CN102181232B - Composition for low downforce chemically mechanical polishing of coppers in ULSI (Ultra Large Scale Integrated Circuit) multi-layered copper wiring - Google Patents

Composition for low downforce chemically mechanical polishing of coppers in ULSI (Ultra Large Scale Integrated Circuit) multi-layered copper wiring Download PDF

Info

Publication number
CN102181232B
CN102181232B CN 201110065350 CN201110065350A CN102181232B CN 102181232 B CN102181232 B CN 102181232B CN 201110065350 CN201110065350 CN 201110065350 CN 201110065350 A CN201110065350 A CN 201110065350A CN 102181232 B CN102181232 B CN 102181232B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
polishing
copper
composition
pressure
ulsi
Prior art date
Application number
CN 201110065350
Other languages
Chinese (zh)
Other versions
CN102181232A (en )
Inventor
路新春
戴媛静
刘宇宏
潘国顺
雒建斌
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

一种ULSI多层铜布线铜的低下压力化学机械抛光的组合物,属于化学机械抛光水性组合物领域。 A multilayer copper wiring of ULSI copper low pressure chemical mechanical polishing composition, belonging to the field of chemical mechanical polishing aqueous composition thereof. 本发明提供了适用于在至少小于1.0Psi(6.89kPa)的下压力下抛光半导体晶片上铜的水性组合物,该组合物含有磨料、氧化剂、pH调节剂、缓蚀剂和水,主要还含有适用于低下压力弱机械作用情况下的含硫腐蚀平衡剂。 The present invention provides a semiconductor wafer suitable for polishing copper at least less than 1.0 psi (6.89 kPa) at a pressure of the aqueous composition, the composition comprising an abrasive, an oxidizing agent, pH adjusting agents, corrosion inhibitors and water, further containing primarily suitable for low pressure is weak sulfur-corrosion agents under mechanical action equilibrium situation. 采用本发明提供的抛光组合物对超大规模集成电路多层铜布线中的铜进行低下压力抛光,具有高平滑化效率和高抛光速率,能最大限度的避免抛光缺陷的产生。 The present invention provides a polishing composition for very large scale integrated circuit multilayer copper wiring copper low polishing pressure, a high smoothness and a high efficiency polishing rate to avoid to the maximum of polishing defects.

Description

ULSI多层铜布线铜的低下压力化学机械抛光的组合物 Low pressure chemical mechanical polishing multilayer copper wiring ULSI copper composition

技术领域 FIELD

[0001] 本发明涉及化学机械抛光水性组合物领域,特别是一种ULSI多层铜布线铜的低下压力化学机械抛光的组合物。 [0001] The present invention relates to the field of chemical mechanical polishing aqueous composition, in particular a multilayer copper wiring copper low pressure chemical mechanical polishing composition ULSI.

背景技术 Background technique

[0002] 集成电路由在硅基材上或硅基材内形成的数百万个活化元件构成,这些互相分离的活化元件通过互连形成功能电路和部件。 [0002] Integrated circuits are made of millions of active devices formed in or on a silicon substrate, a silicon substrate, the elements separated from one another by activation to form functional circuits and components. 一般采用金属布线的方法进行互连,即在蚀刻出的通路和触点内填充各种金属和合金,包括钛(Ti)、氮化钛(TiN)、钽(Ta)、招(Al)、铜(Cu)、硅铝(S1-Al)、钨(W)或其组合。 Usually metal interconnect wiring method, i.e. filling various metals and alloys in the etched vias and contacts, including titanium (Ti), titanium nitride (TiN), tantalum (Ta), strokes (Al), copper (Cu), alumina (S1-Al), tungsten (W), or combinations thereof. 随着半导体工业超大规模集成电路特征尺寸的进一步缩小,互连线的RC延迟和电迁移性引起的可靠性问题逐渐成为影响电路速度的关键所在。 As further refine feature sizes of VLSI semiconductor industry, the reliability of the interconnect RC delay and electromigration caused by the influence of the circuit becoming the key velocity. 由于Cu具有低的电阻率和高的抗电迁移性,使其成为一种理想的内连线材料而取代传统常用的铝布线。 Since Cu has low resistivity and a high electromigration resistance, making it an ideal interconnect material in place of the conventional common aluminum wiring.

[0003] Cu是氢后金属,不易被刻蚀,因此目前国际上一般采用镶嵌工艺进行布线,通过化学机械抛光技术去除上层多余的铜和扩散阻挡层。 [0003] Cu metal after the hydrogen is difficult to be etched, and therefore adopts the general wiring damascene process, excess copper is removed and the upper diffusion barrier layer by chemical mechanical polishing technique. 随着微电子技术的发展,特征尺寸已进入纳米级,这要求微电子工艺中的近百道工序,尤其是多层布线、衬底、介质必须进行全局平面化。 With the development of microelectronics technology, it has entered the nanometer feature size, which requires nearly microelectronic processes procedure, in particular multilayer wiring substrate, the media must be globally planarized. 而且曝光的浅焦深对超大规模集成电路的精细化和平坦化的要求增加,传统的平面化技术如选择淀积、旋涂玻璃、低压CVD、保护膜背腐蚀、淀积-腐蚀-淀积等技术只能提供局部平面化,平坦效果极其有限。 Shallow depth of focus and the exposure of fine and flattened VLSI requirements increase, conventional planarization techniques such as selective deposition, spin-on glass, low-pressure CVD, etching back the protective film is deposited - etching - deposition other techniques can only provide a local planarization, flat effect is extremely limited.

[0004] 化学机械抛光(CMP)技术对于平坦化而言,带来了集成电路制造技术极大的变革。 [0004] Chemical mechanical polishing (CMP) technique for planarization, it brings great change integrated circuit fabrication techniques. CMP在二十世纪八十年代由IBM公司开发,目前业已成为微电子制造业中几乎所有步骤的核心微处理技术。 CMP developed by IBM in the 1980s, currently has become the core of the microelectronics manufacturing micro-processing technology virtually all the steps. CMP是颗粒的机械作用与腐蚀剂的化学作用相结合的抛光技术,其原理是工件在压力及抛光组合物(含有磨粒、腐蚀剂等)的存在下相对于抛光垫作旋转运动,利用磨粒磨削及化学组分腐蚀作用.实现对工件表面材料的去除从而达到平坦化的效果。 CMP polishing technique is a mechanical action and chemical action of the particles of the combination of etchant, which is the principle and the workpiece at a pressure of polishing composition (containing abrasive grains, etchant, etc.) is present in the polishing pad relative to rotational movement, using abrasive wear cut and its chemical components corrosion. planarization implemented so as to achieve the effect of removing the surface material of the workpiece. CMP的性能由CMP装置的操作条件、抛光组合物的类型和抛光垫的类型等因素决定。 CMP performance is determined by the operating conditions of the CMP apparatus, the type of the polishing composition and type of the polishing pad factors.

