CN102202245B - Method, device and system for processing signals - Google Patents

Method, device and system for processing signals Download PDF

Info

Publication number
CN102202245B
CN102202245B CN 201010135821 CN201010135821A CN102202245B CN 102202245 B CN102202245 B CN 102202245B CN 201010135821 CN201010135821 CN 201010135821 CN 201010135821 A CN201010135821 A CN 201010135821A CN 102202245 B CN102202245 B CN 102202245B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
signal
level
laser
flip
original
Prior art date
Application number
CN 201010135821
Other languages
Chinese (zh)
Other versions
CN102202245A (en )
Inventor
李泽彬
弗兰克·J·埃芬博格
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明实施例涉及一种信号处理方法、装置及系统,其中方法包括:将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度;利用所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成并发送双二进制光信号。 Embodiment of the invention relates to a signal processing method, apparatus and system, wherein the method comprises: the original level of the first signal and the second signal level precoded signal level halved the rate of formation of the first level the phase of the clock signal to the second clock phase level signal is 180 degrees; level using the first signal and the second signal level simultaneously drive the laser so that the laser light generating and transmitting duobinary signal. 采用本发明实施例可以使得激光器输出双二进制光信号,从而使其携带的信息速率提高了一倍,因此实现了在现有激光器器件的基础上提高了PON网络中的数据传输速率。 The present invention embodiments may enable the laser output optical duobinary signal, so that it carries the information rate is doubled, thus achieving improved data transfer rate of the PON network on the basis of the conventional laser device.

Description

信号处理方法、装置及系统 The signal processing method, apparatus and system for

技术领域 FIELD

[0001] 本发明实施例涉及通信技术领域,尤其涉及一种信号处理方法、装置及系统。 Embodiment [0001] The present invention relates to communication technologies, and particularly to a signal processing method, apparatus and system.

背景技术 Background technique

[0002] 无源光网络(Passive Optical Network,简称:PON)技术是一种点对多点的光纤传输和接入技术,由局侧的光线路终端(Optical Line Terminal,简称:0LT)、用户侧的光网络单兀(Optical Network Unit,简称:0NU)或者光网络终端(Optical NetworkTerminal,简称:0ΝΤ)以及光分配网络(OpticalDistribution Network,简称:0DN)组成。 [0002] PON (Passive Optical Network, abbreviated: PON) technology is a multipoint optical access technology and transmission by the optical line terminal OLT (Optical Line Terminal, abbreviation: 0LT), the user Wu single optical network side (optical network Unit, abbreviated: 0NU) or an optical network termination (optical NetworkTerminal, abbreviation: 0ΝΤ) and an optical distribution network (OpticalDistribution network, abbreviated: 0DN) composition. 由于PON系统的ODN由光分路器(Splitter)等无源器件组成,不含有任何有源电子器件及电子电源,因此管理维护的成本较低。 Since the ODN PON system by the optical splitter (Splitter) passive components such composition does not contain any active electronic devices and electronic power, and therefore a lower cost of management and maintenance.

[0003] 在PON系统中,OLT到ONU的数据传输方向为下行方向,采用时分复用(TimeDivision Multiplex,简称:TDM)方式,即OLT连续地将下行数据以广播的方式发送给用户侧的0NU,每个ONU选择属于自己的数据接收;0NU到OLT的数据传输为上行方向,采用时分多址接入(Time DivisionMultiple Access,简称:TDMA)方式,即多个ONU通过时分复用的方式共享上行链路将上行数据发送给0LT,每个上行时隙间有避免冲突的保护时间间隔。 [0003] In the PON system, the OLT ONU data transmission direction is the downlink direction, time division multiplexing (TimeDivision Multiplex, abbreviation: TDM) manner, i.e., the OLT continuously transmit downlink data by broadcasting to the user side 0NU , each ONU receives data select their own; 0NU data transmission for the uplink OLT using time division multiple access (Time DivisionMultiple access, abbreviation: TDMA) mode, i.e., shared by a plurality of ONU upstream time division multiplexing manner link uplink data to 0LT, each of the interstitial row guard time interval to avoid conflicts.

[0004] 随着用户对数据的需求量越来越大,需要对PON进行升级以提升数据传输速率,例如:将千兆PON (Gigabit-Capable Ρ0Ν,简称:GP0N)升级到下一代PON (Next GenerationPON,简称:NGP0N),在NGPON中,如果需要进一步提高数据速率,需要采用更高速的激光器器件来替换已有的2.5G激光器器件。 [0004] As users demand more and more data, PON needs to be upgraded to improve the data transfer rate, for example: a Gigabit PON (Gigabit-Capable Ρ0Ν, abbreviation: GP0N) upgrade to the next generation PON (the Next GenerationPON, abbreviation: NGP0N), in NGPON, if necessary to further increase the data rate, a higher speed is required to replace the conventional laser device 2.5G laser device. 但是随着PON网络的升级硬件成本也随着大幅增加,不利于PON网络的迅速发展。 But with the cost of PON network upgrade hardware along with a substantial increase, it is not conducive to the rapid development of PON network.

发明内容 SUMMARY

[0005] 本发明实施例的目的在于提供一种信号处理方法、装置及系统,实现在现有器件的基础上提高PON网络中的数据传输速率。 [0005] The object of embodiments of the present invention to provide a signal processing method, apparatus and system for improved transmission rate of data in the PON network on the basis of existing devices.

[0006] 本发明实施例提供一种信号处理方法,包括: [0006] The embodiments of the present invention provide a signal processing method, comprising:

[0007] 将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度; [0007] The level of the original signal is a first level signal and a second level signal precoding halve the rate of formation, the clock phase difference between the first level signal and the second clock phase level signal 180 degree;

[0008] 利用所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成并发送双二进制光信号。 [0008] using the first level signal and the second signal level simultaneously drive the laser so that the laser generates and transmits a duobinary optical signal.

[0009] 本发明实施例提供一种信号处理装置,包括: [0009] The embodiments of the present invention provide a signal processing apparatus, comprising:

[0010] 预编码模块,用于将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度; [0010] precoding module, the original level of the signal for a first level signal and a second level signal precoding halve the rate of formation, the phase of the first clock signal and the level of the second electrical clock phase level signal is 180 degrees;

[0011] 光信号生成模块,用于利用所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成并发送双二进制光信号。 [0011] The optical signal generating means for utilizing said first signal level and the second level signals simultaneously drive the laser so that the laser generates and transmits a duobinary optical signal.

[0012] 本发明实施例提供一种信号处理方法,包括: [0012] The embodiments of the present invention provide a signal processing method, comprising:

[0013] 将接收到的双二进制光信号转换成电信号;[0014] 将所述电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列; [0013] converting the received duobinary optical signal into an electrical signal; [0014] the electrical signal with two reference levels, respectively generating a first binary sequence with a second binary sequence;

[0015] 将所述第一二进制序列与所述第二二进制序列通过与门相与恢复出原始电平信号。 [0015] The first binary sequence and the second binary sequence from the original level of the gate signal phase recovered.

[0016] 本发明实施例提供一种信号处理装置,包括: [0016] The embodiments of the present invention provide a signal processing apparatus, comprising:

[0017] 光电转换模块,用于将接收到的双二进制光信号转换成电信号; [0017] The photoelectric conversion module for converting the received duobinary optical signal into an electric signal;

[0018] 比较模块,用于将所述电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列; [0018] The comparison module, for generating a first binary sequence and the second binary sequence and said two electrical signals are compared with reference levels;

[0019] 译码模块,用于将所述第一二进制序列与所述第二二进制序列通过与门相与恢复出原始电平信号。 [0019] The decoding module, for said first binary sequence and the second binary sequence to recover the original phase level signal through the AND gate.

[0020] 本发明实施例提供一种信号处理系统,包括:第一信号处理装置、第二信号处理装置; Example [0020] The present invention provides a signal processing system, comprising: a first signal processing means, second signal processing means;

[0021] 所述第一信号处理装置,用于将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,利用所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成双二进制光信号并将所述双二进制光信号发送给第二信号处理装置,其中所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度; [0021] The first signal processing means for performing a first signal level of the original level signal and a second level signal precoding halve the rate of formation, using the first signal and the second level the two-level signals simultaneously drive the laser so that the laser generates a duobinary optical signal and a duobinary optical signal to the second signal processing means, wherein a clock signal of the first level and the second phase clock phase level signal is 180 degrees;

[0022] 所述第二信号处理装置,用于将从所述第一信号处理装置接收到的双二进制光信号转换成电信号,将所述电信号与电平偏移量进行比较后生成第一二进制序列与第二二进制序列,将所述第一二进制序列与所述第二二进制序列通过与门相与恢复出原始电平信号。 After [0022] The second signal processing means for converting said first signal processing means from the received duobinary optical signal into an electrical signal, the electrical signal to the level shift amount to generate a first compare a binary sequence and the second binary sequence, the binary sequence of the first sequence and the second binary gate by phase and recover the original signal level.

[0023] 本发明实施例提供的信号处理方法、装置及系统,通过将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,由于第一电平信号的时钟相位与第二电平信号的时钟相位相差180度,通过将该第一电平信号与第二电平信号驱动激光器,使得激光器生成并输出双二进制光信号,且所述双二进制光信号可使得携带的信息速率提高了一倍,因此实现了在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0023] The embodiment of the present invention, a signal processing method, apparatus and system provided by the embodiment, a first signal level and a second level signal precoded by halving the rate of formation of the original level signal, since the first level of the signal a second clock phase and clock phase level signal is 180 degrees, by the first level and the second signal level signal to drive the laser so that the laser generates and outputs an optical duobinary signal, and a duobinary optical signal can be so that the information carried doubling rate, thus achieving higher data transmission rate of the PON network based on the conventional laser device.

