CN102186184B - Energy consumption calculation method of ZigBee wireless network node - Google Patents

Energy consumption calculation method of ZigBee wireless network node Download PDF

Info

Publication number
CN102186184B
CN102186184B CN 201110149806 CN201110149806A CN102186184B CN 102186184 B CN102186184 B CN 102186184B CN 201110149806 CN201110149806 CN 201110149806 CN 201110149806 A CN201110149806 A CN 201110149806A CN 102186184 B CN102186184 B CN 102186184B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
wireless network
data
network node
transmission
packet
Prior art date
Application number
CN 201110149806
Other languages
Chinese (zh)
Other versions
CN102186184A (en )
Inventor
金仁成
韩庆普
陈真清
王立鼎
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明提供一种ZigBee无线网络节点的能耗计算方法,采用无线网络节点工作电压、无线网络节点在发送状态和接收状态中各阶段的时长和工作电流、无线网络节点在休眠状态的工作电压和工作电流等参数,建立无线网络节点处于发送状态、接收状态和休眠状态的能耗数学模型,进而建立无线网络节点的总能耗数学模型,通过采用本发明提供的能耗计算方法,能够准确预测无线网络节点传输能耗代价和无线网络节点的剩余工作寿命,提高无线网络节点的自适应性,本发明提供的算法简单,测量数据容易获得,适用于实际计算能力有限的传感器节点。 The present invention provides a ZigBee wireless network node energy consumption calculation method, the operating voltage node wireless network, the wireless network node operating voltage and operating current length of each stage, in a radio network node in a dormant state and a transmission state and reception state operating current and other parameters, to establish a wireless network nodes in a transmission state, a reception state and a sleep state mathematical model of the energy consumption, the total energy consumption thereby establishing mathematical model of wireless network nodes, calculating power consumption by using the methods provided herein, it is possible to accurately predict the the remaining working life of the wireless network node costs and energy consumption of wireless network nodes, improve the adaptability of wireless network nodes, the algorithm of the present invention provides a simple, easy to obtain measurement data for limited practical computing power of sensor nodes.

Description

ZigBee无线网络节点的能耗计算方法 Energy consumption calculating method ZigBee wireless network node

技术领域 FIELD

[0001] 本发明涉及无线传感器网络能量管理技术领域,特别是一种ZigBee无线网络节点的能耗计算方法。 [0001] The present invention relates to the field of wireless sensor network energy management technology, in particular to a method for calculating the energy consumption of the radio network node ZigBee.

背景技术 Background technique

[0002] 无线传感器网络被定义为在目标区域部署大量微型传感器节点,这些网络化的节点协同工作并感知被监测区域的事件信息,获取用户所需数据,最后通过多跳网络传输给终端用户。 [0002] The wireless sensor network is defined as a large number of micro-sensor nodes deployed in the target area, these network nodes and work sensing region being monitored event information, the user acquires the desired data, and finally transmitted through the multi-hop network to the end user. 由于无线传感器网络监控能够节省过去繁琐枯燥的人力劳动,甚至能对过去人工难以实时监控的危险区域进行监控,在国防军事、环境监测、智能家居、医疗健康和工业控制等领域有着广泛的应用前景。 As the wireless sensor network monitoring can save past tedious boring human labor, and can even monitor the past artificial hard real-time monitoring of the danger zone, it has a broad application prospects in national defense, environmental monitoring, smart home, healthcare and industrial control and other fields . 但是能量消耗问题一直是限制无线传感器网络发展的瓶颈,直接影响着网络的生命周期。 But the problem has always been to limit the energy consumption of wireless sensor network development bottleneck, directly affects the life cycle of the network.

[0003] 通常节点采用能量有限电源,由于节点部署在野外无人区域,不可能频繁为其更换电源,一旦节点电量耗尽将导致节点失效退出网络,影响网络监测质量甚至导致网络瘫痪。 [0003] generally limited power source node using the energy, since no nodes are deployed in the field region, it is impossible for the frequent replacement of the power supply, once the battery is exhausted node exit node failure will result in the network, monitoring network quality impact even bring down the network. 因此如何提高节点能量的持久性成为一个关键问题。 So how to improve the durability of node energy becomes a key issue. 虽然可以采用太阳能,振动能等外界能量补充节点能量损失,但是这些装置往往会增加节点的体积和成本,仅适用于对体积要求不高的应用场合。 Although supplementary node using external energy loss of the solar energy, vibrational energy, etc., but these devices tend to increase the size and cost of the nodes, it applies only to the volume of the less demanding applications. 因此要延长节点的工作时间,必须合理有效使用电池电量。 So we want to work longer hours node must be rational and efficient use of battery power.

[0004] 通过对节点的耗电量分析,有利于合适选择节点传输方式,可最大化利用节点能量,从而延长节点工作时间。 [0004] Through analysis of the power consumption of the nodes, the nodes facilitate appropriate selection of a transmission mode, energy may be maximized using the node, thus extending the working time of the node. 在这里的数据传输方式包括:数据包大小,数据包的数,传输频率(或传输周期)等。 Here data transmission comprising: packet size, number of packets, the transmission frequency (or transmission period) and the like. 而能量模型的建立与评估是进行能耗分析的关键。 The establishment and evaluation of energy model is the key to perform energy analysis.