[0005] 抛光组合物在CMP步骤中是一种重要的影响因素。 [0005] The polishing composition is an important factor in the CMP step. 可根据选取的氧化剂、磨料和其它适合的添加剂来调节抛光组合物,以按所需的抛光速率来提供有效的抛光,同时将表面缺陷、腐蚀降至最低,并得到最佳的平面化效果。 The polishing composition may be adjusted according to the chosen oxidizing agent, the abrasive, and other suitable additives to the polishing rate desired to provide effective polishing, while surface defects, to minimize corrosion, and optimum planarization effect. 近几年来,已有一些专利报道了集成电路多层铜布线CMP过程中所使用的抛光组合物。 In recent years, there have been a number of patent reports IC polishing composition multilayer copper wiring used in the CMP process. CN101240147A描述了以高速离心过滤去除可溶性聚合硅酸盐后的胶体二氧化硅为抛光磨粒的用于含铜基底化学机械平坦化的组合物及相关方法,能大幅度降低铜表面的缺陷水平;英特尔(CN1256765C)采用有机缓冲体系维持局部pH值的稳定性,显著减少整体和局部腐蚀,减少被抛光表面的不均一性和腐蚀缺陷;CN1397994A在抛光液中引入氧化性金属化合物,籍以在导体结构上形成一金属化合物,此金属化合物用以保护导体结构以避免碟陷与侵蚀;CN100491072C采用金属离子螯合剂调节组合物PH值至碱性(9.5〜11.5),加入非离子表面活性剂,在抛光进行前加入氧化剂进行铜及异质表面的抛光;CN101333419A采用不含抛光磨粒的碱性抛光组合物进行铜抛光,以避免磨粒对抛光表面造成的损伤;CN101368068A将气相二氧化硅粉末均匀溶解于去离子水中作为抛光磨粒,以无机碱或有机胺调 CN101240147A describes a high-speed centrifugation after removing soluble polymeric silicates in the colloidal silica abrasive polishing substrate chemical mechanical planarization compositions and related methods for copper, the copper levels can greatly reduce surface defects; Intel (CN1256765C) organic buffer system to maintain the stability of the local pH values, significant reduction in the overall and localized corrosion, reducing surface to be polished heterogeneity and corrosion defects; CN1397994A introduced into the oxidation metal compound in the polishing liquid, membership to the conductor a metal compound is formed on the structure, the metal compound for protecting the conductor structures to avoid dishing and erosion; CN100491072C metal ion sequestrant PH value was adjusted to a basic composition (9.5~11.5), addition of a non-ionic surfactant, in It was added prior to polishing to polish a copper oxidizing agent and a heterogeneous surface; CN101333419A alkaline polishing composition free of abrasive particles is copper polishing, in order to avoid damage caused by the abrasive grains of the polishing surface; CN101368068A uniformly fumed silica powder It was dissolved in deionized water as a polishing abrasive, an inorganic base or an organic amine to tune PH值至10〜12,抛光铜后能得到最低0.4nm的表面平坦度。 PH value to 10~12, polished copper surface flatness can be obtained in the lowest 0.4nm.

[0006] 随着集成电路技术进入到深亚微米级,由不断缩小特征尺寸所带来的互连性能降低已经越来越明显。 [0006] As integrated circuit technology proceeds to deeper submicron, the shrinking feature sizes decrease caused by interconnect performance has become increasingly evident. 这是因为特征尺寸的缩小将导致互连引线横截面和线间距的减小,电阻、电容、电感引起的寄生效应将会严重影响电路的性能。 This is because the feature size reduction will result in a reduction of the cross section of the interconnection leads and the line spacing, resistance, capacitance, parasitic effects caused by the inductance will seriously affect the performance of the circuit. 而采用低介电常数介质材料(即低k介质材料)则是提高互连性能的有效途径之一。 The use of low dielectric constant material (i.e., low-k dielectric material) is an effective way to improve the interconnect performance. 但是当k< 2.2时,低k介质层的机械强度下降,易出现低k薄膜脱层,所以必须开发低压力抛光设备及抛光组合物。 However, when k <2.2, the mechanical strength of low-k dielectric layer decreases, prone to delamination of the low-k film, it is necessary to develop a low pressure of the polishing apparatus and polishing composition. 一般,减小下压力会对包括抛光速率在内的CMP总体性能产生不利影响。 Generally, a decrease under pressure adversely affect the overall performance of CMP polishing rates, including including. 例如,采用成熟的商用铜抛光组合物进行铜抛光,压力为5.0Psi时抛光速率为333.3nm/min,而当压力减小到约 For example, mature commercial copper polishing copper polishing composition, the polishing pressure is 5.0Psi rate 333.3nm / min, and when the pressure is reduced to about

0.5Psi时,抛光速率减小至101.9nm/min,相差3倍左右。 0.5Psi, the polishing rate is reduced to 101.9nm / min, a difference of about 3 times. 因此,减小压力抛光会严重的影响生产能力。 Therefore, reducing the pressure of the polishing will seriously affect production capacity.

[0007] US6, 620, 037采用不添加缓蚀剂(如BTA)的抛光组合物进行铜抛光以期提升抛光速率,然而该组合物仍需要3.0Psi或更大的下压力以便有效的去除铜(3.0Psi时抛光速率为234.6nm/min);美国罗门哈斯公司提出了一种用于铜的低下压力抛光组合物和方法(CN1644644A),适用于在至少小于3.0Psi的下压力下抛光半导体晶片上的铜,其中添加的含磷化合物可增加铜的去除,实施例中1.0Psi压力下,添加磷酸铵前后抛光去除速率分别为150.0nm·/min 和266.3nm/min。 [0007] US6, 620, 037 using the inhibitor was not added (e.g., BTA) of the polishing composition to polish the copper polishing rate of lift, but this composition still requires 3.0Psi or more under pressure, to effectively remove the copper ( 3.0Psi polishing rate 234.6nm / min); Rohm and Haas company proposed low pressure of the polishing composition and method (CN1644644A) for copper, suitable for polishing a semiconductor at least at a pressure of less than 3.0Psi copper on the wafer, wherein the phosphorus-containing compounds can increase copper removal was added, under 1.0Psi pressure embodiment, the polishing removal rate before and after adding ammonium phosphate were 150.0nm · / min and 266.3nm / min embodiment.

[0008] 因此,行业的发展对能够以减小的下压力进行有效的铜抛光的改良抛光组合物存在需求,特别是1.0Psi以下,如0.5Psi压力下有效的抛光铜互连层,从而适应low-k电介质的引入与发展。 [0008] Thus, the development of the industry can be effective to reduce the copper polishing downforce improved polishing composition there is a need, especially 1.0Psi less, such as at a pressure effective 0.5Psi polishing copper layers, in order to accommodate the introduction and development of low-k dielectric power.

发明内容 SUMMARY

[0009] 本发明的目的是提供一种化学机械抛光水性组合物,适用于在至少小于 [0009] The object of the present invention is to provide a chemical mechanical polishing aqueous composition applied to at least less than

1.0Psi (6.89kPa)的下压力下抛光半导体晶片上铜互连层,抛光去除速率高,表面平整度好,能满足低下压力抛光环境中铜抛光的指标要求。 Polishing a semiconductor wafer under a pressure of 1.0 psi (6.89 kPa) on a copper interconnect layer, the polishing removal rate is high, surface flatness, can meet the requirements of copper polishing index of low pressure of the polishing environment.

[0010] 为实现上述目的,本发明提出的一种ULSI多层铜布线铜的低下压力化学机械抛光的水性组合物,含有磨料、氧化剂、pH调节剂、缓蚀剂和水,其特征在于该组合物还含有适用于低下压力弱机械作用情况下的含硫腐蚀平衡剂。 [0010] To achieve the above object, the present invention is made of low pressure chemical mechanical polishing aqueous composition ULSI copper multilayer copper wiring, comprising an abrasive, an oxidizing agent, pH adjusting agents, corrosion inhibitors and water, characterized in that the composition further comprises a suitable sulfur-containing corrosive agents at low equilibrium pressure situation is weak mechanical action.

[0011] 在上述抛光浆料中,所述磨料选自二氧化硅、二氧化铈、氧化铝、氧化锆、氧化钛、氧化锗中的任何一种或一种以上的混合物,其磨料的含量为l-20wt%,优选为3-5wt% ;所述磨料优选为胶体二氧化硅,其平均粒度为10-200纳米,优选为50-80纳米。 [0011] In the polishing slurry, the abrasive is selected from silica, ceria, alumina, zirconia, titania, germanium oxide, any one of or a mixture of more than one, the content of the abrasive It is l-20wt%, preferably 3-5wt%; preferably the abrasive is a colloidal silica having an average particle size of 10 to 200 nm, preferably 50-80 nm.

[0012] 在上述抛光浆料中,所述氧化剂为无机/有机过氧化合物,即分子中含至少一个过氧基团(-0-0-)的化合物和含有处于高氧化态的元素的化合物中的任何一种或一种以上的混合物,包括过氧化氢、过氧化氢脲、二过硫酸盐、过氧乙酸、过氧化苯甲酰、过氧化二叔丁基、过氧化钠等;高氧化态化合物包括高碘酸、高碘酸盐、高溴酸、高溴酸盐、高氯酸、高氯酸盐、过碘酸、过碘酸盐、过硼酸、过硼酸盐、碘酸盐、溴酸盐、氯酸盐、次氯酸盐、亚硝酸盐、铬酸盐、铁盐和高锰酸盐等。 [0012] In the polishing slurry, the oxidizing agent is an inorganic / organic peroxy compounds, i.e., molecules containing at least one peroxy group (-0-0-) elements and compounds in a high oxidation state contained or any mixture of one or more, include hydrogen peroxide, urea hydrogen peroxide, di-persulfate, peracetic acid, benzoyl peroxide, tert-butyl peroxide, sodium peroxide and the like; high periodic acid compounds include oxidation state, periodate salts, perbromic acid, high bromate, perchlorate, perchlorate, periodic acid, periodate salts, perborate, perborate, periodate salts, bromate, chlorate, hypochlorite, nitrite, chromate, permanganate, and iron salts and the like. 所述氧化剂优选为过氧化氢,含量为0.5-10wt%,优选 The oxidizing agent preferably is hydrogen peroxide in an amount of 0.5 to 10 wt%, preferably

0.9-3wt % ο 0.9-3wt% ο

[0013] 所述pH调节剂为任何已知的酸、碱或胺及其盐的一种或一种以上的混合物,包括硫酸、盐酸、硝酸、磷酸、氯乙酸、酒石酸、琥珀酸、柠檬酸、甘氨酸、谷氨酸、苹果酸、丙二酸、氢氧化钠、氢氧化钾、氨水、乙醇胺、二乙醇胺、三乙醇胺、异丙醇胺、氨基丙醇、二异丙醇胺、乙二胺、氢氧化四甲基胺、氢氧化四乙基胺、氢氧化四丙基胺、胆碱、哌啶、哌嗪、多亚乙基亚胺、碳酸钠、碳酸钾、磷酸钠、磷酸钾、磷酸氢二钠、磷酸氢铵、柠檬酸铵等中的一种或其混合物。 [0013] The pH adjusting agent is any known acid, base or of a salt of an amine and a mixture of one or more, including sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, chloroacetic acid, tartaric acid, succinic acid, citric , glycine, glutamic acid, malic acid, malonic acid, sodium hydroxide, potassium hydroxide, ammonia, ethanolamine, diethanolamine, triethanolamine, triisopropanolamine, amino propanol, diisopropanolamine, ethylenediamine , tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, choline, meglumine, piperidine, piperazine, multi ethyleneimine, sodium carbonate, potassium carbonate, sodium phosphate, potassium phosphate, disodium hydrogen phosphate, ammonium hydrogen phosphate, ammonium citrate and the like or a mixture thereof. 优选为氢氧化钾、氨水、甘氨酸、柠檬酸、柠檬酸铵等。 Preferably potassium hydroxide, ammonia, glycine, citric acid, ammonium citrate and the like. 所述抛光浆料的PH值为7-12的范围内,优选在9.5-10的范围内。 Said polishing slurry PH value of 7-12, preferably in the range of 9.5-10.

[0014] 所述缓蚀剂指的是有助于在特定金属层如Cu的表面形成致密氧化物钝化层和溶解抑制层的任何化合物或其混合物,如苯并三氮唑、苯并咪唑、咪唑、苯并噻唑、脲、硫脲、亚乙基硫脲等。 [0014] The corrosion inhibitor refers to contribute to the formation of dense oxide passivation layer and any dissolved compounds or mixtures thereof, such as the suppression layer in the particular surface of the Cu metal layer, such as benzotriazole, benzimidazole , imidazole, benzothiazole, urea, thiourea, ethylene thiourea and the like. 所述缓蚀剂优选含有一个或一个以上5或6元杂环作为活性官能团的杂环有机化合物,如苯并三氮唑、苯并咪唑或其混合物。 The corrosion inhibitor preferably comprises one or more 5 or 6-membered heterocyclic heterocyclic organic compound reactive functional groups, such as benzotriazole, benzimidazole, or a mixture thereof. 所述缓蚀剂优选为苯并三氮唑(BTA),含量为0.0l-1wt%,优选0.01-0.05wt%o The corrosion inhibitor is preferably a benzotriazole (BTA), an amount of 0.0l-1wt%, preferably 0.01-0.05wt% o

[0015] 所述腐蚀平衡剂为含硫化合物,包括含硫无机盐、含硫有机化合物中的一种或一种以上混合物,包括硫酸钠、硫酸钾、硫酸铵、过硫酸钠、过硫酸钾、过硫酸铵、亚硫酸钠、亚硫酸钾、亚硫酸铵、硫代硫酸钠、硫代硫酸钾、硫代硫酸铵、二甲苯磺酸钠、二甲苯磺酸铵、巯基乙酸钠、巯基丁二酸钠、烷基硫酸盐、烷基磺酸盐、烷基醚硫酸盐、烷基醚磺酸盐、木质素硫酸盐、木质素磺酸盐、氨基磺酸盐、羧乙基硫代琥珀酸等中的一种或一种以上的混合物。 [0015] The sulfur-containing compound as corrosion balancing agents, including sulfur-containing inorganic salts, sulfur-containing organic compound in a mixture of one or more, including sodium, potassium, ammonium persulfate, sodium persulfate , ammonium persulfate, sodium sulfite, potassium sulfite, ammonium sulfite, sodium thiosulfate, potassium thiosulfate, ammonium thiosulfate, sodium xylene sulfonate, ammonium xylene sulfonate, sodium thioglycolate, mercapto succinic acid sodium alkyl sulfates, alkyl sulfonates, alkyl ether sulfates, alkyl ether sulfonates, lignin sulfates, lignin sulfonate, sulfamate, carboxyethyl thio succinic acid, etc. a mixture of one or more than one. 所述腐蚀平衡剂优选为过硫酸铵和木质素磺酸钠的混合物,含量为0.05-5wt%,优选含量为0.5-2wt%0 The etching agent is preferably balanced over a mixture of ammonium and sodium lignosulfonate in an amount of 0.05-5wt%, preferably an amount of 0.5-2wt% 0

[0016] 所述水为去离子水或蒸馏水。 [0016] The water is deionized or distilled water.

[0017] 本发明所述用于铜的低下压力化学机械抛光水性组合物的配制及使用方法如下:将各成分(纳米二氧化硅、过氧化氢除外)按配比加入去离子水中,搅拌均匀后,缓慢搅拌加入合适配比的纳米二氧化硅水溶胶,在抛光进行前加入氧化剂过氧化氢,校准pH值并补足水后进行低下压力的铜抛光。 [0017] The present invention is a method for preparation and use of low pressure chemical mechanical polishing aqueous copper composition is as follows: the ingredients (nano silica, excluding hydrogen peroxide) according to the ratio of deionized water was added, after stirring uniformly , was slowly added with stirring the appropriate stoichiometric nano silica hydrosol, adding an oxidizing agent hydrogen peroxide, the pH of the calibration performed before polishing and after bringing the water pressure is low copper polishing.

[0018] 本发明方法的抛光机理及优点如下: [0018] The polishing mechanism and advantages of the present invention, the following process:

[0019] 1.本抛光组合物呈碱性,pH值在9〜10之间,能很好的保持纳米二氧化硅颗粒的稳定性和分散性,且对设备的腐蚀性小。 [0019] 1. The polishing composition is alkaline, pH value between 9 to 10, can maintain a good stability and dispersibility of nano-silica particles, and corrosion of the device small.

[0020] 2.碱性的抛光条件存在Cu(OH)2的生成问题,会导致抛光表面的沉积和划伤。 Generation problem exists Cu (OH) 2 is [0020] 2. The basic polishing conditions, can lead to deposition and scratching the polished surface. 本发明很好的解决了这个问题,通过合适PH调节剂的选择,如氢氧化钾、氨水、甘氨酸、柠檬酸、柠檬酸铵等,不仅调节了体系PH值,也通过试剂对金属离子的配位、络合或螯合作用,有机试剂对的优良缓冲作用,消除了Cu(OH)2的消极影响,并提升了抛光去除速率,减少了局部腐蚀缺陷和划痕等表面缺陷。 The present invention solves this problem very well, by a suitable choice of PH adjusting agents such as potassium hydroxide, ammonia, glycine, citric acid, ammonium citrate, etc., not only to adjust the PH value of the system, but also by metal ion pairing agent position, complexation or chelation, excellent organic reagent buffer, eliminating the negative impact of Cu (OH) 2, and to enhance the polishing removal rate, surface defects reduced localized corrosion defects and scratches.

[0021] 3.本发明所使用的腐蚀平衡剂由两种含硫化合物协作构成,过硫酸铵提供一定的氧化整平性能,平衡过氧化氢的强氧化腐蚀作用,形成相对平滑紧致的金属氧化物层;木质素磺酸钠在碱性情况下电离完全,聚合物分子链上电荷密度大,能在形成的金属氧化物表面形成稳固的自组装分子膜层。 Corrosion balancing agent used [0021] 3. The present invention is composed of two cooperating sulfur-containing compound, to provide some oxidation leveling properties of ammonium persulfate, equilibrated strong corrosive oxidation of hydrogen peroxide, a relatively smooth metal compact the oxide layer; sodium lignosulfonate completely ionized, the charge density polymer chains in the basic case, capable of forming a stable self-assembling molecules in the metal oxide film layer formed on the surface. 在低下压力抛光的情况下,所处的抛光环境一般机械作用强度远弱于化学作用强度,此金属氧化物表层的分子膜层能有效的保护被抛光表面的凹陷区域,提供了形貌的高选择性。 In the case of low pressure polishing, in which the mechanical polishing action of the environment in general much weaker than chemical action strength intensity, the molecular layer of the metal oxide surface layer can effectively protect the surface of the recessed region is polished to provide a high topography selectivity. 两种含硫化合物的协同作用很好的平衡了化学腐蚀作用和机械磨削作用强度,从而达到提高抛光去除效率和全局平坦化的效果。 Synergistic effect of the two sulfur-containing compounds well balanced chemical corrosion and mechanical grinding action role strength, so as to achieve the effect of improving the polishing removal efficiency and global planarization.

[0022] 4.在低至0.5〜2.0Psi的下压力情况下,实验条件下优化组合物配方的抛光去除速率最高可达1711.4nm/min,表面粗糙度可至0.30〜0.95nm的范围。 [0022] 4. at low 0.5~2.0Psi under pressure, the removal rate of the polishing composition of the formulation to optimize the experimental conditions up 1711.4nm / min, to a surface roughness in the range 0.30~0.95nm.

附图说明 BRIEF DESCRIPTION

[0023] 图1是本发明对比例1、2和实施例1〜3的抛光去除率变化规律示意图; [0023] FIG. 1 is a schematic view of a polishing removal rate variation of embodiments 1 ~ 3 and Comparative Example 1 of the present embodiment of the invention;

[0024] 图2是本发明实施例6〜9的抛光去除率与压力关系的规律示意图; [0024] FIG. 2 is a schematic diagram of pressure on the law of the polishing removal rate of 6~9 embodiment of the present invention;

[0025] 图3是本发明实施例7的抛光后表面形貌观测示意图; [0025] FIG. 3 is a polished surface topography observed in Example 7 a schematic embodiment of the present invention;

[0026] 图4是本发明实施例7的抛光后表面形貌参数图。 [0026] FIG. 4 is polished rear surface topography parameters of the embodiment of FIG. 7 embodiment of the present invention.

具体实施方式 detailed description

[0027] 下面结合附图对本发明的具体实施方式进行说明。 [0027] DETAILED DESCRIPTION OF THE DRAWINGS Embodiment of the present invention will be described.

[0028] 以下实施例用于说明本发明,但不限制本发明的范围。 [0028] The following examples serve to illustrate the present invention without limiting the scope of the present invention.

[0029] 实验使用CETR CP4为抛光实验机,使用Rodel公司IC1000/SUBA IV微孔聚氨酯抛光垫,抛光相对运动速度固定为lm/s、抛光液流量为100mL/min,被抛光片为2寸表面电镀铜片。 [0029] The experiment used CETR CP4 polishing testing machine, using the company Rodel IC1000 / SUBA IV microcellular polyurethane polishing pad, the polishing speed is fixed to a relative movement / s, the polishing fluid flow rate is lm 100mL / min, the surface is polished to 2 inches copper plating. 抛光去除速率(MRR)采用精度为0.0lmg的精密电子天平测重计算,使用Veeco公司microXAM三维白光干涉表面形貌仪观察表面形貌并计算表面粗糙度(Sa)。 Polishing removal rate (the MRR) 0.0lmg using precision weighing precision electronic balance calculations, using white light interferometer from Veeco microXAM dimensional surface topography and surface morphology analyzer calculates a surface roughness (Sa).

[0030] 实施例中使用的抛光组合物均含有优化含量的纳米二氧化硅研磨剂、pH调节剂、缓蚀剂、去离子水等基础组分,碱性易分解的氧化剂过氧化氢于抛光实验前加入。 Nano-silica abrasives [0030] The polishing composition used in the examples contain optimized content, pH modifiers, corrosion inhibitors, the base component of deionized water, alkaline labile hydrogen peroxide oxidizing agent in the polishing before the experiment added.

[0031] 对比例I.[0032] 配制1000克铜抛光液:将10克甘氨酸和0.1克苯并三氮唑依次加入800克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入100克30%的50纳米二氧化硅水溶胶,在抛光进行前加入30克30%的氧化剂过氧化氢溶液,用KOH校准pH值至10.0,最后加水补足1000克并搅拌均匀后进行0.5Psi下压力的铜抛光,抛光去除速率MRR为119.8nm/min,表面粗糙度Sa 为2.83nm。 [0031] Comparative Example I. [0032] 1000 g of copper polishing liquid formulation: 10 g of glycine and 0.1 g of benzotriazole were added 800 g of deionized water, and dissolved with stirring, uniformly stirred slowly added 100 g of 30% 50nm silica hydrosol, 30 g of 30% hydrogen peroxide solution in the oxidizing agent before polishing performed, calibration with KOH to pH 10.0, and finally water up to 1000 g was added and stirred uniformly carried out at a pressure of copper polishing 0.5Psi , the polishing removal rate of 2.83nm MRR was 119.8nm / min, surface roughness Sa.

[0033] 对比例2 [0033] Comparative Example 2

[0034] 配制1000克铜抛光液:将10克甘氨酸、15克过硫酸铵和0.1克苯并三氮唑依次加入800克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入100克30%的50纳米二氧化硅水溶胶,在抛光进行前加入30克30%的氧化剂过氧化氢溶液,用KOH校准pH值至10.0,最后加水补足1000克并搅拌均匀后进行0.5Psi下压力的铜抛光,抛光去除速率MRR为487.6nm/min,表面粗糙度Sa为1.10nm。 [0034] 1000 g of copper polishing liquid formulation: 10 g glycine, 15 g of ammonium persulfate and 0.1 g of benzotriazole were added 800 g of deionized water, and dissolved with stirring, uniformly stirred slowly added to 100 g of 30% 50 nm silica hydrosol, before polishing was added 30 grams of 30% oxidizing agent hydrogen peroxide solution, to calibrate the pH value of 10.0 with KOH, and finally water up to 1000 g was added and stirring carried out at a pressure uniformly 0.5Psi copper polishing, MRR for the polishing removal rate of 1.10nm 487.6nm / min, surface roughness Sa.

[0035] 实施例1 [0035] Example 1

[0036] 配制1000克铜抛光液:将10克甘氨酸、5克过硫酸铵和0.1克苯并三氮唑依次加入800克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入100克30%的50纳米二氧化硅水溶胶,在抛光进行前加入30克30%的氧化剂过氧化氢溶液,用KOH校准pH值至10.0,最后加水补足1000克并搅拌均匀后进行0.5Psi下压力的铜抛光,抛光去除速率MRR为358.1nm/min,表面粗糙度Sa为5.73nm。 [0036] 1000 g of copper polishing liquid formulation: 10 g of glycine and 5 g of ammonium persulfate and 0.1 g of benzotriazole were added 800 g of deionized water, and dissolved with stirring, uniformly stirred slowly added to 100 g of 30% 50 nm silica hydrosol, before polishing was added 30 grams of 30% oxidizing agent hydrogen peroxide solution, to calibrate the pH value of 10.0 with KOH, and finally water up to 1000 g was added and stirring carried out at a pressure uniformly 0.5Psi copper polishing, MRR for the polishing removal rate of 5.73nm 358.1nm / min, surface roughness Sa.

[0037] 实施例2 [0037] Example 2

[0038] 配制1000克铜抛光液:将10克甘氨酸、10克过硫酸铵和0.1克苯并三氮唑依次加入800克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入100克30%的50纳米二氧化硅水溶胶,在抛光进行前加入30克30%的氧化剂过氧化氢溶液,用KOH校准pH值至10.0,最后加水补足1000克并搅拌均匀后进行0.5Psi下压力的铜抛光,抛光去除速率MRR为376.0nm/min,表面粗糙度Sa为5.80nm。 [0038] 1000 g of copper polishing liquid formulation: 10 g glycine, 10 g of ammonium persulfate and 0.1 g of benzotriazole were added 800 g of deionized water, and dissolved with stirring, uniformly stirred slowly added to 100 g of 30% 50 nm silica hydrosol, before polishing was added 30 grams of 30% oxidizing agent hydrogen peroxide solution, to calibrate the pH value of 10.0 with KOH, and finally water up to 1000 g was added and stirring carried out at a pressure uniformly 0.5Psi copper polishing, MRR for the polishing removal rate of 5.80nm 376.0nm / min, surface roughness Sa.

[0039] 实施例3 [0039] Example 3

[0040] 配制1000克铜抛光液:将10克甘氨酸、20克过硫酸铵和0.1克苯并三氮唑依次加入800克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入100克30%的50纳米二氧化硅水溶胶,在抛光进行前加入30克30 %的氧化剂过氧化氢溶液,用KOH校准pH值至10.0,最后加水补足1000克并搅拌均匀后进行0.5Psi下压力的铜抛光,抛光去除速率MRR为487.6nm/min,表面粗糙度Sa为4.07nm。 [0040] 1000 g of copper polishing liquid formulation: 10 g glycine, 20 g of ammonium persulfate and 0.1 g of benzotriazole were added 800 g of deionized water, and dissolved with stirring, uniformly stirred slowly added to 100 g of 30% 50 nm silica hydrosol, before polishing was added 30 grams of 30% oxidizing agent hydrogen peroxide solution, to calibrate the pH value of 10.0 with KOH, and finally water up to 1000 g was added and stirring carried out at a pressure uniformly 0.5Psi copper polishing, The polishing removal rate MRR was 487.6nm / min, a surface roughness Sa of 4.07nm.

[0041] 实施例4 [0041] Example 4

[0042] 配制1000克铜抛光液:将10克甘氨酸、15克过硫酸铵、0.1克苯并三氮唑和0.5克木质素磺酸钠依次加入800克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入100克30%的50纳米二氧化硅水溶胶,在抛光进行前加入30克30%的氧化剂过氧化氢溶液,用KOH校准pH值至10.0,最后加水补足1000克并搅拌均匀后进行0.5Psi下压力的铜抛光,抛光去除速率MRR为563.8nm/min,表面粗糙度Sa为0.95nm。 [0042] 1000 g of copper polishing liquid formulation: 10 g glycine, 15 g of ammonium persulfate, 0.1 g of benzotriazole and 0.5 g of sodium lignosulfonate were added 800 g of deionized water, and dissolved with stirring, uniformly, was slowly added with stirring 100 g of 30% 50 nm silica hydrosol, 30 g of 30% hydrogen peroxide solution in the oxidizing agent before polishing performed, calibration with KOH to pH 10.0, and finally water up to 1000 g was added and stirred uniformly for 0.5Psi copper polishing under pressure, the polishing removal rate MRR was 563.8nm / min, a surface roughness Sa of 0.95nm.

[0043] 实施例5 [0043] Example 5

[0044] 配制1000克铜抛光液:将10克甘氨酸、15克过硫酸铵、0.1克苯并三氮唑和0.5克木质素磺酸钠依次加入800克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入100克30%的50纳米二氧化硅水溶胶,在抛光进行前加入30克30%的氧化剂过氧化氢溶液,用KOH校准PH值至10.0,最后加水补足1000克并搅拌均匀后进行2.0Psi下压力的铜抛光,抛光去除速率MRR为1051.8nm/min,表面粗糙度Sa为0.60nm。 [0044] 1000 g of copper polishing liquid formulation: 10 g glycine, 15 g of ammonium persulfate, 0.1 g of benzotriazole and 0.5 g of sodium lignosulfonate were added 800 g of deionized water, and dissolved with stirring, uniformly, was slowly added with stirring 100 g of 30% 50 nm silica hydrosol, 30 g of 30% hydrogen peroxide solution in the oxidizing agent before polishing performed, the PH value calibrated with KOH to 10.0, and finally water up to 1000 g was added and stirred uniformly for copper polishing 2.0Psi under pressure, the polishing removal rate MRR is 1051.8nm / min, a surface roughness Sa of 0.60nm.

[0045] 实施例6 [0045] Example 6

[0046] 配制1000克铜抛光液:将10克甘氨酸、15克过硫酸铵、0.5克苯并三氮唑和0.5克木质素磺酸钠依次加入700克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入166.7克30%的80纳米二氧化硅水溶胶,在抛光进行前加入100克30%的氧化剂过氧化氢溶液,用氨水校准pH值至9.5,最后加水补足1000克并搅拌均匀后进行0.5Psi下压力的铜抛光,抛光去除速率MRR 为1328.9nm/min。 [0046] 1000 g of copper polishing liquid formulation: 10 g glycine, 15 g of ammonium persulfate, 0.5 g of benzotriazole and 0.5 g of sodium lignosulfonate were added 700 g of deionized water, and dissolved with stirring, uniformly, after stirring was slowly added 166.7 g of 30% silica hydrosol 80 nm, 100 g of 30% hydrogen peroxide solution in the oxidizing agent before polishing performed, pH value calibrated to 9.5 with aqueous ammonia, and finally adding water up to 1000 g and stir for 0.5Psi copper polishing under pressure, the polishing removal rate MRR is 1328.9nm / min.

[0047] 实施例7 [0047] Example 7

[0048] 配制1000克铜抛光液:将10克甘氨酸、15克过硫酸铵、0.5克苯并三氮唑和0.5克木质素磺酸钠依次加入700克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入166.7克30%的80纳米二氧化硅水溶胶,在抛光进行前加入100克30%的氧化剂过氧化氢溶液,用氨水校准PH值至9.5,最后加水补足1000克并搅拌均匀后进行1.0Psi下压力的铜抛光,抛光去除速率MRR 为1457.7nm/min。 [0048] 1000 g of copper polishing liquid formulation: 10 g glycine, 15 g of ammonium persulfate, 0.5 g of benzotriazole and 0.5 g of sodium lignosulfonate were added 700 g of deionized water, and dissolved with stirring, uniformly, after stirring was slowly added 166.7 g of 30% silica hydrosol 80 nm, 100 g of 30% hydrogen peroxide solution in the oxidizing agent before polishing performed, PH value calibrated to 9.5 with aqueous ammonia, and finally adding water up to 1000 g and stir for copper polishing 1.0Psi under pressure, the polishing removal rate MRR is 1457.7nm / min.

[0049] 实施例8 [0049] Example 8

[0050] 配制1000克铜抛光液:将10克甘氨酸、15克过硫酸铵、0.5克苯并三氮唑和0.5克木质素磺酸钠依次加入700克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入166.7克30%的80纳米二氧化硅水溶胶,在抛光进行前加入100克30%的氧化剂过氧化氢溶液,用氨水校准pH值至9.5,最后加水补足1000克并搅拌均匀后进行2.0Psi下压力的铜抛光,抛光去除速率MRR 为1711.4nm/min。 [0050] 1000 g of copper polishing liquid formulation: 10 g glycine, 15 g of ammonium persulfate, 0.5 g of benzotriazole and 0.5 g of sodium lignosulfonate were added 700 g of deionized water, and dissolved with stirring, uniformly, after stirring was slowly added 166.7 g of 30% silica hydrosol 80 nm, 100 g of 30% hydrogen peroxide solution in the oxidizing agent before polishing performed, pH value calibrated to 9.5 with aqueous ammonia, and finally adding water up to 1000 g and stir for copper polishing 2.0Psi under pressure, the polishing removal rate MRR is 1711.4nm / min.

[0051] 实施例9[0052] 配制1000克铜抛光液:将10克甘氨酸、15克过硫酸铵、0.5克苯并三氮唑和0.5克木质素磺酸钠依次加入700克去离子水中,搅拌溶解、均匀后,缓慢搅拌加入166.7克30%的80纳米二氧化硅水溶胶,在抛光进行前加入100克30%的氧化剂过氧化氢溶液,用氨水校准pH值至9.5,最后加水补足1000克并搅拌均匀后进行3.0Psi下压力的铜抛光,抛光去除速率MRR 为1969.lnm/min。 [0051] Example 9 [0052] 1000 g of copper polishing liquid formulation: 10 g glycine, 15 g of ammonium persulfate, 0.5 g of benzotriazole and 0.5 g of sodium lignosulfonate were added 700 g of deionized water, dissolved with stirring, uniformly slowly added with stirring 166.7 g of 30% silica hydrosol 80 nm, 100 g of 30% hydrogen peroxide solution in the oxidizing agent before polishing performed, pH value calibrated to 9.5 with aqueous ammonia, and finally adding water to make up 1000 g after uniformly stirring and under a pressure of 3.0Psi copper polishing, the polishing removal rate is MRR 1969.lnm / min.

[0053] 表I过硫酸铵(APS)和木质素磺酸钠(木钠)对抛光效果的影响 [0053] Table I of ammonium persulfate (APS) and sodium lignosulfonate Effect (lignosulphonate) polishing effect

[0054] [0054]

Figure CN102181232BD00081

·[0055] 如表I所示,含硫化合物的添加可以提高低至0.5Psi下压力情况下铜的抛光去除速率,而对表面质量的优化,过硫酸铵有优化浓度的限制,在本实验抛光条件下,1.5wt%的含量对表面质量的优化效果最佳。 * [0055] As shown in Table I, was added the sulfur compounds can be increased up to a pressure of copper at the 0.5Psi polishing removal rate, and the optimization of the surface quality, limited optimization of ammonium persulfate concentration, in this experiment under the polishing conditions, the effect of optimizing the content of 1.5wt% of the best surface quality. 而对与之复配的木质素磺酸钠,优化含量的加入在不同的下压力情况下均能优化抛光表面粗糙度,且呈现出抛光速率越大,表面质量越好的趋势。 In contrast to the complex of sodium lignosulfonate, optimization can be added to optimize content at a polishing pressure of different surface roughness, and exhibits a larger polishing rate, the better the surface quality trends.

[0056] 表2抛光去除速率随下压力的变化规律 [0056] variation of the polishing removal rate in Table 2 under pressure with

[0057] [0057]

Figure CN102181232BD00082

[0058] 如表2所示,在此组合物配方情况下,抛光去除速率与压力呈现线性良好的正比关系,说明在本实验的抛光条件下,抛光组合物的机械作用强度和化学作用强度平衡性较佳,能得到大的抛光去除速率,从图3的抛光后表面形貌示意图可以看出,低压(P = [0058] As shown in Table 2, in this case the composition formula, the polishing removal rate and the pressure proportional exhibit good linearity, described under the polishing conditions of the present experiment, the mechanical strength and chemical action of the polishing composition potency balance preferably properties, can obtain a large removal rate of polishing, the polishing can be seen in FIG. 3 a schematic view of the surface topography from the low pressure (P =

1.0Psi)情况下表面粗糙程度已经低至0.30nm。 1.0 psi) the case where the surface roughness has low 0.30nm.

[0059] 从以上实施例可以看出,经过优化的抛光组合物对在降低的下压力下铜互连的抛光速率和抛光表面质量提供了意想不到的优化效果,具体的说,在实施例的抛光实验条件下,在低至0.5〜2.0Psi的下压力情况下,优化组合物配方的抛光去除速率最高可达1711.4nm/min,表面粗糙度可达0.30〜0.95nm。 [0059] As can be seen from the above embodiments, the optimized polishing compositions provides an unexpected effect on the polishing rate and optimizing the surface quality of polished copper interconnect at a reduced pressure of, specifically, in the embodiment of the polishing under experimental conditions, in the case of low pressure 0.5~2.0Psi optimize the removal rate of the polishing composition of the formulation up to 1711.4nm / min, the surface roughness of up 0.30~0.95nm. 本发明的化学机械抛光水性组合物利用含硫腐蚀平衡剂的添加,可以在1.0Psi和更小的低下压力情况下有效的提升晶片铜互连抛光的抛光速率和表面质量,最大限度避免抛光缺陷的产生。 The aqueous chemical mechanical polishing composition of the present invention with the addition of a sulfur-containing etching agent balance, can effectively enhance the polishing rate and polishing the interconnect surface quality of the wafer copper polishing defects at the maximum to avoid 1.0Psi smaller and low pressure conditions generation.

[0060] 上述参照实施例对用于ULSI多层铜布线铜的低下压力化学机械抛光的组合物进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。 Detailed description of low pressure chemical-mechanical multilayer copper wiring for ULSI copper polishing composition of [0060] Referring to the above-described embodiments are illustrative and not limiting, may include several embodiments in accordance with the defined range embodiment, and therefore variations and modifications without departing from the general concept of the present invention, the lower, should be within the scope of the present invention.

Claims (1)

  1. 1.一种用于ULSI多层铜布线铜的低下压力化学机械抛光组合物,1000克该组合物包含:166.7克30%的80纳米二氧化硅水溶胶,100克30%的过氧化氢溶液,10克甘氨酸,0.5克苯并三氮唑,15克过硫酸铵和0.5克木质素磺酸钠,用氨水校准pH值至9.5,余量为去离子水或蒸馏水;采用该组合物进行0.5Psi下压力的铜化学机械抛光,抛光去除速率为1328.9nm/min。 Low pressure chemical mechanical polishing composition A ULSI copper for multilayer copper wiring 1000 g of this composition comprising: 166.7 g 30% 80 nm silica hydrosol, 100 grams of 30% hydrogen peroxide solution , 10 g of glycine, 0.5 g of benzotriazole, 15 g of ammonium persulfate and 0.5 g of sodium lignosulfonate, pH value to 9.5 with aqueous ammonia calibration, the balance being deionized or distilled water; the composition employed 0.5 copper CMP Psi under pressure, the polishing removal rate is 1328.9nm / min.
CN 201110065350 2011-03-17 2011-03-17 Composition for low downforce chemically mechanical polishing of coppers in ULSI (Ultra Large Scale Integrated Circuit) multi-layered copper wiring CN102181232B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110065350 CN102181232B (en) 2011-03-17 2011-03-17 Composition for low downforce chemically mechanical polishing of coppers in ULSI (Ultra Large Scale Integrated Circuit) multi-layered copper wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110065350 CN102181232B (en) 2011-03-17 2011-03-17 Composition for low downforce chemically mechanical polishing of coppers in ULSI (Ultra Large Scale Integrated Circuit) multi-layered copper wiring

Publications (2)

Publication Number Publication Date
CN102181232A true CN102181232A (en) 2011-09-14
CN102181232B true CN102181232B (en) 2013-12-11

Family

ID=44567527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110065350 CN102181232B (en) 2011-03-17 2011-03-17 Composition for low downforce chemically mechanical polishing of coppers in ULSI (Ultra Large Scale Integrated Circuit) multi-layered copper wiring

Country Status (1)

Country Link
CN (1) CN102181232B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985668B (en) * 2014-05-13 2018-02-23 上海集成电路研发中心有限公司 The method of preparing copper interconnects
CN105727996A (en) * 2014-12-31 2016-07-06 清华大学 Preparation method and application of nano-semiconductor photocatalyst
CN108250978A (en) * 2016-12-28 2018-07-06 安集微电子科技(上海)股份有限公司 Chemical mechanical polishing liquid and applications thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238812A (en) 1996-09-24 1999-12-15 卡伯特公司 Multi-oxidizer slurry for chemical mechanical polishing
CN1370207A (en) 1999-08-13 2002-09-18 卡伯特微电子公司 Polishing system and method of its use
WO2003005431A1 (en) 2001-07-04 2003-01-16 Seimi Chemical Co., Ltd. Chemical mechanical polishing slurry for semiconductor integrated circuit, polishing method and semiconductor integrated circuit
CN1646650A (en) 2002-02-11 2005-07-27 杜邦空中产品纳米材料公司 Free radical-forming activator attached to solid and used to enhance CMP formulations
CN1644644A (en) 2003-12-22 2005-07-27 Cmp罗姆和哈斯电子材料控股公司 Compositions and methods for low downforce pressure polishing of copper
CN1861320A (en) 2006-06-09 2006-11-15 河北工业大学 Method for controlling disc-like pit during chemically mechanical polishing for ULSI multiple-layered copper wiring
CN101128555A (en) 2005-01-07 2008-02-20 迪纳化学公司 Engineered non-polymeric organic particles for chemical mechanical planarization
CN101368068A (en) 2007-08-16 2009-02-18 江苏海迅实业集团股份有限公司 Nano-silicon dioxide abrasive material polishing solution for polishing copper
CN101671527A (en) 2009-09-27 2010-03-17 大连三达奥克化学股份有限公司 Copper chemical mechanical polishing solution with high removing rate and low damage, and preparation method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI227269B
CN1238812A (en) 1996-09-24 1999-12-15 卡伯特公司 Multi-oxidizer slurry for chemical mechanical polishing
CN1370207A (en) 1999-08-13 2002-09-18 卡伯特微电子公司 Polishing system and method of its use
WO2003005431A1 (en) 2001-07-04 2003-01-16 Seimi Chemical Co., Ltd. Chemical mechanical polishing slurry for semiconductor integrated circuit, polishing method and semiconductor integrated circuit
CN1646650A (en) 2002-02-11 2005-07-27 杜邦空中产品纳米材料公司 Free radical-forming activator attached to solid and used to enhance CMP formulations
CN1644644A (en) 2003-12-22 2005-07-27 Cmp罗姆和哈斯电子材料控股公司 Compositions and methods for low downforce pressure polishing of copper
CN101128555A (en) 2005-01-07 2008-02-20 迪纳化学公司 Engineered non-polymeric organic particles for chemical mechanical planarization
CN1861320A (en) 2006-06-09 2006-11-15 河北工业大学 Method for controlling disc-like pit during chemically mechanical polishing for ULSI multiple-layered copper wiring
CN101368068A (en) 2007-08-16 2009-02-18 江苏海迅实业集团股份有限公司 Nano-silicon dioxide abrasive material polishing solution for polishing copper
CN101671527A (en) 2009-09-27 2010-03-17 大连三达奥克化学股份有限公司 Copper chemical mechanical polishing solution with high removing rate and low damage, and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘海晓等.低压力Cu布线CMP速率的研究.《半导体技术》.2010,第35卷(第8期),第761-767页.
孙薇等.ULSI 多层Cu布线CMP中磨料的研究.《半导体技术》.2008,第33卷(第8期),第662-665页.
苏建修等.铜化学机械抛光材料去除机理研究.《金刚石与磨料磨具工程》.2010,第30卷(第1期,总第175期),第5-9页.

Also Published As

Publication number Publication date Type
CN102181232A (en) 2011-09-14 application

Similar Documents

Publication Publication Date Title
US6692546B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
US6315803B1 (en) Polishing composition and polishing process
US6083419A (en) Polishing composition including an inhibitor of tungsten etching
US6630433B2 (en) Composition for chemical mechanical planarization of copper, tantalum and tantalum nitride
US20030168627A1 (en) Slurry and method for chemical mechanical polishing of metal structures including refractory metal based barrier layers
US6440186B1 (en) Polishing composition and polishing method employing it
US20060046490A1 (en) Chemical-mechanical planarization composition having benzenesulfonic acid and per-compound oxidizing agents, and associated method for use
US20070082456A1 (en) Polishing composition and polishing method
US20070293049A1 (en) Slurry for CMP of Cu film, polishing method and method for manufacturing semiconductor device
US20060243702A1 (en) CMP slurry for metallic film, polishing method and method of manufacturing semiconductor device
US6702954B1 (en) Chemical-mechanical polishing slurry and method
US20060131275A1 (en) Selective slurry for chemical mechanical polishing
US20010013506A1 (en) Slurry and use thereof for polishing
US20050076579A1 (en) Bicine/tricine containing composition and method for chemical-mechanical planarization
US6217416B1 (en) Chemical mechanical polishing slurry useful for copper/tantalum substrates
US7037351B2 (en) Non-polymeric organic particles for chemical mechanical planarization
US6063306A (en) Chemical mechanical polishing slurry useful for copper/tantalum substrate
US6838016B2 (en) Polishing composition and polishing method employing it
US20100081279A1 (en) Method for Forming Through-base Wafer Vias in Fabrication of Stacked Devices
US6916742B2 (en) Modular barrier removal polishing slurry
US6869336B1 (en) Methods and compositions for chemical mechanical planarization of ruthenium
US20070075291A1 (en) CMP Slurry, Preparation Method Thereof and Method of Polishing Substrate Using the Same
US20070049025A1 (en) Chemical-mechanical planarization composition having ketooxime compounds and associated method for use
JP2005101545A (en) Composition for polishing semiconductor layer
US20040043702A1 (en) Chemical-mechanical polishing slurry for polishing metal films

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model