附图说明 BRIEF DESCRIPTION

[0024] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 [0024] In order to more clearly illustrate the technical solutions in the embodiments or the prior art embodiment of the present invention, briefly introduced hereinafter, embodiments are described below in the accompanying drawings or described in the prior art needed to be used in describing the embodiments the drawings are only some embodiments of the present invention, those of ordinary skill in the art is concerned, without creative efforts, can derive from these drawings other drawings.

[0025] 图1为本发明信号处理方法可适用的无源光网络系统的结构示意图; Passive optical network system structure [0025] Figure 1 is a signal processing method applicable to the invention; and FIG.

[0026] 图2为本发明信号处理方法一个实施例的流程示意图; [0026] FIG. 2 is a schematic embodiment of a process embodiment of the invention, a signal processing method;

[0027] 图3为本发明信号处理方法又一个实施例的流程示意图; [0027] FIG. 3 is a flow schematic diagram of another embodiment of a signal processing method embodiment of the invention;

[0028] 图4为本发明信号处理装置一个实施例的结构示意图; [0028] Fig 4 a schematic structural diagram of a signal processing apparatus according to an embodiment of the present invention;

[0029] 图5为本发明信号处理装置又一个实施例的结构示意图; [0029] The signal processing apparatus of FIG. 5 is a schematic structural example of another embodiment of the present invention;

[0030] 图6为图5所示实施例所适用的电路结构示意图; [0030] FIG. 6 is a schematic circuit structure of the embodiment shown in FIG. 5 applies;

[0031] 图7为图6所示实施例的时序示意图; [0031] FIG. 7 is a timing diagram of the embodiment shown in FIG 6;

[0032] 图8为图6所示实施例中激光器输出眼图的示意图;[0033] 图9为本发明信号处理方法另一个实施例的流程示意图; [0032] As shown in FIG. 8 is a schematic view of the laser output eye diagram of the embodiment of FIG. 6; flow schematic diagram of another embodiment of the signal processing method of embodiment [0033] FIG. 9 of the present invention;

[0034] 图10为本发明信号处理方法再一个实施例的流程示意图; A further embodiment of the process schematic diagram of a signal processing method [0034] FIG. 10 of the present invention;

[0035] 图11为本发明信号处理装置另一个实施例的结构示意图; [0035] FIG. 11 is a schematic diagram of another embodiment of the structure of a signal processing apparatus of the invention;

[0036] 图12为本发明信号处理装置再一个实施例的结构示意图; [0036] FIG signal processing means 12 a schematic structural diagram of another embodiment of the present invention;

[0037] 图13为图12所示实施例所适用的电路结构示意图; [0037] FIG. 13 is a schematic diagram of a circuit configuration as shown in the embodiment of FIG 12 applied;

[0038] 图14为图13所示实施例中阈值重建电路的一个结构示意图; [0038] FIG. 14 FIG. 13 is a structural schematic view of an embodiment of a threshold circuit according to the reconstruction;

[0039] 图15为图13所示实施例中阈值重建电路的又一个结构示意图; [0039] FIG. 13 FIG. 15 is a schematic structural diagram of still another embodiment of reconstruction circuit embodiment of the threshold;

[0040] 图16为本发明信号处理系统实施例的结构示意图; [0040] FIG. 16 schematic structural diagram of a signal processing system of the embodiment of the present invention;

[0041] 图17为本发明实施例限幅放大器的输入信号的时序波形示意图; The timing of the input signal [0041] FIG. 17 illustrates a limiter amplifier waveform diagram of the embodiment of the present invention;

[0042] 图18为图17所示时序波形的频谱示意图; [0042] FIG. 18 is a timing diagram spectral waveform shown in FIG 17;

[0043] 图19为本发明实施例限幅放大器的输出信号的时序波形示意图; The timing of the output signal [0043] FIG. 19 limiter amplifier waveform diagram of the embodiment of the present invention;

[0044] 图20为图19所示时序波形的频谱示意图; [0044] FIG. 20 is a schematic diagram of a spectrum 19 shown in the timing waveforms;

[0045] 图21为本发明实施例一个传输函数的示意图。 [0045] FIG 21 a schematic view of a transfer function according to embodiments of the present invention.

具体实施方式 detailed description

[0046] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。 [0046] below in conjunction with the present invention in the accompanying drawings, technical solutions of embodiments of the present invention are clearly and completely described, obviously, the described embodiments are merely part of embodiments of the present invention, but not all embodiments example. 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 Based on the embodiments of the present invention, all other embodiments of ordinary skill in the art without any creative effort shall fall within the scope of the present invention.

[0047] 为了更清楚地理解本发明实施例,下面对本发明实施例中可能采用的器件及电路进行功能性介绍。 [0047] For a more clear understanding of the embodiments of the present invention, the following devices and circuits of the present invention may be employed in the embodiment functionally described embodiment.

[0048] 本发明实施例中所述的激光器(LD)可以为直调激光器,是发光的器件;将输出光功率随着流过它的电流变化而变化,当调制信号为I比特时,流过它的电流增加,输出光功率变大,调制信号为O比特时,流过它的电流减小,从而输出光功率减小山触发器作用是输出数据速率随着时钟大小而改变,在时钟信号的上升沿将输入信号状态传给输出端,即状态发生改变是在在时钟的上升沿,输出状态跟随输入状态的变换;激光驱动器(LDD)是将输入信号转换成适合驱动激光器的信号的器件;三极管(Tl、T2)用于将LDD相互电隔离,避免LDD相互之间的干扰;异或门是将两路信号进行异或处理,即:两个输入电平相同输出为低,两个输入电平不同,贝1J输出为高;光电检测器(PD)用于将输入的不同的光信号转换成不同的电信号;跨阻放大器(TIA)是将光电检测器(PD)输出的电 [0048] laser (LD) described in the embodiment of the present invention may be directly modulated lasers, light-emitting device; the output optical power increases as the current flowing through it varies variation, when the modulation signal is I bit, stream a current through it increases, the output light power becomes large, when the modulation signal O bits, which current flows is reduced, thereby reducing the optical output power trigger acts Hill output data clock rate as the size changes, the clock the rising edge of the input signal state signal transmitted to the output terminal, i.e., following the state changes in the input state transformation at the rising edge, the output state of the clock; laser driver (LDD) is an input signal for driving the laser signal into the device; a transistor (Tl, T2) for LDD are electrically isolated, to avoid mutual interference LDD; XOR gate is a two-way XORed signal, namely: two identical output input level is low, two different levels of input power, the output is high 1J shell; a photodetector (PD) for different input optical signal into different electrical signals; transimpedance amplifier (TIA) is a photodetector (PD) output Electricity 流信号转换成电压信号;限幅放大器是将TIA输出的电压信号放大器到一个固定的电平。 Current signal into a voltage signal; limiting amplifier is a voltage amplifier TIA output signal to a fixed level. 当输入信号是在“ + ”弓丨脚端,参考电平是在引脚端,如果输入信号高于参考电平,则限幅放大器输出为高,相反输出为低,当输入信号是在引脚端,参考电平是在“ + ”引脚端,如果输入信号高于参考电平,则限幅放大器输出为低,相反输出为高;与门是将两路输入信号进行逻辑相乘,即只有两路输入信号信号为高,输出才为高,其他状态输出为低;突发时钟数据恢复(BurstmodeClock and Data Recovery,简称:BO)R)是将从输入突发数据恢复出时钟和数据;阈值重建电路(decision abstract)是从上行突发信号得到限幅放大器的两个参考电平。 When the input signal is in the "+" end of the foot arch Shu, the reference level is at the end of the pin, if the input signal is above the reference level, the limiting amplifier output is high, the output is low the contrary, when the input signal is in lead a foot end, the reference level is in the "+" end of the pin, if the input signal is above the reference level, the limiting amplifier output is low, the output contrast is high; aND gate of two inputs is logical multiplication signal, i.e., only two input signals is high, the output to be high, the state of the other output is low; burst clock data recovery (BurstmodeClock and data recovery, abbreviated: BO) R) is a data burst input from the clock and data recovery ; reconstruction circuit threshold (decision abstract) was two reference levels in the limiting amplifier from the upstream burst signals.

[0049] 以下将结合各种具体实现方式,详细介绍本发明实施例提供的信号处理方法、装置及系统。 [0049] DETAILED below in connection with various implementations, the signal processing method described in detail, apparatus, and system provided in the embodiment of the present invention. [0050] 图1为本发明信号处理方法可适用的无源光网络系统的结构示意图,本发明实施例提供的技术方案可以应用在图1所示的无源光网络PON系统中。 [0050] FIG. 1 is a schematic configuration of a signal processing method applicable to a passive optical network system of the present invention, the embodiment of the present invention provide a technical solution can be applied in a passive optical network PON system shown in FIG. 1. 该PON系统可以包括位于中心局的光线路终端(OLT)I和位于用户侧的多个光网络单元(0NU)2。 The PON system may comprise an optical line terminal is located at a central office (OLT) I and a plurality of optical network units located on the user side (0NU) 2. 其中,OLTl和0NU2通过光分配网络(ODN) 3并以点到多点的方式进行连接。 Wherein, OLTl and 0NU2 3 and connected in multipoint manner by an optical distribution network (ODN). 在下行方向,OLTl将下行数据广播至0NU2,使得0NU2可选择属于自己的数据进行接收;而在上行方向,多个0NU2根据OLTl分配的时隙,采用时分多址TDMA方式共享光传输链路,实现将上行数据发送给OLTl。 In the downstream direction, the downstream data is broadcast to OLTL 0NU2, such 0NU2 choose their own received data; in the uplink direction, in accordance with a plurality of slots 0NU2 OLTL assigned TDMA system uses time division multiple access shared optical transmission link, transmitting uplink data to achieve OLTl.

[0051] 图2为本发明信号处理方法一个实施例的流程示意图,如图2所示,本实施例的信号处理方法可以应用在ONU中,其可使得所述ONU将上行数据调制成双二进制光信号,以提高数据速率。 The signal processing method [0051] FIG. 2 is a schematic flow diagram of an example of the invention embodiment, shown in Figure 2, the signal processing method of the present embodiment may be applied in the ONU, which may cause the ONU uplink data modulation binary pairs an optical signal to increase the data rate. 具体而言,所述信号处理方法可以包括如下步骤: Specifically, the signal processing method may include the steps of:

[0052] 步骤101、将原始电平信号进行预编码,形成速率减半的第一电平信号和第二电平信号,其中,第一电平信号的时钟相位与第二电平信号的时钟相位相差180度; [0052] Step 101, the signal level of the original pre-encoded to form a first level signal and a second signal level halved rate, wherein the clock phase of the clock signal and the second level a first level of a signal 180 degrees phase difference;

[0053] 步骤102、利用第一电平信号与第二电平信号同时驱动激光器,以使所述激光器生成并发送双二进制光信号。 [0053] Step 102, using the first level signal and a second level signal at the same time drive the laser so that the laser generates and transmits a duobinary optical signal. 具体可以通过控制激光器的驱动电流对驱动该激光器,从而使所述激光器生成并发送双二进制光信号。 Specifically the driving control of the laser drive current through the laser such that the laser generates and transmits a duobinary optical signal.

[0054] 本发明实施例提供的信号处理方法,通过将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,由于第一电平信号的时钟相位与第二电平信号的时钟相位相差180度,通过将该第一电平信号与第二电平信号驱动激光器,以使得所述激光器输出双二进制的光信号,从而使得其携带的信息速率提高了一倍,因此实现了在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0054] The first and the second clock phase level signal due to the signal processing method provided in the embodiment of the present invention, a first signal level and a second level signal precoded by halving the rate of formation of the original level signal, clock phase two-level signal is 180 degrees, by the first level and the second signal level signal to drive the laser so that the laser output of the optical duobinary signal, so that it increases the information rate carried a times, thus achieving improved data transfer rate of the PON network on the basis of the conventional laser device.

[0055] 图3为本发明信号处理方法又一个实施例的流程示意图,如图3所示,本实施例包括如下步骤: [0055] FIG. 3 is a signal processing method and a schematic flow chart of an embodiment of the invention, shown in Figure 3, the present embodiment includes the following steps:

[0056] 步骤201、采用异或门将原始电平信号与所述异或门的前一个输出结果相异或,得到预编码后的电平信号; [0056] Step 201, using the original exclusive OR gate and the level of the signal level of the signal output of a XOR gate before or dissimilar, to obtain a pre-coding;

[0057] 步骤202、将该预编码后的电平信号送入第一D触发器,输出第一电平信号,其中,第一D触发器的时钟频率为原始电平信号的数据速率的一半; [0057] Step 202, after the level of the signal fed to the first D flip-precoded, a first output level signal, wherein the clock frequency of the first half of the D flip-flop to the original level of the signal data rate ;

[0058] 步骤203、将该预编码后的电平信号送入第二D触发器,输出第二电平信号,其中,第二D触发器的时钟频率为原始电平信号的数据速率的一半,所述第二D触发器采用的时钟与所述第一D触发器采用的时钟之间的相位相差180度,由此,所述第一电平信号的时钟相位与第二电平信号的始终相位相差180度; [0058] Step 203, after the level of the signal fed to the second D flip-precoded, a second output level signal, wherein the clock frequency of the second half of the D flip-flop to the original level of the signal data rate , the phase between the clock of the second clock of the D flip-flop using the first D flip-flop 180 degrees employed, whereby the first clock signal and a phase level and a second level signal It is always 180 degrees out of phase;

[0059] 其中,步骤202与步骤203并无时间上的先后顺序,只要能够通过D触发器得到第一电平信号与第二电平信号即可,在具体实施例中,所述步骤202和步骤203也可以同时执行。 [0059] wherein, on the order of step 202 and step 203 is not the time, as long as the first level and the second signal level signal to the D flip-flop can be obtained, in a particular embodiment, the step 202 and step 203 may be performed simultaneously.

[0060] 步骤204、采用所述第一电平信号和第二电平信号分别控制连接在激光器的阴极的第一三极管和第二三极管的状态,其中所述第一三极管和第二三极管用于实现第一电平信号与第二电平信号的相互电隔离; [0060] Step 204, using the first signal level and a second level control signal are respectively connected to the cathode of the first transistor and the laser state of the second transistor, wherein said first transistor and a second transistor electrically isolated from each other for achieving a first signal level and a second level signal;

[0061] 步骤205、通过电源驱动该激光器的阳极; [0061] Step 205, the anode of the laser driving power source;

[0062] 步骤206、通过所述第一三极管和第二三极管控制所述激光器的驱动电流与所述第一电平信号和第二电平信号相加之和相对应,并使所述激光器根据所述驱动电流生成双二进制的光信号。 [0062] Step 206, through the first transistor and the second transistor for controlling the laser driving current and the first signal level and a second level signal corresponding to the sum of and, and said laser generating an optical duobinary signal based on said driving current. [0063] 本发明实施例提供的信号处理方法,通过将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,由于第一电平信号的时钟相位与第二电平信号的时钟相位相差180度,通过将该第一电平信号与第二电平信号驱动激光器的阴极,使得激光器输出双二进制光信号携带的信息速率提高了一倍,因此实现了在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0063] The first and the second clock phase level signal due to the signal processing method provided in the embodiment of the present invention, a first signal level and a second level signal precoded by halving the rate of formation of the original level signal, clock phase two-level signal is 180 degrees, by the first level signal and a second level signal for driving the cathode of the laser, the laser output so that an optical duobinary signal carrying information rate doubled, thus achieving the It increases the data transmission rate of the PON based on the conventional laser device.

[0064] 基于以上信号处理方法,本发明实施例还进一步提供一种信号处理装置。 [0064] The signal processing method based on the above, embodiments of the present invention further provides a signal processing apparatus.

[0065] 图4为本发明信号处理装置一个实施例的结构示意图,本实施例中的信号处理装置具体可以为0NU,如图4所示,本实施例包括:预编码模块31、光信号生成模块32 ; Signal [0065] processing apparatus of the present invention FIG. 4 is a schematic structural embodiment of a signal processing apparatus in the present embodiment may be specifically 0NU shown in Figure 4, the present embodiment comprises: a pre-coding module 31, the generated optical signal module 32;

[0066] 其中,预编码模块31将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度;光信号生成模块32将所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成双二进制的光信号。 [0066] wherein the pre-coding module 31 of the original level of the first signal and the second signal level precoded signal level halved the rate of formation, the phase of the first clock signal and the level of the second electrical clock phase level signal is 180 degrees; the optical signal generation module 32 to the first level signal and the second signal level simultaneously drive the laser so that the laser generates a duobinary optical signal.

[0067] 本发明实施例提供的信号处理装置,通过预编码模块31将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,由于第一电平信号的时钟相位与第二电平信号的时钟相位相差180度,光信号生成模块32进一步将该第一电平信号与第二电平信号驱动激光器,可以使得激光器输出双二进制的光信号,从而使输出的光信号携带的信息速率提高了一倍,因此实现了在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0067] The signal processing apparatus according to an embodiment of the present invention, a first signal level and a second level signal precoded by halving the rate of formation of the original 31-level signal precoding module, since the first level of the signal a second clock phase and clock phase level signal is 180 degrees, the optical signal generation module 32 further uses the first level signal and a second level signal to drive the laser, the laser output may be such that the optical duobinary signal, so that the output an optical signal carrying information rate doubling, thus achieving improved data transfer rate of the PON network on the basis of the conventional laser device.

[0068] 图5为本发明信号处理装置又一个实施例的结构示意图,本实施例中的信号处理装置具体可以为0NU,如图5所示,本实施例包括:预编码模块41、光信号生成模块42 ; [0068] The signal processing apparatus of FIG. 5 is a schematic structural example of another embodiment of the present invention, the signal processing apparatus in the present embodiment may be specifically 0NU shown in Figure 5, the present embodiment comprises: a pre-coding module 41, the optical signal generation module 42;

[0069] 其中,预编码模块41可以包括:预编码单元411、第一处理单元412、第二处理单元413 ;其中,预编码单元411可以包括一异或门,其可采用所述异或门将原始电平信号与所述异或门的前一个输出结果相异或,得到预编码后的电平信号;第一处理单元412将所述预编码后的电平信号送入第一D触发器,输出第一电平信号,所述第一D触发器的时钟频率为所述原始电平信号的数据速率的一半;第二处理单元413将所述预编码后的电平信号送入第二D触发器,输出第二电平信号,所述第二D触发器的时钟频率为所述原始电平信号的数据速率的一半,并且所述第二D触发器采用的时钟与所述第一D触发器采用的时钟之间的相位相差180度。 [0069] wherein the pre-coding module 41 may include: a precoding unit 411, a first processing unit 412, a second processing unit 413; wherein the pre-coding unit 411 may comprise an XOR gate, which can be the exclusive OR gate original level signal to said exclusive oR gate output of a front or a different, level of a signal obtained after precoding; a first processing unit 412 the level of the signal sent to the first D flip-precoded outputting a first level signal, the clock frequency of the first D flip-flop is half the data rate of the original level of the signal; a second processing unit 413 the signal level fed to the second pre-coding D flip-flop, the output signal of the second level, the clock frequency of the second D flip-flop is half the data rate of the original level of the signal, and the second clock using a first D-flipflop phase between the clock D flip-flop 180 degrees employed.

[0070] 进一步地,光信号生成模块42可以包括:电隔离驱动单元421、电源驱动单元422、光信号生成单元423 ;其中,电隔离驱动单元421将所述第一电平信号与所述第二电平信号分别通过第一三极管与第二三极管驱动所述激光器的阴极,使所述第一电平信号与所述第二电平信号的相互电隔离;电源驱动单元422通过电源驱动所述激光器的阳极;光信号生成单兀423通过所述激光器输出与所述第一电平信号和第二电平信号相加之和相对应电流信号相对应的光信号。 [0070] Further, the optical signal generation module 42 may include: a driving unit 421 is electrically isolated from the power supply driving unit 422, the optical signal generating unit 423; wherein the driving unit 421 is electrically isolated from the first level signal and the second two-level signal through the first transistor and the second driving transistor to the cathode of the laser, so that each is electrically isolated from the first level signal and the second signal level; power source drive unit 422 the anode driving power laser; Wu optical signal generating unit 423 and a current signal corresponding to the optical signal corresponding to the sum of said laser output level of the first signal and the second level signal.

[0071] 本发明实施例提供的信号处理装置,通过预编码模块41将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,由于第一电平信号的时钟相位与第二电平信号的时钟相位相差180度,形成了双二进制的电平信号,光信号生成模块42将该第一电平信号与第二电平信号驱动激光器的阴极,使得激光器输出双二进制的光信号而使其携带的信息速率提高了一倍,因此实现了在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0071] The signal processing apparatus according to an embodiment of the present invention, a first signal level and a second level signal precoded by halving the rate of formation of the original 41-level signal precoding module, since the first level of the signal a second clock phase and clock phase level signal is 180 degrees, forming a double binary level signal, the optical signal generation module 42 and the first level of the second signal level signal to drive the laser cathode, such that the laser output duobinary optical signal so that it carries the information rate doubled, thus achieving improved data transfer rate of the PON network on the basis of the conventional laser device.

[0072] 图6为图5所示实施例所适用的电路结构示意图,如图6所示,将原始电平信号(也即需要发射的数据)B[i]作为异或(XOR)门51的输入端,异或门51的输出M[i]分成三路,一路送给D触发器52,D触发器52的时钟信号(Clock)的频率与原始电平信号的频率相同,此时,异或门51的输出M[i] = B[i]X0R M[1-1],将M[i]通过时钟信号的频率为M[i]速率一半、相位相差180度的两个时钟信号分别送给第一D触发器53、第二D触发器54,则第一D触发器53与第二D触发器54的数据速率为异或门51的输出M[i]的一半,也即第一D触发器53与第二D触发器54分别输出的第一电平信号与第二电平信号的数据速率均为M[i]的一半,第一驱动器55通过第一三极管Tl、第二驱动器56通过第二三极管T2共同驱动激光器57,从而通过激光器57生成与原始电平信号相对应的光信号C[i]。 [0072] FIG. 6 is a schematic circuit diagram shown in FIG. 5 embodiment applies embodiment, shown in Figure 6, the level of the original signal (i.e., data to be transmitted) B [i] as the exclusive OR (XOR) gates 51 input terminal, the output of the XOR M [i] is divided into three-way gate 51, all the way to the D flip-flop 52, the same frequency of the D flip-flop 52 of the clock signal (clock) is the frequency of the original level of the signal, at this time, output of the XOR M [i] = B [i] gate 51 X0R M [1-1], the M [i] by the frequency of the clock signal is M [i] half rate, two clock signals of phase 180 degrees respectively to the first D flip-flop 53, a second D flip-flop 54, the data rate of the first D flip-flop 53 and the second half of the D flip-flop 54 is the output of XOR M [i] of the gate 51, i.e. a first D flip-flop 53 of the first level signal and the data rate of the second level signal and the output of the second D flip-flop 54 are respectively M [i] is half of a first drive 55 by a first transistor Tl second driver transistor T2 via a second joint 56 to drive the laser 57, 57 so as to generate an original signal corresponding to the level of the optical signals C [i] by a laser. 由于第一电平信号与第二电平信号的数据速率均为原始电平信号的数据速率的一半,因此实现了采用低速率的激光驱动器(LDD)和激光器来对高速数字信号进行调制、传输。 Since half the data rate of the data rate of the first level signal and the second signal level are the original level of the signal, thus achieving a low rate laser driver (LDD), and a laser is modulated, high-speed digital signal transmission . 第一驱动器55与第二驱动器56具体为激光驱动器(LDD),通过将两个激光驱动器的输出经过分别经过高速三极管的隔离放大后驱动激光器发光,生成与原始电平信号相对应的光信号,避免了第一电平信号与第二电平信号相互之间的干扰。 The first driver 55 and second driver 56 specific to the laser driver (the LDD), by the two outputs of the laser driver after respectively, after isolation high-speed amplification transistor to drive the laser emission, to generate an optical signal with the original level of the signal corresponding to to avoid interference between the first signal and the level of the second level signal with each other.

[0073] 图7为图6所示实施例的时序示意图,图8为图6所示实施例中激光器输出眼图的示意图;如图6所示,第一电平信号、第二电平信号均为O时,激光器的输出光功率为O单位,当第一电平信号与第二电平信号中的一个为1、另一个为O时,则激光器的输出光功率为I单位,当第一电平信号与第二电平信号均为I时,激光器输出功率为2单位,从而实现了编码过程的C[i] = M[i]+M[1-1],激光器输出眼图如图7所示,通过图7可知,激光器输出共有三种状态:0、1、2,而三种状态(0、1、2)与两种状态(0、1)相比,降低了激光器的调制带宽,因此可以采用低速的激光器进行调制,降低了激光器的成本。 [0073] FIG. 7 is a timing diagram of the embodiment shown in FIG. 6, FIG. 8 is a schematic view of the laser shown in FIG. 6 output eye diagram of the embodiment; the first signal level, the second level signal as shown in FIG. 6 are both O, the output power of the laser light is O unit when said first signal level and a second level signal is a 1, another is O, then the optical output power of the laser unit is I, when the first level signal and a second level signal when both I, 2 units of output power of the laser, thereby realizing the coding process C [i] = M [i] + M [1-1], such as the laser output eye diagram As shown in FIG., it is found through FIG. 7, the laser output 7 There are three states: 0, 1, and three states (0,1,2) as compared to two states (0,1), the laser is reduced modulation bandwidth, it is possible to use a low-speed modulated laser, reducing the cost of the laser. 此外,由于是ONU侧,需要对激光器的开启关断做快速切换。 Further, since the ONU side, it is necessary to turn off the laser do fast switching.

[0074] 图9为本发明信号处理方法另一个实施例的流程示意图,如图9所示,本实施例的信号处理方法可以应用在OLT中,其可使得所述OLT接收ONU发送的双二进制光信号并对其进行译码,从而恢复出原始的数据信号。 Schematic flow diagram of another embodiment of a signal processing method [0074] FIG. 9 of the present invention, shown in Figure 9, the signal processing method of the present embodiment may be applied in the OLT, which may cause the duobinary transmission is received by the OLT ONU and decodes the optical signal, thereby recovering the original data signal. 具体而言,所述信号处理方法可以包括如下步骤: Specifically, the signal processing method may include the steps of:

[0075] 步骤801、接收双二进制光信号,并将接收到的双二进制光信号转换成电信号; [0075] Step 801, receiving an optical duobinary signal, and converts the received duobinary optical signal into an electric signal;

[0076] 步骤802、将电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列; After [0076] Step 802, the electric signal with the two reference levels are compared to generate a first binary sequence and the second binary sequence;

[0077] 步骤803、将第一二进制序列与第二二进制序列通过与门相与恢复出原始电平信号。 [0077] Step 803, a first binary sequence and the second binary sequence by phase gate signals to restore the original level.

[0078] 本发明实施例提供的信号处理方法,通过将电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列,将第一二进制序列与第二二进制序列通过与门相与恢复出原始电平信号,完成了原始数据速率的恢复,因此在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0078] The signal processing method according to an embodiment of the present invention, generating a first binary sequence and the second sequence of binary electrical signal by two reference levels were compared after a first binary sequence and a second binary sequence by phase gate signals to restore the original level, to complete the restore the original data rate, thereby increasing the data transmission rate of the PON network based on the conventional laser device.

[0079] 图10为本发明信号处理方法再一个实施例的流程示意图,如图10所示,本发明实施例包括如下步骤: [0079] The signal processing method of FIG. 10 a schematic flow diagram of another embodiment of the present invention, shown in Figure 10, the embodiment of the present invention comprises the steps of:

[0080] 步骤901、通过光信号检测器将接收到的光信号转换成电流信号;[0081] 步骤902、将该电流信号经过跨阻放大器转换成电压信号; [0080] Step 901, the optical signal detector converts the received optical signal into a current signal; [0081] Step 902, the current signal into a voltage signal via a transimpedance amplifier;

[0082] 步骤903、将该电压信号通过第一限幅放大器的负极与第一参考电平进行比较,得到第一二进制序列; [0082] Step 903, by comparing the voltage signal with a first reference level negative first limiter amplifier, to obtain a first binary sequence;

[0083] 步骤904、将该电压信号通过第二限幅放大器的正极与第二参考电平进行比较,得到第二二进制序列; [0083] Step 904, the voltage signal by comparing the positive second limiter amplifier and a second reference level, to obtain a second binary sequence;

[0084] 步骤905、将第一二进制序列与第二二进制序列经过与门处理后恢复出原始电平信号。 [0084] Step 905, a first binary sequence and the second binary sequence after processing to restore the original level of the gate signal.

[0085] 本发明实施例提供的信号处理方法,通过将电信号分别与第一参考电平和第二参考电平进行比较后生成第一二进制序列和第二二进制序列,实现了从三电平到二进制信号的转换,完成了数据速率的恢复,因此在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0085] The signal processing method according to an embodiment of the present invention, the electrical signals are compared with a first reference level and a second reference level to generate a first binary sequence and the second binary sequence, and from three-level converted to a binary signal, the data rate of the recovery is complete, thus increasing the data transmission rate of the PON network based on the conventional laser device.

[0086] 在上述图10所示实施例的基础上,还包括:将电压信号通过阈值重建电路获取第一参考电平与第二参考电平,其中,第一参考电平与第一限幅放大器的正极(+)相连接,第二参考电平与第二限幅放大器的负极(_)相连接。 [0086] On the basis of the above-described embodiment shown in FIG. 10 of the embodiment, further comprising: obtaining a first reference signal voltage level and a second reference level by the threshold circuit reconstruction, wherein the first reference level and a first limiter amplifier positive (+) is connected to a second reference level and a negative second limiter amplifier (_) is connected.

[0087] 基于以上信号处理方法,本发明实施例还进一步提供一种信号处理装置。 [0087] The signal processing method based on the above, embodiments of the present invention further provides a signal processing apparatus.

[0088] 图11为本发明信号处理装置另一个实施例的结构示意图,如图11所示,本实施例中的信号处理装置具体可以为0LT,本实施例包括:光电转换模块11、比较模块12、译码模块13 ; Schematic structural diagram of another embodiment of a signal processing apparatus [0088] 11 of the present invention, shown in Figure 11, the signal processing apparatus in the present embodiment may be a 0LT specifically, the present embodiment includes: a photoelectric conversion module 11, a comparison module 12, the decoding module 13;

[0089] 其中,光电转换模块11将接收到的双二进制光信号转换成电信号;比较模块12将所述电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列;译码模块13将所述第一二进制序列与所述第二二进制序列通过与门相与恢复出原始电平信号。 [0089] wherein, the photoelectric conversion module 11 converts the received duobinary optical signal into an electrical signal; generating a first binary sequence comparison module 12 and the second electrical signal with the two reference levels are compared binary sequence; decoding module 13 of the first binary sequence and the second binary gate by phase sequence to restore the original signal level.

[0090] 本发明实施例提供的信号处理装置,通过比较模块12将电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列,译码模块13将第一二进制序列与第二二进制序列通过与门相与恢复出原始电平信号,完成了数据速率的恢复,因此在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0090] The signal processing apparatus according to an embodiment of the present invention, generating a first binary sequence and the second sequence of binary electrical signals of the two reference levels are compared by the comparison module 12, decoding module 13 the first binary sequence and the second binary sequence by phase gate signals to restore the original level, recovery is complete and the data rate, thereby increasing the data transmission rate of the PON in the conventional laser device on the basis of .

[0091] 图12为本发明信号处理装置再一个实施例的结构示意图,如图12所示,本实施例包括:光电转换模块21、比较模块22、译码模块23、获取模块24 ; [0091] FIG. 12 is a schematic diagram of the signal processing apparatus further configuration example of the embodiment shown in the invention, FIG. 12, the present embodiment includes: a photoelectric conversion module 21, a comparison module 22, decoding module 23, an obtaining module 24;

[0092] 其中,光电转换模块21将接收到的双二进制光信号转换成电信号;比较模块22将所述电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列;译码模块23将所述第一二进制序列与所述第二二进制序列通过与门相与恢复出原始电平信号;获取模块24将所述电压信号通过阈值重建电路获取第一参考电平与第二参考电平,所述第一参考电平与所述第一限幅放大器的正极相连接,所述第二参考电平与所述第二限幅放大器的负极相连接。 [0092] wherein, the photoelectric conversion module 21 converts the received duobinary optical signal into an electrical signal; generating a first binary sequence comparison module 22 and the second electrical signal with the two reference levels are compared binary sequence; decoding module 23 of the first binary sequence and the second binary sequence from the original level of the gate signal phase recovered; 24 acquires the threshold voltage signal through the reconstruction module obtaining a first circuit and a second reference level reference level, reference level and the first anode of the first limiting amplifier connected to the second reference level and the second limiting amplifier negative connected.

[0093] 进一步地,光电转换模块21还可以包括:第一转换单元211、第二转换单元212 ;其中,第一转换单元211通过光信号检测器将接收到的光信号转换成电流信号;第二转换单元212将所述电流信号经过跨阻放大器转换成电压信号。 [0093] Further, the photoelectric conversion module 21 may further include: a first conversion unit 211, a second conversion unit 212; wherein the first conversion unit 211 converts the received optical signal into a current signal by an optical signal detector; first two conversion unit 212 converts the current signal into a voltage signal via a transimpedance amplifier.

[0094] 进一步地,比较模块22还可以包括:第一比较单元221、第二比较单元222、处理单元223 ;其中,第一比较单元221将所述电压信号通过第一限幅放大器的负极与所述第一参考电平进行比较,得到第一二进制序列;第二比较单元222将所述电压信号通过第二限幅放大器的正极与所述第二参考电平进行比较,得到第二二进制序列;处理单元223将所述第一二进制序列与所述第二二进制序列经过与门处理后恢复出原始电平信号。 [0094] Further, the comparison module 22 may further comprises: a first comparing unit 221, the second comparing unit 222, a processing unit 223; a negative electrode wherein the first comparing unit 221 by the signal voltage and a first limiting amplifier the first reference level is obtained by comparing a first binary sequence; and a second comparison unit 222 compares the voltage signal of the positive electrode by a second limiter amplifier and said second reference level, to give a second binary sequence; processing unit 223 of the first binary sequence and the second binary sequence after processing to restore the original level of the gate signal.

[0095] 本发明实施例提供的信号处理装置,通过将电信号分别与第一参考电平和第二参考电平进行比较后生成第一二进制序列和第二二进制序列,实现了从三电平到二进制信号的转换,完成了数据速率的恢复,因此在现有激光器器件的基础上提高了PON网络中的数据传输速率。 [0095] The signal processing apparatus according to an embodiment of the present invention, the electrical signals are compared with a first reference level and a second reference level to generate a first binary sequence and the second binary sequence, and from three-level converted to a binary signal, the data rate of the recovery is complete, thus increasing the data transmission rate of the PON network based on the conventional laser device.

[0096] 图13为图12所示实施例所适用的电路结构示意图,如图13所示,光电信号检测器31将接收到的双二进制光信号转换成电流信号,将该电流信号经过跨阻放大器32后转换成电压信号,将该电压信号分别送给第一限幅放大器33的负极(_)、第二限幅放大器34的正极(+),由于第一限幅放大器33的正极(+)接由阈值重建电路36根据跨阻放大器32输出的电压信号生成的第一参考电平,第二限幅放大器34的负极(-)接由阈值重建电路36根据跨阻放大器32输出的电压信号生成的第二参考电平,当跨阻放大器32的输出信号为O时,第一限幅放大器33的输出C = 1,第二限幅放大器34的输出D = 0,将C与D经过与门35相与后输出E = O ;当跨阻放大器32的输出信号为I时,第一限幅放大器33的输出C=I,第二限幅放大器34的输出D = 1,将C与D经过与门35相与后输出E = 1,当跨阻放大器32的输出为2时,第 [0096] FIG. 13 is a schematic diagram of a circuit configuration shown in FIG. 12 embodiment applies embodiment, as shown in the photo detector 31 converts the signal 13 received duobinary optical signal into a current signal, the current signal through the transimpedance after conversion amplifier 32 into a voltage signal, the voltage signal to the negative electrode, respectively, a first limiter amplifier 33 (_), a second limiting amplifier 34 of the positive electrode (+) of, the positive electrode 33 due to the first limiting amplifier (+ ) then 36 according to the first reference level voltage signal 32 output from the transimpedance amplifier generated, 34 is a negative electrode by the threshold reconstruction circuit a second limiter amplifier (-) connected to a 36 voltage signal threshold reconstruction circuit according to the output of the transimpedance amplifier 32 generating a second reference level when the output signal of the transimpedance amplifier 32 is O, a first limiter amplifier output of the C 33 = 1, a second limiting amplifier 34 is the output D = 0, and the C and D after gate 35 outputs the phase and E = O; when the output signal of the transimpedance amplifier 32 when I, a first limiting amplifier 33 and the output C = I, a second limiting amplifier 34 is the output D = 1, the C and D after the door 35 and the phase output E = 1, when the output of the transimpedance amplifier 32 is 2, 限幅放大器33的输出C = O,第二限幅放大器34的输出D =1,将C与D经过与门35相与后输出E = 0,即只有当跨阻放大器32的输入信号为I时,与门35的输出为I,跨阻放大器32的输入信号为O和2时与门35的输出均为0,从而实现了从三电平到两电平的转换,将与门35的输出送入时钟数据恢复电路37,时钟数据恢复电路37在速率加倍的情况下恢复了原始的数据速率。 Limiting amplifier 33 and the output C = O, a second limiting amplifier 34 is the output D = 1, C and D through the gate 35 and the output phase E = 0, i.e., only when the input signal of the transimpedance amplifier 32 is I when the output of aND gate 35 is I, the signal input of the transimpedance amplifier 32 and the O 2 when the output of aND gate 35 are 0, so as to achieve a conversion from the three-level to two-level, the aND gate 35 into the output clock data recovery circuit 37, clock data recovery circuit 37 restores the original data rate double the rate of the case.

[0097] 图14为图13所示实施例中阈值重建电路的一个结构示意图,如图14所示,跨阻放大器的输出送给阈值重建电路(decision abstract) 40作为阈值重建电路40的输入信号,阈值重建电路40包括:峰值检测电路(TD)41,均值检测电路(AD)42、第一放大器43(A1)、第二放大器(A2)44、第三放大器(A3)45 ;其中,峰值检测电路(TD)41用于检测输入信号顶部电平的大小,均值检测电路(AD)42用于检测输入信号的平均值。 [0097] FIG. 14 is a schematic structural diagram of FIG. 13 embodiment, the threshold circuit is reconstructed embodiment, shown in Figure 14, the output of the transimpedance amplifier to the reconstruction circuit threshold (decision abstract) 40 as an input signal of the threshold circuit 40 is reconstructed threshold reconstruction circuit 40 comprises: a peak detection circuit (TD) 41, mean value detecting circuit (AD) 42, a first amplifier 43 (A1), a second amplifier (A2) 44, a third amplifier (A3) 45; wherein the peak a detection circuit (TD) 41 for detecting the input signal magnitude at the top level, the average detection circuit (AD) 42 for detecting an average value of the input signal.

[0098] 峰值检测电路41检测阈值重建电路40的输入信号,得到该输入信号的顶部电平Vp,均值检测电路42检测阈值重建电路40的输入信号的平均值,得到该输入信号的平均值Va,将峰值检测电路41的顶部电平Vp与均值检测电路42的平均值Va送给第一放大器(Al)43,则第一放大器43输出为两者差值的二分之一,即0.5X (Vp-Va),将该第一放大器(Al) 43的输出0.5 X (Vp-Va)和均值检测电路42的输出Va送给第二放大器(A2)44,得到第 [0098] Input signal 41 detection threshold peak detection circuit reconstruction circuit 40, give the top level Vp of the input signal, the average value of the input signal average detection circuit 42 detects the threshold reconstruction circuit 40, average value Va of the input signal the average of the top of the peak detection circuit 41 detects the mean level of Vp and Va circuit 42 to the first amplifier (of Al) 43, the output of the first amplifier 43 is one half of the difference between the two, i.e., 0.5X (Vp-Va), the output of the first amplifier 0.5 X (Al) 43 outputs Va (Vp-Va) and the mean value detecting circuit 42 to the second amplifier (A2) 44, to give first

一参考电压+Vtjffset = Va+0.5X (Vp-Va),将第一放大器(Al)43的输出|(Fp-Fa)和均值检测 A reference voltage + Vtjffset = Va + 0.5X (Vp-Va), the first amplifier (Al) 43 of the output | (Fp-Fa) and average detection

电路的输出Va —起送给第三放大器(A3) 45,得到-Voffset = V-0.5 X (Vp-Va);此外,在时隙结束时,从介质访问控制(Media Access Control,简称:MAC)发出用于控制峰值检测电路41进行复位的控制信号,为获取下一个时隙的第一参考电平与第二参考电平做好准备。 Circuit output Va - sent from the third amplifier (A3) 45, to give -Voffset = V-0.5 X (Vp-Va); in addition, at the end of the time slot, the media access control (Media Access Control, abbreviated: MAC ) emits peak detection circuit 41 for controlling a control signal is reset, in order to obtain a first reference level ready for the next slot and a second reference level.

[0099] 图15为图13所示实施例中阈值重建电路的又一个结构示意图,图13所示实施例中的阈值重建电路也可以对阈值重建电路50的输入信号采用顶部检测和底部检测的方法;具体地,峰值检测电路51的顶部电平Vp,谷值检测电路52的谷值电平\,将顶部电平Vp与谷值电平Vb送给第一放大器(Al)53的输入端,则第一放大器53的输出为顶部电平Vp与谷值电平Vb的差值的四分之一,即0.25 X (Vp-Vb),将第一放大器(Al) 53的输出0.25X (Vp-Vb)和谷值电平Vb送给第二放大器(A2) 54得到第一参考电平+Vtjffset =Vb+0.75 X (Vp-Vb),将第一放大器(Al) 53 的输出+Voffset = Vb+0.75 X (Vp-Vb)和谷值电平Vb送给第三放大器(A3) 55得到第二参考电平-Vtjffset = Vb+0.25X (Vp-Vb);此外,MAC送来的复位信号对峰值检测电路51和谷值检测电路52同时复位,为获取下一个时隙的第一参考电平与第二参考电平做好准备。 [0099] FIG 15 FIG 13 shows a further block diagram representation of the threshold reconstruction circuit embodiment of FIG. 13 embodiment the threshold reconstruction circuit embodiment may be an input signal threshold reconstruction circuit 50 is employed as shown in the top detection and bottom detection method; specifically, the peak detection circuit 51 of the top level Vp, the bottom level of the bottom value detection circuit 52 \, Vp and the top level and bottom level Vb to the first amplifier input (Al) 53 of , the output of the first amplifier 53 is a quarter of the top level and bottom level Vp Vb difference, i.e., 0.25 X (Vp-Vb), the first amplifier (Al) 53 0.25X output ( Vp-Vb) and a bottom level Vb to the second amplifier (A2) 54 to give Vtjffset =, the output of the first reference level + Vb + 0.75 X (Vp-Vb) a first amplifier (Al) 53 of + Voffset = Vb + 0.75 X (Vp-Vb) and a bottom level Vb to the third amplifier (A3) 55 to obtain a second reference level -Vtjffset = Vb + 0.25X (Vp-Vb); in addition, MAC sent at the same time the reset signal reset the peak detection circuit 51 and valley detection circuit 52, to acquire the next slot to prepare a first reference level and a second reference level.

[0100] 进一步地,本发明实施例还提供一种信号处理系统,所述信号处理系统可以为PON系统。 [0100] Further, embodiments of the present invention further provides a signal processing system, the signal processing system may be a PON system. 图16为本发明信号处理系统实施例的结构示意图,如图16所示,本实施例包括:第一信号处理装置61、第二信号处理装置62 ;其中,所述第一信号处理装置61可以为ONU的发射设备,所述第二信号处理装置可以为OLT的接收设备。 The signal processing system of FIG 16 a schematic structural diagram of the embodiment of the present invention, shown in Figure 16, the present embodiment comprises: a first signal processing device 61, second signal processing means 62; wherein said first signal processing means 61 may ONU is transmitting device, the second signal processing means may receive the OLT apparatus. 为便于理解,图16仅是示意性地画出一第一信号处理装置,应当理解,在具体实施PON系统中,所述第一信号处理装置可以为多个,且所述多个第一信号处理装置可以通过光纤网络连接到所述第二信号处理装置。 To facilitate understanding, FIG. 16 is merely shown schematically a first signal processing apparatus, it will be appreciated that, in the particular embodiment PON system, said first signal processing means may be a plurality, and the plurality of first signals processing means may be connected to the second signal processing unit via optical fiber networks.

[0101] 其中,第一信号处理装置61,用于将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,将所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成双二进制光信号,并将所述双二进制光信号发送给第二信号处理装置62,其中,所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度; [0101] wherein the first signal processing means 61 for the level of the original signal is a first level signal and a second level signal precoding halve the rate of formation, the first signal and the level of second level signal simultaneously drive the laser so that the laser generates a duobinary optical signal, and a duobinary optical signal to the second signal processing means 62, wherein the phase of the clock signal with a first level the second clock phase level signal is 180 degrees;

[0102] 第二信号处理装置62将从第一信号处理装置61接收到的双二进制光信号转换成电信号,将所述电信号与电平偏移量进行比较后生成第一二进制序列与第二二进制序列,将所述第一二进制序列与所述第二二进制序列通过与门相与恢复出原始电平信号。 After [0102] 62 second signal processing means converts a first signal processing device 61 from the duobinary optical signal received into an electrical signal, the electrical signal to the level shift amount compared to generate a first binary sequence and a second binary sequence, the binary sequence of the first sequence and the second binary gate by phase and recover the original signal level.

[0103] 本发明实施例提供的信号处理系统,通过第一信号处理装置61将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,形成双二进制的电平信号,由于第一电平信号的时钟相位与第二电平信号的时钟相位相差180度,形成了双二进制的电平信号,通过将该第一电平信号与第二电平信号驱动激光器,使得激光器生成并输出的双二进制光信号携带的信息速率提高了一倍,因此实现了在现有激光器器件的基础上提高了PON网络中的数据传输速率;通过第二信号处理装置62将电信号与两个参考电平分别进行比较后生成第一二进制序列与第二二进制序列,将第一二进制序列与第二二进制序列通过与门相与恢复出原始电平信号,实现了从三电平到二进制信号的转换,完成了数据速率的恢复。 [0103] an electrical signal processing system according to an embodiment of the present invention, the level of the original signal is a first level signal and a second level signal pre-coding rate half formed by the first signal processing device 61, formed duobinary level signal, since the phase of the clock phase of the clock signal and the second level a first level signal is 180 degrees to form a duobinary signal level, the first level signal by driving the laser with a second level signal , and such that the laser generates an optical duobinary signal rate information carried by the output doubled, thus achieving improved data transfer rate of the PON network on the basis of the conventional laser device; a second signal processing device 62 by electric after the reference level signal and the two are compared to generate a first binary sequence and the second binary sequence, the binary sequence of a first sequence and the second binary gate by the original level of the phase recovered signal, to achieve a three-level transition from the binary signal, the data rate recovery is complete.

[0104] 作为本发明实施例的一个应用,所述第一信号处理装置61可以采用图4和图5所示实施例作为ONU的发射设备,所述第一信号处理装置61可以采用图11和图12所述实施例作为OLT的接收设备。 [0104] As one application of the embodiment of the invention, the first signal processing apparatus 61 may be employed as shown in FIG. 4 and FIG. 5 as an embodiment of the ONU transmitting device, said first signal processing means 11 and 61 may be employed the embodiment of FIG. 12 as the receiving apparatus OLT.

[0105] 为了更清楚的说明本发明实施例如何实现将接收到的光信号恢复出原始数据,下面结合本发明实施例的仿真结果进行示例性说明;图17为本发明实施例限幅放大器的输入信号的时序波形示意图,图18为图17所示时序波形的频谱示意图;图19为本发明实施例限幅放大器的输出信号的时序波形示意图,图20为图19所示时序波形的频谱示意图;如图17所示,限幅放大器的输入信号共有三种状态:0、1、2 ;如图18所示,该三种状态对应频谱带宽为2.5GHz (赫兹);经过限幅放大器后,如图19所示,限幅放大器的输出信号共有两种状态:0、1 ;如图20,该两种状态对应的频谱带宽为5GHz (赫兹),使得本发明实施例可以采用低速率的激光驱动器(LDD)和激光器来对高速数字信号进行调制、传输;并在接收端将完成数据速率的恢复。 [0105] In order to more clearly illustrate how the embodiment of the present invention to achieve the received optical signal to recover the original data, the following embodiments in conjunction with the simulation results of the embodiment of the present invention is illustrative; in Example 17 of the present embodiment of the invention the limiter amplifier a timing waveform diagram of an input signal, a spectrum 18 is a timing diagram of a waveform shown in FIG. 17; FIG. 19 is a schematic diagram of a timing waveform of the output signal of the limiter amplifier of the embodiment of the present embodiment of the invention, FIG 20 is a schematic diagram of the frequency spectrum of the waveform shown in the timing 19 ; shown in Figure 17, the input signal of the limiter amplifier There are three states: 0, 1; 18, corresponding to the three states of 2.5GHz spectral bandwidth (Hz); through the limiting amplifier, , the output signal of the limiter amplifier 19 of FIG total of two states: 0, 1; Fig. 20, corresponding to the two states 5GHz frequency spectrum bandwidth (Hz), such embodiments may employ a low rate laser according to the present invention driver (LDD), and a laser is modulated, high-speed digital signal transmission; and to complete the recovery at the receiving end the data rate.

[0106] 图21为本发明实施例一个传输函数的示意图,如图21所示,本发明实施例所采用的双限幅放大器(第一限幅放大器、第二限幅放大器)、双门限(第一参考电平、第二参考电平)、三电平输入(0、1、2)对应的传输函数相当于一个整流器与平方律检波电路,并且经过限幅放大器之后,输出信号的频谱带宽恢复到了5GHz (赫兹)。 [0106] FIG 21 a schematic view of a transfer function according to embodiments of the present invention, as shown in FIG bis limiting amplifier used in embodiments of the present invention (first limiter amplifier, a second limiting amplifier), bis threshold (21 a first reference level, a second reference level), the tri-level input (0,1,2) corresponding to the transfer function corresponding to a square-law detector and rectifier circuit, and after a limiting amplifier, the spectral bandwidth of the output signal returned to 5GHz (Hz).

[0107] 进一步地,上述本发明实施例,将要发射的高速信号经过预编码后分成两路速率减半的信号(即:第一电平信号与第二电平信号),将这两路信号同时去驱动调制同一个激光器,因此使得从激光器发射出去的光信号的带宽减半;本发明实施例,通过利用低速的激光器和驱动器,完成了高速信号的调制、传输;在接收端可采用低速的光电检测器件(例如:雪崩光电二极管(Avalanche Photodetector,简称:APD)或者PIN管)将光信号转换成电信号,经过跨阻放大器(TIA)将由光电检测器件产生的电流信号转换成电压信号后送给第一限幅放大器与第二限幅放大器进行限幅放大,两个参考电平进行限幅放大,完成了数据速率的恢复,使得限幅放大后的带宽是限幅前的两倍。 [0107] Further, embodiments of the present invention, the high-speed signal to be transmitted through the precoded signal is divided into two half rate (ie: a first signal level and a second level signal), the two signals simultaneously modulating the same to drive a laser, so that the bandwidth of the optical signal emitted from the laser out half; embodiment of the present invention, by using a low speed and the laser driver, high-speed signal modulation completed, the transmission; low speed may be employed at the receiving end after (APD) or PIN diode, for example:: an avalanche photodiode (avalanche photodetector, short) for converting an optical signal into an electrical signal, convert the current signal through the transimpedance amplifier (TIA) generated by the photoelectric detection device into a voltage signal of the photodetector means to the first limiter amplifier and the second amplifier limiter limiting amplifier, two reference levels for limiting amplifier, recovery is complete and data rate, such that the bandwidth of the limiting amplifier before the threshold is twice the web. 此外,由于光物理层成本主要由光器件价格决定,并且光通信设备中的光器件成本对数据传输速率很敏感,现有的IOG的激光器器件价格是IG的激光器器件价格的30倍左右,而电芯片价格对数据传输速率并不敏感,因此通过采用本发明实施例的技术方案,在基于双二进制编码的基础上将数据传输速率提升一倍,但光器件的成本保持不变。 Further, since the optical physical layer is mainly determined by the cost price of the optical device, optical device and cost of the optical communication device is very sensitive to data transmission rate, the price of a conventional laser device IOG is about 30 times the price of the IG laser device, and chip price is not sensitive to electrical data transmission rate. Therefore, by using the technical solutions of the embodiments of the present invention, based on duobinary encoded base data transmission rate doubled, but the cost of the optical device remains unchanged.

[0108] 所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、设备、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。 [0108] Those skilled in the art may clearly understand that, for convenience and brevity of description, specific working process of the foregoing system, apparatus, modules and units may refer to corresponding processes in the foregoing method embodiments, and will not then repeat.

[0109] 本领域普通技术人员可以理解:实现上述实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:R0M、RAM、磁碟或者光盘等各种可以存储程序代码的介质。 [0109] Those of ordinary skill in the art will be appreciated that: all or part of a hardware implemented steps of the above embodiments may be associated by program instructions complete, the program may be stored in a computer readable storage medium, when the program execution , comprising the step of performing the above-described embodiment of the method; and the storage medium comprising: R0M, RAM, magnetic disk, optical disk or other media capable of storing program code.

[0110] 最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。 [0110] Finally, it should be noted that: the above embodiments are intended to illustrate the present invention, rather than limiting;. Although the present invention has been described in detail embodiments, those of ordinary skill in the art should be understood: may still be made to the technical solutions described in each embodiment of the modified or part of the technical features equivalents; as such modifications or replacements do not cause the essence of corresponding technical solutions to depart from the technical solutions of the embodiments of the present invention and scope.

Claims (6)

  1. 1.一种信号处理方法,其特征在于,包括: 将原始电平信号进行预编码,形成速率减半的第一电平信号和第二电平信号,所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度; 利用所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成并发送双二进制光信号; 其中,所述将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号包括: 采用异或门将原始电平信号与所述异或门的前一个输出结果相异或,得到预编码后的电平信号; 将所述预编码后的电平信号送入第一D触发器,输出第一电平信号,所述第一D触发器的时钟频率为所述原始电平信号的数据速率的一半; 将所述预编码后的电平信号送入第二D触发器,输出第二电平信号,所述第二D触发器的时钟频率为所述原始电平信号的数据速率的一半,且 1. A signal processing method characterized by comprising: an original level precoded signal, forming a first signal level and a second level signal halved rate, the first clock phase level signal and the second clock phase level signal is 180 degrees; level using the first signal and the second signal level simultaneously drive the laser so that the laser generating and transmitting optical duobinary signal; the level of the original signal is a first level signal and a second level signal forming rate by a pre-coding comprises: using the exclusive oR gate of the original signal and the output level of the result of the previous exclusive oR gate or dissimilar to give the level precoded signal; the signal level of the D flip-flop into a first pre-coding, a first output level signal, the clock frequency of the first D flip-flop to the original electrical half the data rate of the level of a signal; the signal level of the pre-coded into the second D flip-flop, the output signal of the second level, the clock frequency of the second D flip-flop to the original level signal half the data rate, and ,所述第二D触发器采用的时钟与所述第一D触发器采用的时钟之间的相位相差180度。 , The phase between the clock and the clock of the first D flip-flop used in the second D flip-flop 180 degrees employed.
  2. 2.根据权利要求1所述的方法,其特征在于,利用所述第一电平信号与所述第二电平信号同时驱动激光器包括: 采用所述第一电平信号和第二电平信号分别控制连接在激光器的阴极的第一三极管和第二三极管的状态,以驱动所述激光器的阴极,且所述第一三极管与第二三极管用于使所述第一电平信号和第二电平信号相互电隔离。 2. The method according to claim 1, characterized in that, level with the first signal and the second signal level simultaneously driving the laser comprising: using said first signal level and a second level signal controlling a cathode respectively connected to the first transistor and the laser state of the second transistor to drive the cathode of the laser, and the first transistor and the second transistor for causing the second level signal and a second level signal electrically isolated from each other.
  3. 3.根据权利要求2所述`的方法,其特征在于,所述生成双二进制光信号包括: 通过电源驱动所述激光器的阳极; 通过所述第一三极管和第二三极管控制所述激光器的驱动电流与所述第一电平信号和第二电平信号相加之和相对应,并使所述激光器根据所述驱动电流生成双二进制的光信号。 3. The method of the `according to claim 2, wherein the duobinary optical signal generating comprising: an anode power source driving the laser; through said first transistor and a second transistor controlling the said laser drive current to said first signal level and a second level signal corresponding to the sum of and, and the laser light generated duobinary signal current to the driving.
  4. 4.一种信号处理装置,其特征在于,包括: 预编码模块,用于将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度; 光信号生成模块,用于利用所述第一电平信号与所述第二电平信号同时驱动激光器,以使所述激光器生成双二进制光信号; 其中,所述预编码模块包括: 预编码单元,用于采用异或门将原始电平信号与所述异或门的前一个输出结果相异或,得到预编码后的电平信号; 第一处理单元,用于将所述预编码后的电平信号送入第一D触发器,输出第一电平信号,所述第一D触发器的时钟频率为所述原始电平信号的数据速率的一半; 第二处理单元,用于将所述预编码后的电平信号送入第二D触发器,输出第二电平信号,所述第二D触发器的时钟频率为所述原 A signal processing apparatus comprising: a precoding module configured to the original level of the first signal and the second signal level precoded signal level halved the rate of formation, the first electrical clock phase of the second clock phase level signal level of the signal is 180 degrees; the optical signal generating means for utilizing said first signal level and the second level signals simultaneously drive the laser so that the said laser generating an optical duobinary signal; wherein the precoding module comprises: a precoding unit for employing exclusive oR gate of the original signal and the level of a previous output of XOR gate or different, pre-encoded to give level signal; a first processing unit for the signal level of the D flip-flop into a first pre-coding, a first output level signal, the clock frequency of the first flip-flop to the D half the data rate of the original level of a signal; a second processing unit for the signal level of the pre-coding into the second D flip-flop, the output signal of the second level, the second D flip-flop clock frequency of the original 电平信号的数据速率的一半,其中所述第二D触发器采用的时钟与所述第一D触发器采用的时钟之间的相位相差180度。 Half the data rate of the level of the signal, the phase between the clock and the clock of the second D flip-flop employed wherein a first D flip-flop 180 degrees employed.
  5. 5.根据权利要求4所述的装置,其特征在于,所述光信号生成模块包括: 电隔离驱动单元,用于将所述第一电平信号与所述第二电平信号分别通过第一三极管与第二三极管同时驱动所述激光器的阴极,使所述第一电平信号与所述第二电平信号的相互电隔离; 电源驱动单元,用于通过电源驱动所述激光器的阳极; 光信号生成单元,用于通过所述激光器输出与所述第一电平信号和第二电平信号相加之和相对应电流信号相对应的光信号。 5. The apparatus as claimed in claim 4, wherein the optical signal generating module comprises: electrically isolating the drive unit for the first level signal and the second signal through the first level simultaneously driving transistor and the second transistor of the cathode of the laser, so that each is electrically isolated from the first level signal and the second level signal; a power drive unit for driving said laser by a power supply an anode; a light signal generating unit, for the laser output by the first signal level and a second level signal corresponding to the sum of the current and the signal corresponding to the optical signal.
  6. 6.一种信号处理系统,其特征在于,包括:第一信号处理装置、第二信号处理装置; 所述第一信号处理装置,用于将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号,利用所述第一电平信号与所述第二电平信号驱动激光器,以使所述激光器生成双二进制光信号,并将所述双二进制光信号发送给第二信号处理装置,其中所述第一电平信号的时钟相位与所述第二电平信号的时钟相位相差180度; 其中,所述第一信号处理装置将原始电平信号进行预编码形成速率减半的第一电平信号和第二电平信号包括:采用异或门将原始电平信号与所述异或门的前一个输出结果相异或,得到预编码后的电平信号;将所述预编码后的电平信号送入第一D触发器,输出第一电平信号,所述第一D触发器的时钟频率为所述原始电平信号的数据速率的一半;将所 A signal processing system comprising: a first signal processing means, second signal processing means; said first signal processing means, the original signal level for the rate of formation for the first half of precoded level signal and a second level signal, using the first level signal and the second signal level to drive the laser so that the laser generates a duobinary optical signal, and a duobinary optical signal is transmitted a second signal processing means, wherein said first clock phase level signal and the second clock phase level signal is 180 degrees; wherein said first signal processing means the signal level of the original pre-encoded halving the rate of formation of the first level signal and a second level signal comprising: using the exclusive oR gate of the original level before the signal and the XOR gate output of a different or level of the signal to obtain precoded; the level of the signal supplied to the first D flip-precoded output a first level signal, the clock frequency of the first D flip-flop is half the data rate of the original level signal; the 预编码后的电平信号送入第二D触发器,输出第二电平信号,所述第二D触发器的时钟频率为所述原始电平信号的数据速率的一半,且,所述第二D触发器采用的时钟与所述第一D触发器采用的时钟之间的相位相差180度; 所述第二信号处理装置,用于将从所述第一信号处理装置接收到的双二进制光信号转换成电信号,将所述电信号与电平偏移量进行比较后生成第一二进制序列与第二二进制序列,将所述第一二进制序列·与所述第二二进制序列通过与门相与恢复出原始电平信号。 Level of the signal after precoding into the second D flip-flop, the output signal of the second level, the clock frequency of the second D flip-flop is half the data rate of the original level of the signal, and the second clock phase between the two D flip-flops employed in the clock using the first D-flipflop 180 degrees; the second signal processing means for duobinary signal from said first processing means to received after converting the optical signals into electrical signals, the electrical signal and compares the level shift amount to generate a first binary sequence and the second binary sequence, the first and the second binary sequence * two binary sequence by phase gate signals to restore the original level.
CN 201010135821 2010-03-23 2010-03-23 Method, device and system for processing signals CN102202245B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010135821 CN102202245B (en) 2010-03-23 2010-03-23 Method, device and system for processing signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010135821 CN102202245B (en) 2010-03-23 2010-03-23 Method, device and system for processing signals

Publications (2)

Publication Number Publication Date
CN102202245A true CN102202245A (en) 2011-09-28
CN102202245B true CN102202245B (en) 2013-09-11

Family

ID=44662572

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010135821 CN102202245B (en) 2010-03-23 2010-03-23 Method, device and system for processing signals

Country Status (1)

Country Link
CN (1) CN102202245B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103310509B (en) * 2012-03-15 2016-12-14 深圳光启智能光子技术有限公司 A method for a communication access control system
CN103840882A (en) * 2012-11-21 2014-06-04 中兴通讯股份有限公司 Transmitting system, receiving system and communication system of optical fiber network, and signal modulation method
CN104243026B (en) * 2014-07-10 2016-05-04 腾讯科技(深圳)有限公司 Information sending method, an information receiving method, apparatus and system for

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585280A (en) 2003-07-30 2005-02-23 朗迅科技公司 Duobinary-to-binary signal converter
US7280767B1 (en) 2002-11-18 2007-10-09 Stratalight Communications, Inc. Half rate precoded data RZ transmitter
CN101141199A (en) 2007-02-28 2008-03-12 中兴通讯股份有限公司 Optical transmitting system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7280767B1 (en) 2002-11-18 2007-10-09 Stratalight Communications, Inc. Half rate precoded data RZ transmitter
CN1585280A (en) 2003-07-30 2005-02-23 朗迅科技公司 Duobinary-to-binary signal converter
CN101141199A (en) 2007-02-28 2008-03-12 中兴通讯股份有限公司 Optical transmitting system and method

Also Published As

Publication number Publication date Type
CN102202245A (en) 2011-09-28 application

Similar Documents

Publication Publication Date Title
US20080205437A1 (en) Multi-mode integrated circuit for use in optoelectronic devices
US7155134B2 (en) Pulse amplitude modulated transmission scheme for optical channels with soft decision decoding
US7149256B2 (en) Multilevel pulse position modulation for efficient fiber optic communication
US6473214B1 (en) Methods of and apparatus for optical signal transmission
Wei et al. Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and optical OFDM systems for data communication applications
US20150249501A1 (en) Optical module
US20030180055A1 (en) Optically calibrated pulse amplitude modulated transmission scheme for optical channels
US20090022497A1 (en) High-speed optical transceiver for infiniband and ethernet
US20090274471A1 (en) Method and apparatus for controlling the optical output power from a burst mode laser
US20100239264A1 (en) Optical transmission system, apparatus and method
CN102036135A (en) Orthogonal frequency division multiple access (OFDMA) passive optical network transmission system
CN102035789A (en) Optical orthogonal frequency division multiplexing (OFDM) dynamic allocation-based passive access network system and method
Rodes et al. High-speed 1550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction
Morea et al. Datarate adaptation for night-time energy savings in core networks
Chan et al. An all-optical packet header recognition scheme for self-routing packet networks
Chen et al. Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser
Zhang et al. 30km Downstream Transmission Using 4× 25Gb/s 4-PAM Modulation with Commercial 10Gbps TOSA and ROSA for 100Gb/s-PON
Ahn et al. A symmetric-structure CDMA-PON system and its implementation
Houtsma et al. APD-based duobinary direct detection receivers for 40 Gbps TDM-PON
Hernandez et al. Bit-error-rate analysis of a 16-user gigabit ethernet optical-CDMA (O-CDMA) technology demonstrator using wavelength/time codes
JP2007036607A (en) Optical communication system
Sanches et al. Analysis of high-speed optical wavelength/time CDMA networks using pulse-position modulation and forward error correction techniques
Zhong et al. Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device
Li et al. 28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON
WO2010119576A1 (en) Method of and system for detecting skew between parallel signals

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted