and method for manufacturing these
CN101512702A (en) * 2006-09-11 2009-08-19 卢森特技术有限公司 Micro-acutuator and locking switch
CN101602479A (en) * 2008-06-11 2009-12-16 芯巧科技股份有限公司;梁伟成 Capacitive sensing device and manufacture method thereof
WO2010034552A2 (en) * 2008-09-25 2010-04-01 Robert Bosch Gmbh Micromechanical component and method for the production thereof
CN101738355A (en) * 2009-12-08 2010-06-16 西安交通大学 Micro electro mechanical system (MEMS) technology-based viscosity transducer chip and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104045497A (en) * 2013-03-15 2014-09-17 娄文忠 Micro-actuator processing method integrating MEMS and pyrotechnic agent instillation process
CN105271099A (en) * 2015-09-18 2016-01-27 北京理工大学 MEMS (Micro Electro Mechanical Systems) electro-thermal actuator and manufacturing process thereof
CN105271099B (en) * 2015-09-18 2017-06-16 北京理工大学 A kind of MEMS electric heating actuator and its manufacturing process
CN105823370A (en) * 2016-04-02 2016-08-03 浙江大学 Thermally-driven MEMS passive vibration strengthened heat transfer device and heat transfer method

Similar Documents

Publication Publication Date Title
CA2320458C (en) Mems variable optical attenuator
US6020215A (en) Process for manufacturing microstructure
KR100659439B1 (en) Optical tunable filter and method for manufacturing the same
EP1417151B9 (en) Method for the fabrication of suspended porous silicon microstructures and application in gas sensors
JP2005107482A (en) Minute electromechanical system structure and its manufacturing method
US6496351B2 (en) MEMS device members having portions that contact a substrate and associated methods of operating
US7616369B2 (en) Film stack for manufacturing micro-electromechanical systems (MEMS) devices
CN1155122C (en) Thermopile detector and method for fabricating the same
US6130464A (en) Latching microaccelerometer
JP2005316495A (en) Flexible wire grid polarizer and fabricating method thereof
US7629691B2 (en) Conductor geometry for electronic circuits fabricated on flexible substrates
US7301703B2 (en) Tunable filter and method of manufacturing the same, and sensing device
Chang et al. Etching submicrometer trenches by using the Bosch process and its application to the fabrication of antireflection structures
WO1992010729A1 (en) Microdevice for sensing or applying a force and method of making the same
Czaplewski et al. A nanomechanical switch for integration with CMOS logic
US9000494B2 (en) Micromechanical device and methods to fabricate same using hard mask resistant to structure release etch
WO2005077012A3 (en) Cmut devices and fabrication methods
US6103305A (en) Method of forming a stress relieved amorphous tetrahedrally-coordinated carbon film
TW200827768A (en) Interferometric optical display system with broadband characteristics
US8338205B2 (en) Method of fabricating and encapsulating MEMS devices
US7106514B2 (en) Optical tunable filter and method for manufacturing the optical tunable filter
US20050231806A1 (en) Method for making large scale multilayer dielectric diffraction gratings on thick substrates using reactive ion etching
CN1370284A (en) Microelectromechanical optical switch and method of manufacture thereof
KR20010067141A (en) Microelectromechanical valve having single crystalline components and associated fabrication method
JP2004120764A (en) Manufacturing method of mems transducer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)