[0005] 围绕无线传感器网络能量管理,目前已经提出大量能量模型。 [0005] around energy management in wireless sensor networks, a large number of the current energy model has been proposed. 其中大部分都是基于MAC层或路由协议能耗的优化策略而建立的,其计算过程复杂,相对于有限计算能力的单片机,这些算法会引起处理器较多的数据处理能耗,而且这些理论模型与实际情况相比存在较大的差异,一般多用于仿真分析。 Most of which are based on the MAC layer routing protocols or to optimize energy consumption policy established, the calculation process is complex, with respect to a limited computing power of the microcontroller, which data processing algorithms cause more processor power consumption, and these theories model and the actual situation there is a big difference compared to, generally used for simulation. 而现有基于ZigBee通信协议的无线网络产品多采用厂家提供成熟的协议,MAC层和路由协议基本固定。 The existing network products based on ZigBee wireless communication protocol provided by the manufacturer to use more sophisticated protocol, MAC layer routing protocols and substantially fixed. 虽然Ivan等在CC2420射频收发器平台上建立了一种用于评估IEEE802.15.4低速无线个域网的能量模型,但IEEE802.15.4模型只是规定了ZigBee协议底层标准,对使用基于ZigBee通信协议的无线网络产品节点的能量评估仍存在不足。 Although Ivan established a CC2420 RF transceiver on the internet for evaluating an energy model IEEE802.15.4 low speed wireless personal area network, but only provides IEEE802.15.4 ZigBee protocol model underlying standards, using ZigBee-based wireless communication protocol energy evaluation network node products is still insufficient.

[0006] 专利文献20091033505.7公开了无线传感网络中的实际能量模型及功率优化控制方法,但该文献所公开的能量模型并没有具体实现公式,而且这些模型都是针对特定的节点,需要根据该节点所使用无线网络产品的特性,来获得相关参数,该文献公开的实际能量模型不具有通用性,其算法复杂。 [0006] Patent Document 20,091,033,505.7 discloses a model and actual energy power wireless sensor network optimization control method, but the energy model disclosed in this document is not specifically achieved formulas, and these models are directed at specific nodes, the need to characteristics of the wireless network nodes in the product used to obtain the relevant parameters, the actual energy model disclosed in this document does not have versatility, the algorithm complexity.

[0007]目前尚未发现对ZigBee无线网络节点的能耗进行计算的通用方法的公开文献。 [0007] It has not been found that energy consumption ZigBee wireless network node performs publication general method of calculation.

发明内容 SUMMARY

[0008] 有鉴于此,本发明的目的是,提供一种以节点工作电流、节点工作电压、数据发送、接收相关时长为参数的ZigBee无线网络节点的能耗计算方法,该能耗计算方法在ZigBee无线网络中具有通用性。 [0008] In view of this, an object of the present invention is to provide a working current node, the operating voltage node, a data transmission, power consumption calculation method ZigBee wireless network node is received length parameter related to the energy consumption calculation method ZigBee wireless network versatility.

[0009] 为了实现上述目的,本发明采用如下技术方案: [0009] To achieve the above object, the present invention adopts the following technical solution:

[0010] 一种ZigBee无线网络节点的能耗计算方法,包括: [0010] A method for calculating the energy consumption ZigBee wireless network nodes, comprising:

[0011] 获得无线网络节点的工作电压V ; [0011] obtain wireless network node operating voltage V;

[0012] 获得无线网络节点发送一个数据包的发送周期时长Tftans ; [0012] Tftans obtain wireless network node sending a long period of a data packet transmission;

[0013] 将所述发送周期的数据等待阶段放大合并到数据侦听和接收阶段,将所述发送周期简化为数据侦听和接收阶段、数据处理阶段、数据发送阶段; [0013] The data transmission cycle data is incorporated into the amplification stage to wait and listen for the reception stage, the transmission period data to simplify the listener and receiving phase, the data processing stage, the data transmission phase;

[0014] 获得所述发送周期的下列参数:数据侦听和接收阶段时长Tkx,数据侦听和接收阶段工作电流Ικχ,数据处理阶段时长τωΝ,数据处理阶段工作电流I.,数据发送阶段工作电流 [0014] the transmission period obtained the following parameters: length Tkx listen for and receive data phase, the data phase of listening and receiving current Ικχ, data processing stage length τωΝ, the data processing phase of the current I., the data transmission phase of the current

T.丄TX » T. Shang TX »

[0015] 获得无线网络节点对一个数据包的接收周期的下列参数:确认帧发送阶段工作电流Im,数据处理阶段时长Tam,数据处理阶段工作电流Iam,数据侦听和接收阶段工作电流 [0015] The following parameters obtained to the radio network node of a packet reception period: the acknowledgment frame transmission phase of the current Im, a data processing stage length Tam, data processing stage operating current Iam, listen for and receive the data phase of the current

T.丄RXl » T. Shang RXl »

[0016] 获得无线网络节点休眠电流Isleep和无线网络节点休眠时间Tsleep ; [0016] Sleep obtain wireless network node and a radio network node current Isleep sleeping time Tsleep;

[0017] 计算所述发送一个数据包实际时间与计算时间的比例因子k,计算步骤如下••第一步,通过无线网络节点发送一个已知固定长度的数据包,并获得在所述数据包在发送周期中的数据发送阶段的时长Tm;第二步,计算发送一个数据包实际时间与计算时间的比例 [0017] Calculation of the actual data packet transmission time and a calculation time scaling factor k, the following calculation step •• a first step, transmitting a known fixed length data packets over the wireless network node, and obtain the data packet when long data transmission phase in the transmission cycle Tm; a second step of calculating a ratio of the transmission packet with the actual time of computation time

Figure CN102186184BD00041

因子k: Factor k:

Figure CN102186184BD00042

中Ihffiid为数据包头开销字节数;lpac:k为一个数据包中有效字 Ihffiid header overhead in the number of bytes of data; lpac: k is a valid word packet

节的长度,Ihead与Ipadt之和为所述一个已知固定长度的数据包的长度; The length of the segments, Ihead Ipadt with the sum of a fixed length packet of known length;

(II / Wg (II / Wg

[0018] 计算所述发送周期的数据发送阶段时长= Xk,式中Ihead为数据 [0018] When calculating the transmission period data transmission phase length = Xk, where the data Ihead

包头开销字节数;lpadt为一个数据包中有效字节的长度;k为发送一个数据包实际时间与计算时间的比例因子k; Number of header overhead bytes; lpadt a significant byte packet length; K to transmit a data packet with the actual time scaling factor computation time K;

88 88

[0019] 计算所述接收周期的确认帧发送阶段时长Lcx 式中k为发送一个数据 [0019] said received transmission frame period confirmation stage length Lcx wherein k is a data transmission

2!)U 2!) U

包实际时间与计算时间的比例因子k ; The actual packet time scale factor calculation time K;

[0020] 获得无线网络节点发送有效数据包的数量M, [0020] to obtain a valid wireless network node transmits the packet number M,

Figure CN102186184BD00043

式中N为无线网 Where N is a wireless network

pack pack

络节点发送数据包总字节数;lpadt为一个数据包的有效字节长度;p为统计上IK个数据包的丢包率; The network node transmits the total number of bytes of a packet; lpadt a byte length of the effective packet; p is the packet loss rate statistics IK data packet;

[0021] 计算无线网络节点处于发送状态的能耗Etx: [0021] calculated energy Etx radio network node in a transmission state:

[0022] Etx (TTrans, Tcon, M) — MXVX [IτχX Ttx+IC0NX Tcon+IEXX (TTrans-TTX-TC0N)] [0022] Etx (TTrans, Tcon, M) - MXVX [IτχX Ttx + IC0NX Tcon + IEXX (TTrans-TTX-TC0N)]

[0023] 计算无线网络节点处于接收状态的能耗Ekx: [0023] calculating the wireless network node is in a receive state energy Ekx:

[0024] Eex(TTrans, Tconi, M) — MX VX {ηX (IackXTACK+I⑶N1XT⑶N1)+IrxiX [TTrans-nX (TACK+T⑶N1)]}式中:n为无线网络节点在一个接收周期内接收数据包的个数; [0024] Eex (TTrans, Tconi, M) - MX VX {ηX (IackXTACK + I⑶N1XT⑶N1) + IrxiX [TTrans-nX (TACK + T⑶N1)]} in which: n is a wireless network node receives the data packet in a receiving cycle number;

[0025] 计算无线网络节点处于休眠状态的能耗Esleep: [0025] calculating the wireless network node in a dormant state energy Esleep:

[0026] [0026]

Figure CN102186184BD00044

[0027] 计算无线网络节点的总能耗E: [0027] The radio network node calculates the total energy consumption E:

[0028] E = ETX+EKXXG+Esleep,式中G为向无线网络节点发送数据的节点数量。 [0028] E = ETX + EKXXG + Esleep, wherein G is the number of nodes transmitting data to the wireless network nodes.

[0029] 本发明的有益效果是,本发明能够实现ZigBee无线网络节点的能耗计算,本发明采用无线网络节点的工作电流、工作电压、有效数据包的数量等可查询、可测量或可设置参数,建立了无线网络节点的能耗模型,通过采用本发明提供的能耗计算方法,能够准确预测无线网络节点传输能耗代价和无线网络节点的剩余工作寿命,提高节点的自适应性,本发明提供的算法简单,测量数据容易获得,适用于实际计算能力有限的传感器节点。 [0029] Advantageous effects of the present invention, the present invention enables energy consumption calculation ZigBee wireless network nodes, the present invention employs a wireless network nodes operating current, operating voltage, and so the number of valid packets can be found, or may be provided measurable parameter, the energy consumption model established wireless network nodes, calculating power consumption by using the method provided by the invention can accurately predict the remaining life of the wireless network node working costs and energy consumption of wireless network nodes, nodes improve the adaptability of the present algorithm invention provides a simple, easy to obtain measurement data for limited practical computing power of sensor nodes.

附图说明 BRIEF DESCRIPTION

[0030] 图1获取无线网络节点实验数据的测量装置; [0030] FIG measuring apparatus 1 acquires the experimental data of wireless network nodes;

[0031] 图2无线网络节点处于发送状态的实测工作电流波形图; Found operating current waveform of FIG. [0031] FIG. 2 is transmitting radio network node state;

[0032] 图3无线网络节点处于发送状态的工作电流简化模型; Operating current simplified model [0032] FIG. 3 is transmitting radio network node state;

[0033] 图4无线网络节点处于接收状态的实测工作电流波形图; [0033] Found operating current waveform diagram in a receiving radio network node state in FIG 4;

[0034]图5无线网络节点处于接收状态的工作电流简化模型。 Operating current simplified model [0034] FIG. 5 radio network node is in a receive state.

具体实施例 Specific Example

[0035] 下面将结合附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域技术人员所获得的所有其他实施例,都属于本发明保护范围。 [0035] below with the accompanying drawings, the technical solutions in the embodiments of the present invention will be clearly and completely described, obviously, the described embodiments are merely part of the invention embodiment, but not all embodiments, based on the present invention embodiment, all other embodiments obtained by those skilled in the art fall within the scope of the invention.

[0036] ZigBee无线网络的数据传输为半双工工作方式,其节点分为三种状态,发送状态、接收状态和休眠状态。 Data transmission [0036] ZigBee is a wireless network in half duplex mode, which nodes are divided into three states, the transmission state, receiving state and a sleep state.

[0037] 本实施例系对采用JennicJN5148无线微控制器的ZigBee无线网络节点的能耗的计算。 Calculation [0037] Examples based on the present embodiment use energy JennicJN5148 microcontroller ZigBee wireless radio network node.

[0038] 通过查询数据手册可得知JennicJN5148无线微控制器的工作电压3.3V,即本实施例的无线网络节点的工作电压V为3.7V。 [0038] The working voltage of 3.3V JennicJN5148 can know wireless microcontroller by querying the data sheet, the operating voltage V, i.e. the radio network node of the present embodiment is 3.7V.

[0039] Zigbee-pro协议中应用层规定数据包的最大有效字节长度为82字节,最大包长为127字节,所以可得数据包头开销lhead=127-82=45字节。 [0039] Most significant byte of length Zigbee-pro predetermined application layer protocol data packet is 82 bytes, the maximum packet length of 127 bytes, the available data header overhead lhead = 127-82 = 45 bytes.

[0040] 通过准确记录发送数据包和接收数据包,在发送数据包中包含该包的顺序数,接收节点根据这个顺序数判断发送包的个数,并在本地记录实际接收到的数据包量,根据这两个序数确定节点丢包率P,本实施例通过记录的最近IK个数据包的丢包率P来预测当前丢包的可能性。 The amount of data packets [0040] By accurately recording send packets and receive packets, the transmission data contained in the packet sequence number of the packet, the receiving node determines the number of transmission packet according to this sequence number, and actually received at the locally recorded this two ordinal packet loss rate determination node P according to the present embodiment to predict the likelihood of the current packet loss rate of packet loss by the latest data packet P IK recorded.

[0041] 本实施例共有四个无线网络节点,即一个无线网络簇首节点、三个无线网络子节点。 [0041] There are four radio network node according to the present embodiment, i.e., a wireless network cluster heads, three sub-node wireless network.

[0042] 本实施例无线网络子节点的发送数据量N为100KB,一个数据包的有效字节长度Ipack为64Byte,一个数据包头开销字节数Ihead为45Byte,丢包率p为1.25%。 The amount of transmission data [0042] This embodiment of a wireless network child node N is 100KB, the effective byte length of one pack is Ipack 64Byte, a packet header overhead bytes Ihead is 45Byte, p is the packet loss ratio 1.25%.

[0043] 按照如图1所示,将示波器8通过电阻Rl,分别与可调直流稳压电源9和无线网络节点装置10相连接,分别测量本实施例中一个无线网络簇首节和三个无线网络子节点在发送状态、接收状态、休眠状态的工作电流波形。 [0043] 1 according to the oscilloscope 8 via a resistor Rl, respectively 9 and 10 is connected to the wireless network nodes adjustable DC power supply apparatus, the present embodiment were measured in a wireless network and the first section of three embodiments cluster radio network sub-node transmitting state, receiving state, a sleep state operating current waveform.

[0044] 需要说明的是,本实施例对无线网络族首节点和子节点的能耗计算采用相同的计算方法,为了方便叙述,无线网络簇首节点和子节点统称为无线网络节点。 [0044] Incidentally, the present embodiment of the same method for calculating the energy consumption of the wireless network the first group nodes and child nodes are calculated using, for convenience of description, the wireless network node cluster head node and child nodes are collectively referred to as a wireless network.

[0045] 当无线网络节点处于发送状态时,示波器8将显示如图2所示的工作电流波形,如图2所示,无线网络节点的一个完整发送周期包括数据侦听和接收阶段1,数据发送阶段2、数据处理阶段3,等待阶段4四个阶段;其中数据侦听和接收阶段I是指当前并没有数据,但无线网络节点处于接收状态以监听信道里面的信号,由于无线网络节点在侦听时和接收数据时功耗上基本几乎没有区别,而时间上也是连续的,因此将这两个过程等效为一个阶段,等待阶段4是无线网络节点在发送数据之前使用CSMA-CA协议监听信道忙之后会回避的时间(无线网络节点处于接收状态时不使用),时间长度与信道质量有关,如果当前信道被占用,则等待时间较长,如果能量检测发现当前信道可用,数据立刻发送出去,因此等待阶段4时间不确定,为方便计算,将等待阶段4放大合并到数 [0045] When the wireless network nodes in a transmission state, the oscilloscope will display 8 operating current waveform as shown in FIG. 2, as shown, a complete transmission cycle of the wireless network node 2 comprises a data receiving phase 1 and the listener, data phase 2 transmission, the data processing stage 3, stage 4 wait four phases; listen for and receive data wherein phase I is the current, and there is no data, the wireless network node is in a receive state for monitoring the channel inside the signal, the radio network node when the listener and substantially almost no data is received on the power differences, and also continuous in time, and therefore the two processes is equivalent to a stage, the stage 4 is waiting for the wireless network nodes using the CSMA-CA protocol before sending the data listen to the channel after a busy will avoid time (without using the wireless network node is in a receiving state), the length of time the channel quality, and if the current channel is occupied, then wait for a long time, if the energy detection discover the current channel is available, the data transmission immediately out, so uncertain time waiting phase 4, for the convenience of calculation, the waiting phase number 4 to an enlarged combined 侦听和接收阶段1,即将等待阶段4的工作电流等同于数据侦听和接收阶段I的工作电流,等待阶段4的时长与数据侦听和接收阶段I的时长合并;形成如图3所示的工作电流简化模型,如图3所示,一个完整发送周期简化为三个阶段,即数据侦听和接收阶段1,数据发送阶段2,数据处理阶段3,根据图3可以得到无线网络节点在一个完整发送周期各阶段的工作电流,即:数据侦听和接收阶段I的工作电流Ikx为22.4mA,数据处理阶段3的工作电流ΙωΝ为25.6mA,数据发送阶段2的工作电流Itx为89.2mA。 Listen for and receive stage 1, waiting for the operating current is about 4 stages of the operating current is equal to the phase of the received data I and listening, waiting for a long time when I combined length listen for and receive the data phase of stage 4; FIG. 3 is formed operating current simplified model, as shown in FIG 3 a simplified complete transmission cycle into three stages, i.e., listen for and receive data phase 1, phase 2 data transmission, data processing stage 3, can be obtained in the radio network node 3 according to FIG. the operating current of each phase of a complete transmission cycle, namely: phase I data listen for and receive operating current Ikx is 22.4mA, the data processing phase of the current ΙωΝ 3 is 25.6mA, the data transmission phase of the current is 89.2mA Itx 2 .

[0046] 当无线网络节点处于接收状态时,示波器8将显示如图4所示的工作电流波形,如图4所示,无线网络节点一个完整的接收周期的包括确认帧发送阶段5、数据处理阶段6、数据侦听和接收阶段7三个阶段,图4简化后形成如图5所示的工作电流简化模型,根据图5可得到无线网络节点在一个完整接收周期各阶段的工作电流,即:确认帧发送阶段5的工作电流Im为51.5mA、数据处理阶段6的工作电流ΙωΝ1为25.6mA、数据侦听和接收阶段7的工作电流Im为22.4mA。 [0046] When the wireless network node is in a receive state, the oscilloscope will display 8 operating current waveform shown in FIG. 4, as shown, a complete cycle of reception of the radio network node transmits an acknowledgment frame comprises a stage 54, the data processing stage 6, listen for and receive data after 7 stages three stages, as shown in FIG. 4 simplified form the operating current simplified model shown in Figure 5, in various stages of a complete operating current reception period is obtained according to FIG. 5 wireless network nodes, i.e., : acknowledgment frame transmission phase of the current Im 5 is 51.5mA, the data processing phase of the current ΙωΝ1 6 is 25.6mA, listen for and receive the data phase of the current Im 7 is 22.4mA.

[0047] 当无线网络节点既不发送数据,亦不接收数据时,无线网络节点处于休眠状态,休眠节点的休眠时间可以由用户事先设定,也可以由簇首节点设置休眠时间,然后报告用户。 [0047] When the wireless data network node does not send nor receive data, the wireless network node in the sleep state, the sleep time dormant node may be set in advance by the user, may be set by the sleep time cluster head node, and then reports the user . 对于这两种情况,节点的休眠时间都是可知的。 In both cases, the sleep time nodes are known. 而休眠状态的电流Isleep,则可按照如图1所示的方式,通过示波器测量与传感器节点串联的检流电阻R的两端电压U,Isleep=U/检流电阻R的阻值。 Isleep sleep state and the current can be manner shown in Figure 1, the oscilloscope by measuring the sensor nodes sense resistor R in series with the voltage across the U, Isleep = U resistance / resistor R sense.

[0048] 本实施例无线网络节点发送一个数据包的发送周期的时长1\_为常量,系根据系统需求设定,本实施例无线网络节点发送一个数据包的发送周期Tftans设定为15ms。 [0048] Example embodiment of the present radio network node sending a packet transmission period length 1 \ _ is a constant set according to system requirements based, sends a packet transmission cycle embodiment of the present embodiment Tftans radio network node is set to 15ms.

[0049] 无线网络节点在一个发送周期中数据处理阶段3的时长ΤωΝ和无线网络节点在一个接收周期中数据处理阶段6的时长Tam通过无线网络节点内部定时器,即可捕获得到。 [0049] The radio network node data processing stage 3 ΤωΝ long and a receiving radio network node in the data processing phase at cycle length of 6 Tam wireless network node internal timer, to obtain captured in a transmission cycle.

[0050] 由于无线网络节点在数据发送过程中,发送一个数据包的实测时间与计算时间存在差距,在实际应用中通常通过发送一个数据包的实测时间与计算时间的比例因子k,来修 [0050] Since the wireless network node in the data transmission process, transmitting a packet with the time measured gap time is calculated, typically by a scale factor k sends a packet and calculation of the measured time period, in practical applications to repair

正计算时间,而获得发送一个数据包的实测时间,即+、Μ Μ间是'式中 Calculating time, send a data packet to obtain a measured time, i.e. +, Μ Μ between the 'formula

头测时 250 When measured 250

Ihead为数据包头开销字节数;lpat:k为一个数据包中有效字节的长度。 Ihead header overhead is the number of bytes of data; lpat: k is a packet of valid bytes in length.

[0051] 本实施例为获得实测时间与计算时间的比例因子k,采用如下步骤: [0051] This embodiment is obtained with the actual time scaling factor computation time k, using the following steps:

[0052] 首先,由本实施例无线网络节点发送一个长度为109字节的数据包,通过采用图1所示的测量方式,得到如图2所示的工作电流波形图,进而简化为如图3所示的工作电流简化模型,得到发送周期的数据发送阶段2时长Tm=8ms,即实测时间为8ms,依据 [0052] First, the transmission length of a radio network node embodiment of the present embodiment is a 109 byte packet, by using the measurement shown in Figure 1, to give the operating current waveform diagram shown in FIG. 2, FIG. 3 is a further simplified long working current simplified model represented by the transmission period data to obtain transmission phase 2:00 Tm = 8ms, i.e. the measured time of 8ms, based on

Figure CN102186184BD00071

实测时间,可以反推出是 Actual time may be counter-launch

Figure CN102186184BD00072

即本实施例无 That embodiment of the present embodiment without

线网络节点的实测时间与计算时间的比例因子k为2.29。 Found timeline network node and the computation time scaling factor k is 2.29.

[0053] 通过已知的一个数据包的有效字节长度lpaek、一个数据包头开销字节数Ihead,计算发送一个数据包的数据发送阶段时长Ttx为: [0053] By known lpaek significant byte length of a data packet, a packet header overhead bytes Ihead, when calculating the data transmission stage transmits one data packet length is Ttx:

[0054] [0054]

Figure CN102186184BD00073

[0055] 本实施例中无线网络节点在一个接收周期中确认帧发送阶段的时长TacxS: [0055] In the present embodiment, the wireless network node to confirm the frame length in a transmission stage TacxS receiving period:

Figure CN102186184BD00074

[0056] 需要说明的是,如果无线网络点节点为非可靠性传输,即不需要无线网络节点在接收阶段不需要发送确认帧,则Tm=O ; [0056] Incidentally, if the reliability of the wireless transmission network is non-point node, i.e., it does not need the wireless network nodes do not send an acknowledgment frame at the reception stage, Tm = O;

[0057] 通过已知的无线网络节点发送数据包总字节数N,统计上IK个数据包的丢包率P,一个数据包的有效字节长度Ipadt计算无线网络节点发送有效数据包的数量M为: [0057] The radio network node by a known total number of bytes transmitted packet N, the number of effective packet loss rate IK byte length data packet P, a packet radio network node Ipadt calculated statistically valid data packet transmission M is:

Figure CN102186184BD00075

[0058] 本实施例为两个节点一对一收发数据,即三个传感子节点依次向簇首节点传送数据、进入休眠,簇首节点每秒钟定时一次,并向上位机发送一个标记, [0058] The present embodiment is a one-two nodes transmit and receive data, i.e., three sensing child nodes sequentially transmit data to the cluster head node, going to sleep, the timing of a cluster head per second, and sends a flag PC ,

[0059] 因此时间仅精确到秒。 [0059] Thus time is only accurate to the second. 按照如图1所示方式测试,可以得到本实施例的整个数据传输过程中簇首节点的工作时间T为115s,每个子节点的休眠时间Ts1mp为78s。 Test manner shown in Figure 1, the present embodiment can be obtained during the entire data transmission according to the operating time T of the cluster head node 115S, the sleep time of each child node is Ts1mp 78s.

[0060] 由于组网数据和控制命令相对于传输数据量来说可以忽略,因此子节点接收状态能耗约为0,簇首节点发送状态能耗约为O。 [0060] Since the network data and control commands with respect to the amount of data transmission can be ignored, and therefore the child node consumes about reception state 0, the state of the transmission the energy consumption of approximately CH node O. 簇首节点不休眠则休眠状态能耗为O。 Cluster head node does not sleep the sleep state power consumption is O. 子节点在休眠和唤醒的过程中存在一定的延迟,为了避免碰撞,需要留出一定的空闲侦听时间,即除了接收3个子节点数据的接收状态时间后剩余的工作时间。 Child node there is a delay in the process of sleep and wake, to avoid collisions, requires a certain stay idle listening time, i.e. in addition to the reception state of the reception time data 3 child nodes remaining operating time. 因此,簇首节点的工作可以分为接收状态和空闲侦听状态。 Therefore, the work can be divided into cluster head node to receive and idle listening state. 簇首节点空闲侦听状态时间为:Tm = T-(T-Tsleep) X3 Cluster head idle listening state time is: Tm = T- (T-Tsleep) X3

[0061] = 115-(115-78) X 3 [0061] = 115- (115-78) X 3

[0062] = 4s [0062] = 4s

[0063] 在本实施例中,空闲侦听状态持续时间较短,实际操作中可以进一步减少。 [0063] In the present embodiment, the idle listening state for a short time, the actual operation can be further reduced. 综合空闲状态的电流和持续时间考虑,簇首节点空闲状态的能耗可以忽略,即簇首节点空闲状态能耗约为O。 Comprehensive idle current and duration considerations, energy cluster head node is idle state can be ignored, namely the idle state energy cluster head node is about O.

[0064] 本实施例的无线网络子节点处于发送状态的能量消耗为: [0064] The present energy child node wireless network embodiment in the state of consumption of transmission:

[0065] Etx (TTrans, Tcon, M) — MXVX [IτχX Ttx+IC0NX Tcon+IEXX (TTrans-TTX-TC0N)] [0065] Etx (TTrans, Tcon, M) - MXVX [IτχX Ttx + IC0NX Tcon + IEXX (TTrans-TTX-TC0N)]

[0066] = 1620X3.7X [89.2X8+25.6X2.9+22.4X (15-8-2.9) ] X IO-6 [0066] = 1620X3.7X [89.2X8 + 25.6X2.9 + 22.4X (15-8-2.9)] X IO-6

[0067] = 5.27280192J [0067] = 5.27280192J

[0068] 本实施例的无线网络子节点处于接收状态的能耗为: Energy [0068] The present wireless network embodiment in the child node is a reception state:

[0069] 由于子节点的组网数据相对于传输数据量来说可以忽略,因此 [0069] Since the data sub-network node with respect to the amount of data transmission can be ignored, so

[0070] Eex (TTrans, Tconi, M) — O[0071] 本实施例的无线网络子节点处于休眠状态的能耗为: [0070] Eex (TTrans, Tconi, M) - O [0071] The present wireless network embodiment of the child node's energy consumption in the sleep state:

[0072] Esleep (I5Ieep, Tsleep) — VX Isleep^ Tsleep [0072] Esleep (I5Ieep, Tsleep) - VX Isleep ^ Tsleep

[0073] = 3.7Χ0.1Χ78Χ1(Γ3 [0073] = 3.7Χ0.1Χ78Χ1 (Γ3

[0074] = 0.02886J [0074] = 0.02886J

[0075] 本实施例的无线网络子节点的总能耗为: [0075] The total energy consumption of the wireless network of the present embodiment is the sub-node is:

[0076] E = ETX+ERX+Esleep = 5.27280192+0+0.02886 = 5.30166192J [0076] E = ETX + ERX + Esleep = 5.27280192 + 0 + 0.02886 = 5.30166192J

[0077] 本实施例的无线网络簇首节点处于发送状态的能量消耗为: Energy [0077] In the radio network cluster head transmits embodiment in a state of consumption:

[0078] Etx (TTrans, Tcon, M) 一O [0078] Etx (TTrans, Tcon, M) a O

[0079] 本实施例的无线网络簇首节点处于接收一个子节点发送数据时的接收状态的能耗为: [0079] The wireless network node of the cluster head in the present embodiment receives a child node receives energy state when transmission data is:

[0080] Eex(TTrans, Tconi, M) — MX VX {ηX (IackXTACK+I⑶N1XT⑶N1)+IrxiX [TTrans-nX (TACK+T⑶N1)]} [0080] Eex (TTrans, Tconi, M) - MX VX {ηX (IackXTACK + I⑶N1XT⑶N1) + IrxiX [TTrans-nX (TACK + T⑶N1)]}

[0081] = 1620X3.7X {IX (51.5X0.8+25.6X5.9)+22.4X [15-1X (0.8+5.9)]} XI(T6 [0081] = 1620X3.7X {IX (51.5X0.8 + 25.6X5.9) + 22.4X [15-1X (0.8 + 5.9)]} XI (T6

[0082] = 2.26669104J [0082] = 2.26669104J

[0083] 需要说明的是,由于无线网络节点的接收周期由发送周期决定,同一无线网络节点可能按时间片接收几个节点的数据,因而η为换算成同一发送周期Tftans的接收数据包的个数,一对一传输时η=1。 [0083] Incidentally, since the receiving radio network node cycle is determined by a transmission cycle, the same radio network node may be a node receives data from several time slice, η is thus converted into the same transmission cycle Tftans a received data packet number, when one transmission η = 1.

[0084] 本实施例的无线网络簇首节点处于休眠状态的能耗为: Energy [0084] The wireless network node of the cluster head of the present embodiment is in the dormant state:

[0085] Esleep (Isle印,Tsle印)一O [0085] Esleep (Isle printing, Tsle printing) a O

[0086] 本实施例的无线网络簇首节点的总能耗为: [0086] The present embodiment is a wireless network cluster head node for the total energy consumption:

[0087] E = ETX+ERXXG+Esleep = 0+2.26669104X3+0 = 6.80007312J,需要说明的由于本实施例三个无线网络子节点均向无线网络簇首节点发送数据,因此G为3。 [0087] E = ETX + ERXXG + Esleep = 0 + 2.26669104X3 + 0 = 6.80007312J, it should be noted that since the present embodiment, three sub-node wireless network transmits data to the wireless network are cluster heads, so G is 3.

[0088] 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。 [0088] The above description is only preferred embodiments of the present invention, it is not intended to limit the invention to those skilled in the art, the present invention may have various changes and variations. 凡在本发明的更改和变化之内,所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。 Where the modifications and variations of the present invention, any modifications, equivalent substitutions and improvements should be included within the scope of the present invention.

Claims (1)

  1. 1.一种ZigBee无线网络节点的能耗计算方法,其特征在于,包括: 获得无线网络节点的工作电压V ; 获得无线网络节点发送一个数据包的发送周期时长Tftans ; 将所述发送周期的数据等待阶段放大合并到数据侦听和接收阶段,将所述发送周期简化为数据侦听和接收阶段、数据处理阶段、数据发送阶段;获得所述发送周期的下列参数:数据侦听和接收阶段时长Tkx,数据侦听和接收阶段工作电流Ικχ,数据处理阶段时长ΤωΝ,数据处理阶段工作电流ΙωΝ,数据发送阶段工作电流Itx ;获得无线网络节点对一个数据包的接收周期的下列参数:确认帧发送阶段工作电流ΙΜ,数据处理阶段时长Tam,数据处理阶段工作电流Iam,数据侦听和接收阶段工作电流 1. A method of calculating energy ZigBee wireless network nodes, wherein, comprising: obtaining a wireless network node operating voltage V; obtain wireless network node transmits a transmission cycle longer when Tftans data packet; transmitting said data period incorporated into the waiting phase amplification stage receiving data and listening, to simplify the transmission period data receiving and listening phase, the data processing stage, the data transmission phase; obtaining the transmission cycle following parameters: listening and receiving phase data length Tkx, data listen for and receive phase of current Ικχ, data processing stage length ΤωΝ, the data processing phase of the current ΙωΝ, the data transmission phase of the current Itx; obtain wireless network node of these parameters reception period one data packet: the acknowledgment frame transmission phase of the current ΙΜ, data processing stage length Tam, data processing stage operating current Iam, listen for and receive the data phase of the current
    Figure CN102186184BC00021
    获得无线网络节点休眠电流Isleep和无线网络节点休眠时间Tsleep ; 计算所述发送一个数据包实际时间与计算时间的比例因子k,计算步骤如下:第一步,通过无线网络节点发送一个已知固定长度的数据包,并获得在所述数据包在发送周期中的数据发送阶段的时长Tm;第二步,计算发送一个数据包实际时间与计算时间的比例因子 Sleep current obtain wireless network node and wireless network nodes Isleep sleeping time Tsleep; calculating the actual data packet transmission time and a calculation time scaling factor k, is calculated as follows: Step, a known fixed length transmitted over the wireless network node when the data packet and obtaining data packet transmitted in said transmission phase cycle length Tm; a second step of calculating the actual transmission time and a packet time scale factor calculation
    Figure CN102186184BC00022
    ;中Ihead为数据包头开销字节'数;;Ipack为一个数;据包中有■效字节■的长度,所述Ihead与所述Ipadt之和为所述一个已知固定长度的数据包的长度;计算所述发送周期的数据发送阶段时长=(/^+W)x8x^,式中lhead为数据包头开销字节数;lpadt为一个数据包中有效字节的长度冰为发送一个数据包实际时间与计算时间的比例因子k; 计算所述接收周期的确认帧发送阶段时长. 趴式中k为发送一个数据包实际时间与计算时间的比例因子k ; 获得无线网络节点发送有效数据包的数量M ; Ihead the packet header overhead byte is' number is a number ;; Ipack; data packet has a length of ■ ■ significant byte, the Ihead the sum of the Ipadt a known fixed length packets length; calculating the transmission period data transmission phase length = (/ ^ + W) x8x ^, wherein lhead number of overhead bytes of a packet header; lpadt transmitting a data packet as a valid data byte length of ice package actual time scale factor k calculated time; long when calculating the acknowledgment frame transmission stage reception cycle lie where k to transmit a packet actual time scale factor k calculated time; obtained radio network node transmits a valid packet the number of M
    Figure CN102186184BC00023
    式中N为无线网络节点发送数据包总字节数;lpadt为一个数据包的有效字节长度;p为统计上IK个数据包的丢包率; 计算无线网络节点处于发送状态的能耗Etx: Etx(TTransJ Tconj M) — MXVX [ITxX Ttx+I⑶NX Tcon+IrxX (TTrans_TTX-TC0N)] 计算无线网络节点处于接收状态的能耗Erx: Where N is the total number of bytes transmitted packet radio network node; lpadt valid byte length of one pack; p is the packet loss rate of packets IK statistically; calculating the wireless network nodes in the sending state energy Etx : Etx (TTransJ Tconj M) - MXVX [ITxX Ttx + I⑶NX Tcon + IrxX (TTrans_TTX-TC0N)] is calculated in the energy consumption of the wireless network nodes Erx reception state:
    Figure CN102186184BC00024
    式中:η为无线网络节点在一个接收周期内接收数据包的个数; 计算无线网络节点处于休眠状态的能耗Es1mp: Esleep (Isleep,^Sleep^ VX -^Sleep ^ ^Sleep 计算无线网络节点的总能耗E: E = ETX+EKXXG+Esleep,式中G为向无线网络节点发送数据的节点数量。 Where: η is the number of data packets received within a reception cycle to a wireless network nodes; computing the energy consumption Es1mp radio network node in a dormant state: Esleep (Isleep, ^ Sleep ^ VX - ^ Sleep ^ ^ Sleep calculating the wireless network node the total energy E: E = ETX + EKXXG + Esleep, wherein G is the number of nodes transmit data to the wireless network nodes.
CN 201110149806 2011-06-03 2011-06-03 Energy consumption calculation method of ZigBee wireless network node CN102186184B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110149806 CN102186184B (en) 2011-06-03 2011-06-03 Energy consumption calculation method of ZigBee wireless network node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110149806 CN102186184B (en) 2011-06-03 2011-06-03 Energy consumption calculation method of ZigBee wireless network node

Publications (2)

Publication Number Publication Date
CN102186184A true CN102186184A (en) 2011-09-14
CN102186184B true CN102186184B (en) 2013-11-06

Family

ID=44572242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110149806 CN102186184B (en) 2011-06-03 2011-06-03 Energy consumption calculation method of ZigBee wireless network node

Country Status (1)

Country Link
CN (1) CN102186184B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096445B (en) * 2013-02-05 2016-09-28 清华大学 Wireless sensor network task scheduling method and system based on the actual battery model
CN105551309B (en) * 2015-12-10 2018-03-27 上海海事大学 Since VHF communication supervision and oversight warning means Warning Method offshore

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009623A (en) 2007-01-29 2007-08-01 南京邮电大学 A wireless sensor network node and its implementation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101449525B (en) * 2006-04-29 2016-08-10 皇家飞利浦电子股份有限公司 Controlling the energy consumption of sensor nodes method and apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009623A (en) 2007-01-29 2007-08-01 南京邮电大学 A wireless sensor network node and its implementation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈真清.基于JN5148的WSN平台设计及节能研究.《中国优秀硕士学位论文全文数据库信息科技辑》.2011,正文第36-53页.

Also Published As

Publication number Publication date Type
CN102186184A (en) 2011-09-14 application

Similar Documents

Publication Publication Date Title
Jurdak et al. Radio sleep mode optimization in wireless sensor networks
Tiwari et al. Energy-efficient wireless sensor network design and implementation for condition-based maintenance
Huang et al. A comprehensive analysis of low-power operation for beacon-enabled IEEE 802.15. 4 wireless networks
CN101404118A (en) Parking position monitoring system, parking position monitoring sensor and parking position monitoring method
CN1845520A (en) Communication method between wireless sensor network node and gateway
Gezer et al. A ZigBee smart energy implementation for energy efficient buildings
CN101222397A (en) Wireless sensor network signal synchronous collection and quasi-live transmission system
CN102761941A (en) Wireless intelligent network protocol with ultra-low power consumption
US8681671B1 (en) System and method for reducing power used for radio transmission and reception
CN101087220A (en) Dormancy monitoring method for MAC layer of wireless sensor network
Chen et al. ZigBee technology and its application on wireless meter-reading system
US7986652B1 (en) System and method for adjusting power used in transmission in a wireless packet network
US20120220351A1 (en) Method and Apparatus for Reduced Power Consumption When Operating as a Bluetooth Low Energy Device
CN101808355A (en) System and method for testing consistency of industrial wireless network protocol
Calle et al. Measuring energy consumption in wireless sensor networks using GSP
CN102612122A (en) Low-power-consumption wireless sensor network system and controlling and awaking method thereof
Chen et al. A simulation model of IEEE 802.15. 4 in OMNeT++
US20130003715A1 (en) Connection setup for low energy wireless networks based on master device packet that includes timing information
US20110316676A1 (en) Apparatus and method for managing power-constrained wireless devices
Yanfei et al. Research on zigbee wireless sensors network based on modbus protocol
CN201637523U (en) Wireless pressure measuring system
Yan et al. Energy comparison and optimization of wireless body-area network technologies
CN201270092Y (en) Parking space monitoring system and parking space monitoring sensor
CN101534470A (en) System and method for tracking moving target based on wireless sensor network
Zhang et al. Energy-efficient routing for 2D grid wireless sensor networks

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted