CN102180886A - 加兰他敏不对称催化合成方法 - Google Patents

加兰他敏不对称催化合成方法 Download PDF

Info

Publication number
CN102180886A
CN102180886A CN2011100599508A CN201110059950A CN102180886A CN 102180886 A CN102180886 A CN 102180886A CN 2011100599508 A CN2011100599508 A CN 2011100599508A CN 201110059950 A CN201110059950 A CN 201110059950A CN 102180886 A CN102180886 A CN 102180886A
Authority
CN
China
Prior art keywords
dissolved
compound
reaction
under
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100599508A
Other languages
English (en)
Other versions
CN102180886B (zh
Inventor
樊春安
陈鹏
张乐芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN201110059950.8A priority Critical patent/CN102180886B/zh
Publication of CN102180886A publication Critical patent/CN102180886A/zh
Application granted granted Critical
Publication of CN102180886B publication Critical patent/CN102180886B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开加兰他敏的对映选择性合成方法。本发明的方法是以邻香兰素为起始原料,通过对映选择性的Michael加成反应得到关键中间体,共经过十二步反应生成光学纯(-)-Galanthamine(加兰他敏)。

Description

加兰他敏不对称催化合成方法
技术领域
本发明涉及一种有机化合物的制备方法。确切讲本发明涉及加兰他敏的对映选择性合成方法。
背景技术
加兰他敏,英文名称为Galanthamine,是1952年首次由Proskurnina等人从高加索地区的石蒜科植物雪花莲中分离得到的一种具有重要药用价值的天然生物碱(N.F.Proskurnina,A.P.Yakoleva,J.Gen.Chem.1952,22,1899),其分子结构及绝对构型如式1所示:
式1
该生物碱具有显著的生物学功能,上世纪五六十年代主要用于治疗外伤所致运动障碍、重症肌无力、进行性肌营养不良、脊髓灰质炎后遗症、儿童脑型麻痹、多发性神经炎等,但从上个世纪90年代之后(G.M.Bores,R.W.Kosley Jr.Drugs Future 1996,21,621;H.A.M.Mucke,Drugs Today 1997,33,251;M.Rainer,Drugs Today 1997,33,273),进一步的生物医学研究显示加兰他敏(Galanthamine)对人体内乙酰胆碱酯酶具有十分显著的抑制作用,而且该抑制作用具有可逆性,可以调节乙酰胆碱受体的表达,从而达到改善记忆及认知功能的目的,其在临床上可以用来治疗早老年性痴呆症(阿尔茨海默氏症)。目前天然加兰他敏生物碱的氢溴酸盐(商品名称
Figure BSA00000449776000012
)已在欧美一些国家被批准上市用来治疗早老年性痴呆症。
加兰他敏(Galanthamine)在自然界中的提取物种稀少、提取代价昂贵,而且在相关天然植物资源中的含量有限,从而引发全球许多制药公司开始通过化学合成的方式来合成此生物碱。开展加兰他敏的化学合成,尤其是不对称合成研究,是目前解决此类环境资源瓶颈性问题的一条科学可行的途径,具有十分重要的现实意义。到目前为止,国际上基于化学合成制备光学纯(-)-加兰他敏的方法主要有以下三种途径(J.Marco-Contelles,M.C.Carreiras,C.Rodriguez,M.Villarroya,A.G.Garcia,Chem.Rew.2006,106,116):
(a)基于“逆Michael加成-Michael加成”动态反应平衡的“外消旋Narwedine”自发结晶拆分的(-)-加兰他敏合成;
(b)通过“手性底物、手性辅基”使用的(-)-加兰他敏合成;
(c)以“金属催化的不对称烯丙基烷基化反应”为关键手性诱导步骤的(-)-加兰他敏合成;
在这些已报道的不对称合成方法中,手性控制策略主要来自“自发结晶拆分”(Czollner et al.,US 6043359,Mar.28,2000)与”计量手性诱导”(Node et al.,Angew.Chem.2004,116,2713;Angew.Chem.Int.Ed.2004,43,2659;Brown et al.,Org.Lett.2007,9,1867),而不对称催化的合成方法中仅有“Pd催化的不对称烯丙基烷基化反应”(Trost et al.,J.Am.Chem.Soc.2000,122,11262;Angew.Chem.Int.Ed.2002,41,2795)被用于(-)-加兰他敏合成合成,其它不对称催化引入手性的方法还没有见诸报道。
需要说明的是,有关加兰他敏化学合成的中国发明专利申请200310112902.6和200610041682.6仅公开了“外消旋加兰他敏”的制备方法,中国发明专利申请200810020491.0、200880011762.4和201010129674.3则采用了拆分的方法制备(-)-加兰他敏,目前国内还没有基于不对称催化的(-)-加兰他敏合成方法报道。
现有的合成技术中,手性季碳中心的构建主要是通过外消旋中间体Narwedine的结晶拆分、计量手性诱导(手性原料、手性辅基、手性试剂)来实现的。在结晶拆分中所用到的中间体Narwedine,会导致人体皮肤严重过敏。
相关药理研究表明该分子中N端取代基对其生物活性的改善有显著影响,而利用现有技术得到的加兰他敏分子中N端甲基的直接切除与修饰是一个难点。
发明内容
本发明提供一种可克服现有技术不足的光学纯加兰他敏不对称催化合成的方法。
本发明的加兰他敏不对称催化合成方法包含如下步骤:
(1)将邻香兰素1溶于四氢呋喃,加入氢化钠反应后,加入酚羟基保护试剂,将所得酚羟基保护产物溶于甲醇或乙醇中后将醛基还原,将得到的苄醇中间体溶于二氯甲烷后与三乙胺和甲磺酰氯反应,得到苄位羟基甲磺酰化产物,然后将所得产物溶于DMF中,加入氰化钠生成氰基取代化合物2;
(2)将溶于四氢呋喃中的化合物2与氢化钠和酰化试剂R1OAc反应得到α-芳基-α-氰基丙酮3;
(3)将溶于对二甲苯溶液中的α-芳基-α-氰基丙酮3和丙烯酸酯4在手性硫脲催化剂Cat.a作用下进行对映选择性Michael加成反应得到含有“全碳季碳手性中心”的加成产物5;将上述所得手性产物5溶于溶剂中,再在其中加入异丙醇和正己烷,混合均匀后于室温下静置结晶得到晶体5;
(4)将溶于四氢呋喃和叔丁醇的混合溶液中的晶体5在金属醇盐MOtBu的作用下,通过酮酯缩合反应,得到取代1,3-环己二酮中间体,四氢呋喃和叔丁醇的体积比为2∶1至1∶2,然后在20℃下将产物直接溶于体积比为10∶1的甲苯与甲醇的混合溶液中,在酸的催化作用下,得到烯醇醚化合物6;
室温下将化合物6溶于甲醇中,再在其中加入Luche还原试剂,再将经Luche还原得到的产物溶于体积比为5∶1的甲苯和二氯甲烷的混合溶液中,在质子酸作用下得到氢化二苯并呋喃化合物7;
(5)将化合物7溶于苯中,加入乙二醇和单水合对甲苯磺酸,回流分水制得化合物8;
(6)将化合物8溶于溶剂中,-78℃下在二异丁基氢化铝作用下还原得到醛9;
(7)将醛9溶于硝基甲烷,在三乙胺作用下发生Henry反应,反应完去除溶剂,将剩余物重新溶于二氯甲烷中,在甲磺酰氯和三乙胺作用下消除羟基得到α,β-不饱和硝基化合物10;
(8)将化合物10溶于甲醇或乙醇,加入硼氢化钠还原得到饱和硝基化合物11;
(9)在0℃下将化合物11溶于四氢呋喃中,用氢化锂铝还原得到一级胺化合物,经萃取和去除溶剂所得产物重新溶于四氢呋喃中,在三乙胺和保护剂作用下反应得到氨基保护化合物12;
(10)将化合物12溶于1,2-二氯乙烷中,加入多聚甲醛和三氟乙酸,经Pictet-Spengler反应得到化合物13;;
(11)将化合物13溶于二氯甲烷中,加入叔丁基二甲基硅基三氟甲磺酸酯反应生成区域选择性烯醇硅醚化合物;将所得烯醇硅醚化合物溶于乙腈中,在醋酸钯和对苯醌的作用下发生氧化反应,得到羰基α,β-位脱氢的烯酮产物14;
(12)将化合物14溶于四氢呋喃中,加入还原剂进行还原反应生成光学纯(-)-Galanthamine(加兰他敏)。
上述反应共12步,参见式2.
Figure BSA00000449776000041
式2
本发明上述的加兰他敏不对称催化合成方法中有如下优选措施:
步骤(1)中所用的酚羟基保护试剂RX为氯甲基烷基醚(R′CH2OCH2Cl)或苄卤化合物(PhCH2X),这些保护官能团具有一定的稳定性,而且在特定条件下比较容易脱除;
步骤(2)中所用酰化试剂为乙酸乙酯,相对其他酰化试剂乙酸乙酯廉价易得,毒性较小;
步骤(3)中所用Michael反应受体CH2=CHCO2R2为丙烯酸对碘苯酚酯(R2=4-C6H4I)或丙烯酸对溴苯酚酯(R2=4-C6H4Br)或丙烯酸对氯苯酚酯(R2=4-C6H4Cl),所选Michael反应受体得到的加成产物容易结晶,方便操作;
步骤(4)中所用金属醇盐MOtBu为叔丁醇钠(M=Na)或叔丁醇钾(M=K),加入单水合对甲苯磺酸的方法是分多次间隔加入,采用这种加入方式能得到较高产率;所用质子酸为甲磺酸,采用甲磺酸产率较高;
步骤(6)中所用溶剂为二氯甲烷或甲苯;
步骤(9)中所用保护试剂R3COX为氯甲酸酯,其中的R3为烷氧基或苄氧基或芳氧基,所选保护官能团在特定条件下比较容易脱除,有利于对加兰他敏分子中N端取代基进行修饰;
步骤(12)中所用还原剂为三仲丁基硼氢化锂和氢化锂铝,反应时先加入三仲丁基硼氢化锂,再加入氢化锂铝,采用这种加入方式能得到非常高的立体选择性产物。
本发明与现有手性合成技术相比有如下优点:
(一)以有机小分子催化的不对称Michael加成反应为关键步骤,直接对映选择性构建加兰他敏分子结构中关键的手性全碳季碳中心,具有很好的手性经济性,减少了对计量手性源的依赖,而且可以避免结晶拆分中容易引起人体皮肤严重过敏的外消旋Narwedine的使用,这是本发明的特色之一。而在现有的合成技术中,此类手性季碳中心的构建主要是通过外消旋中间体Narwedine的结晶拆分、计量手性诱导(手性原料、手性辅基、手性试剂)来实现的。
(二)使用含有卤原子的丙烯酸酯衍生物(R2=4-C6H4I,4-C6H4Br与4-C6H4Cl)作为关键反应的Michael受体,使得Michael加成产物5具有高度的可结晶性,为关键合成中间体5的光学纯度进一步提高提供了有效的途径,也为高度光学纯(-)-加兰他敏的不对称全合成奠定了基础。
(三)加兰他敏分子中N端甲基的直接切除与修饰是一个难点,而相关药理研究表明该分子中N端取代基对其生物活性的改善有显著影响。对于本发明路线,合成中间体12中N端“烷氧羰基”(-CO2R)的引入,使得此类N端保护基的去除条件更为温和、高效,其不仅为此类生物碱中benzazepine环的构建提供了有效Pictet-Spengler环化前体,而且也为相关加兰他敏N端衍生物的有效合成提供了可能。
(四)本发明路线中,很多化学转换过程的中间体无须柱层析分离(1→2;5→7;9→10;11→12;14→(-)-Galanthamine),大大简化了实验操作,降低了合成成本,增加了新路线实用性。
具体实施方式
下面通过具体实施例对本发明作进一步的描述。
实施例1
将邻香兰素1(21.8g,143.4mmol)溶于600mL四氢呋喃中,在0℃下分批加入氢化钠(80%含量;8.61g,287.0mmol,2.0equiv),所得悬浊液恢复至室温并继续搅拌反应1小时,然后将反应体系降温至0℃,通过恒压漏斗向反应体系中滴加氯甲基甲基醚(26.2mL,345.0mmol,2.4equiv),或氯甲基烯丙基醚,或苄氯,滴加完毕后恢复至室温搅拌反应12小时。缓慢加入冰水(20mL)淬灭反应,减压去除四氢呋喃,加入300mL乙酸乙酯稀释,再加入50mL 10%氢氧化钠水溶液,混合均匀后分出有机相,乙酸乙酯(2×300mL)反萃水相。合并有机相后,用10%氢氧化钠水溶液(50mL)、饱和食盐水(50mL)依次洗涤,无水硫酸钠干燥,减压浓缩后得黄色油状物(无需柱层析分离纯化)。
将此黄色油状物直接溶于150mL甲醇或乙醇中,在0℃下分批加入硼氢化钠(5.70g,150.7mmol,1.05equiv),之后将反应体系恢复至室温并继续反应0.5小时。加水淬灭反应,减压去除甲醇或乙醇,乙酸乙酯(3×300mL)萃取,合并有机相,依次用水(50mL)、饱和食盐水(50mL)洗涤,无水硫酸钠干燥,减压浓缩后得淡黄色固体(无需柱层析分离纯化)。
将此淡黄色固体和三乙胺(30.0mL,215.1mmol,1.5equiv)溶于200mL二氯甲烷中,在0℃下通过恒压漏斗滴加甲磺酰氯(13.4mL,172.8mmol,1.2equiv),所得体系恢复至室温并反应0.5小时。加入50mL水淬灭反应,并分出有机相,乙酸乙酯(2×300mL)反萃水相。合并有机相后,依次用水(50mL)、饱和食盐水(50mL)洗涤,无水硫酸钠干燥,减压浓缩后得黄色油状物(无需柱层析分离纯化)。
将上述所得油状物直接溶于30mL DMF中,加入氰化钠(10.55g,215.3mmol,1.5equiv),在室温下搅拌反应3天。加入50mL饱和食盐水,所得混合物用乙酸乙酯(3×300mL)萃取,合并有机相,饱和食盐水(4×100mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析分离得到白色固体2(R=CH2OCH3;25.12g,121.4mmol)。
R=甲氧基亚甲基时,该步骤总产率85%;R=烯丙氧基亚甲基时,该步骤总产率80%;R=苄基时,该步骤总产率78%;相关分析数据如下:
R=甲氧基亚甲基时:1H NMR(400MHz,CDCl3):δ=7.10(t,3J=8.0Hz,1H),7.04-7.01(m,1H),6.93-6.90(m,1H),5.14(s,2H),3.85(s,3H),3.84(s,2H),3.56ppm(s,3H);13C NMR(100MHz,CDCl3):δ=152.0,144.0,124.7,124.6,120.7,118.0,112.4,99.1,57.6,55.8,18.8ppm。
R=烯丙氧基亚甲基时:1H NMR(400MHz,CDCl3):=7.12-7.07(m,1H),7.04-7.01(m,1H),6.93-6.89(m,1H),5.96-5.86(m,1H),5.34-5.27(m,1H),5.24-5.18(m,3H),4.29-4.24(m,2H),3.86-3.82ppm(m,5H);13C NMR(100MHz,CDCl3):δ=152.0,143.8,133.6,124.75,124.65,120.6,118.0,117.4,112.2,96.8,70.5,55.7,18.8ppm。
R=苄基时:1H NMR(400MHz,CDCl3):δ=7.47-7.33(m,5H),7.14-7.06(m,1H),7.01-6.94(m,2H),5.12(s,2H),3.93(s,3H),3.54ppm(s,2H);13C NMR(100MHz,CDCl3):δ=152.6,145.2,137.1,128.5,128.5,128.4,128.4,128.3,124.6,124.4,120.8,118.1,112.6,74.7,55.8,18.5ppm。
实施例2
将前述所得的化合物2(R=CH2OCH3 5.0g,24.2mmol)(R=亚甲基烯丙基醚或苄基时操作步骤相同)溶于40mL四氢呋喃中,在0℃下分批加入氢化钠(95%含量;1.22g,48.3mmol,2.0equiv),之后恢复至室温再搅拌反应1小时。将反应体系降温至0℃,加入乙酸乙酯(7.1mL,72.6mmol,3.0equiv),然后升温至70℃并在此温度下搅拌反应4小时,冷却至0℃后加入20mL冰水淬灭反应,通过冰醋酸的加入调节反应混合物pH值至3~4,再加入200mL乙酸乙酯,振摇、静置,分出有机相,乙酸乙酯(2×150mL)反萃水相。合并有机相后,饱和食盐水(2×20mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析分离得到淡黄色油状物3(R=CH2OCH3;5.16g,20.7mmol)。
R=甲氧基亚甲基时,该步骤总产率86%;R=烯丙氧基亚甲基时,该步骤总产率85%;R=苄基时该步骤总产率80%,相关分析数据如下:
R=甲氧基亚甲基时:1H NMR(400MHz,CDCl3):δ=7.16-7.10(m,1H),6.99-6.96(m,2H),5.29(s,1H),5.18-5.16(m,2H),3.88-3.85(m,3H),3.54-3.52(m,3H),2.22-2.19ppm(m,3H);13C NMR(100MHz,CDCl3):δ=196.6,152.2,143.7,125.2,124.7,120.5,116.3,113.4,99.2,57.8,55.9,45.5,27.4ppm.
R=烯丙氧基亚甲基醚时:1H NMR(400MHz,CDCl3):δ=7.22-6.86(m,3H),5.96-5.80(m,1H),5.37-5.10(m,5H),4.33-4.17(m,2H),3.93-3.77(m,3H),2.38-2.03ppm(m,3H);13CNMR(100MHz,CDCl3)(the major isomer):δ=196.6,152.2,143.6,133.5,125.3,124.8,120.4,117.6,116.3,113.4,97.1,70.9,55.8,45.5,27.4ppm;
R=苄基时:1H NMR(400MHz,CDCl3):δ=7.46-7.34(m,5H),7.19-6.90(m,3H),5.24-4.91(m,3H),3.96-3.88(m,3H),2.29-2.04ppm(m,3H);13C NMR(100MHz,CDCl3)(themajor isomer):δ=196.5,152.7,144.8,136.7,129.2,128.6,128.6,128.4,128.4,124.8,124.6,120.5,116.3,113.5,74.9,55.8,45.5,27.4ppm;MS(EI):m/z(%):295(2)[M]+,253(3),172(<1),162(2),151(<1),119(1),91(100),65(9),43(21).。
实施例3-1
在25℃下,干燥的圆底烧瓶中加入双功能硫脲催化剂Cat.a(330.4mg,0.80mmol,0.2equiv)和α-芳基-α-氰基丙酮3(R=CH2OCH3;996.0mg,4.0mmol),然后加入对二甲苯(20mL),待完全溶解后再加入丙烯酸酯4(R2=4-C6H4I;2.192g,8.0mmol,2.0equiv),保持反应温度25℃搅拌4天,将此混合溶液直接经硅胶柱层析分离得到黄色油状Michael加成产物5(R=CH2OCH3,R2=4-C6H4I;2.05g,3.92mmol,80%ee)。双功能硫脲催化剂Cat.a结构参见式3。
Figure BSA00000449776000081
式3
将上述平行反应累加收集得到的加成产物5(R=CH2OCH3,R2=4-C6H4I;7.50g,14.3mmol)溶于15mL氯仿中,加入8mL异丙醇和60mL正己烷,混合均匀后于室温下静置7天,然后倾滗液体,并用2mL正己烷淋洗4次,得到晶体5(R=CH2OCH3,R2=4-C6H4I;5.64g,10.8mmol,99%ee)。
该步骤所得晶体产率74%,晶体的相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=7.66(d,3J=8.2Hz,2H),7.23(d,3J=8.0Hz,1H),7.16(t,3J=8.0Hz,1H),7.01(d,3J=8.0Hz,1H),6.81(d,3J=8.2Hz,2H),5.21,5.19(ABq,2J=5.2Hz,2H),3.86(s,3H),3.54(s,3H),2.85-2.51(m,4H),2.25ppm(s,3H);13C NMR(100MHz,CDCl3):δ=197.5,170.2,151.9,150.3,143.2,138.4,138.4,127.4,124.2,123.6,123.6,120.5,118.5,113.8,99.1,89.9,58.2,56.5,55.9,30.3,29.1,26.1ppm;MS(EI):m/z(%):481(<1)[M-Ac+H]+,449(<1),304(1),272(<1),264(1),245(<1),230(28),202(5),188(5),176(6),55(9),45(100),43(32);IR:v=2240,1479,1199,1165,1140,1097,1077,923cm-1;HRMS(ESI):m/z calcd forC22H26IN2O6:541.0830;found:541.0837[M+NH4]+
实施例3-2
当michael受体为丙烯酸对氯苯酚酯(R2=4-C6H4Cl)时,操作步骤和上述步骤一致,所得固体产品产率为90%,ee值为79%,相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=7.33-7.30(m,2H),7.24-7.21(m,1H),7.18-7.14(m,1H),7.03-6.97(m,3H),5.22,5.19(ABq,2J=5.0Hz,2H),3.86(s,3H),3.54(s,3H),2.85-2.75(m,2H),2.72-2.64(m,1H),2.59-2.50(m,1H),2.25ppm(s,3H);13C NMR(100MHz,CDCl3):δ=197.5,170.3,151.9,148.9,143.2,131.2,129.4,129.4,127.4,124.2,122.8,122.8,120.5,118.5,113.8,99.1,58.2,56.5,55.9,30.3,29.1,26.0ppm;MS(EI):m/z(%):391(<1)[M(37Cl)-Ac+H]+,389(<1)[M(35Cl)-Ac+H]+,359(<1),357(<1),304(<1),274(<1),272(<1),261(<1),245(<1),230(10),202(2),188(2),176(3),55(9),45(100),43(32);
Figure BSA00000449776000091
实施例3-3
当michael受体为丙烯酸对溴苯酚酯(R2=4-C6H4Br)时,操作步骤和上述步骤一致,所得固体产品产率为97%,ee值为80%,相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=7.49(d,3J=8.8Hz,2H),7.23(d,3J=7.6Hz,1H),7.16(t,3J=7.6Hz,1H),7.01(d,3J=7.6Hz,1H),6.93(d,3J=8.8Hz,2H),5.21,5.19(ABq,2J=5.2Hz,2H),3.86(s,3H),3.54(s,3H),2.85-2.75(m,2H),2.72-2.64(m,1H),2.59-2.51(m,1H),2.25ppm(s,3H);13C NMR(100MHz,CDCl3):δ=197.5,170.2,151.9,149.5,143.2,132.4,132.4,127.3,124.2,123.2,123.2,120.5,118.9,118.5,113.8,99.1,58.2,56.5,55.9,30.3,29.1,26.0ppm.MS(EI):m/z(%):435(<1)[M(81Br)-Ac+H]+,433(<1)[M(79Br)-Ac+H]+,403(<1),401(<1),304(<1),272(1),262(<1),261(<1),259(<1),245(<1),230(11),188(3),176(3),55(8),45(100),43(28);
Figure BSA00000449776000092
实施例4-1
在-20℃下,将晶体5(R=CH2OCH3,R2=4-C6H4I;3.70g,7.07mmol)溶于30mL四氢呋喃中,搅拌均匀,通过恒压漏斗缓慢向反应体系中滴加叔丁醇钠(1.70g,17.7mmol,2.5equiv)的叔丁醇(30mL)悬浊液,45分钟滴加完毕,继续在-20℃下搅拌反应4小时。然后在此温度下加入10mL水和约2mL冰醋酸淬灭反应,待反应体系恢复至室温后,乙酸乙酯(3×150mL)萃取,合并有机相,依次用10mL水、10mL饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩后硅胶柱层析快速分离得淡黄色固体产物(1.36g,4.48mmol)。
在20℃下将上述产物(1.36g,4.48mmol)直接溶于80mL甲苯中,再加入8mL甲醇和单水合对甲苯磺酸(0.170g,0.896mmol,0.20equiv),保持20℃搅拌反应10小时;之后,第二次加入单水合对甲苯磺酸(0.851g,0.448mmol,0.10equiv),继续在此温度下反应3小时;随后,第三次加入单水合对甲苯磺酸(0.851g,0.448mmol,0.10equiv),并继续反应5小时。加入10mL水淬灭反应,减压去除甲醇,所得混合物用乙酸乙酯(3×150mL)萃取,合并有机相,饱和食盐水(2×30mL)洗涤,无水硫酸钠干燥,减压浓缩后直接得到产物6(R=CH2OCH3,1.23g,4.48mmol,以上两步反应总产率63%)。
室温下,将化合物6(R=CH2OCH3,400.0mg,1.46mmol)溶于40mL干燥甲醇中,加入无水三氯化铈(866mg,3.51mmol,2.4equiv),将此反应体系在室温下搅拌10分钟,然后降温至-40℃,在1.5小时内分三批加入NaBH4(332.2mg,8.78mmol,6.0equiv),此混合体系在-40℃下继续搅拌反应1.5小时。然后,减压蒸出反应溶剂,将浓缩物溶于10mL乙酸乙酯中,加入5mL水和1.5mL冰醋酸,所得混合物用乙酸乙酯(3×100mL)萃取,合并有机相,饱和食盐水(2×10mL)洗涤,无水硫酸钠干燥,减压浓缩后得到粗产物(无需柱层析分离纯化)。
将上述所得粗产物直接溶于20mL甲苯和4mL二氯甲烷的混合溶液中,在室温下向体系中逐滴滴加甲磺酸(0.76mL,11.7mmol,8.0equiv),滴加完毕后继续在室温下搅拌反应3小时,然后用5mL饱和碳酸氢钠水溶液淬灭反应。所得混合体系用乙酸乙酯(3×75mL)萃取,合并有机相,饱和食盐水(2×8mL)洗涤,无水硫酸钠干燥,减压浓缩后硅胶柱层析分离得到淡黄色固体7(226.8mg,0.932mmol,99%ee;以上两步总产率64%)。若此处采用盐酸、硫酸或对甲苯磺酸作为质子酸,则这两步的产率明显下降,在20%至40%之间。
化合物7相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=7.05-7.00(m,2H),6.93-6.87(m,1H),5.44(t,3J=3.6Hz,1H),3.89(s,3H),3.08,2.93(dABq,2J=17.2Hz,4J=3.6Hz,2H),2.61-2.53(m,1H),2.46-2.35(m,2H),2.12-2.03ppm(m,1H);13C NMR(100MHz,CDCl3):δ=204.5,147.2,144.8,126.4,123.5,120.6,115.6,113.8,84.6,56.1,43.3,40.6,34.6,31.9ppm;IR:v=2236,1721,1495,1454,1288,1208,1187,958cm-1;HRMS(ESI):m/z calcd for C14H17N2O3:261.1234;found:261.1227[M+NH4]+
Figure BSA00000449776000101
实施例4-2
在-20℃下,将晶体5(R=CH2OCH3,R2=4-C6H4I;3.70g,7.07mmol)溶于30mL四氢呋喃中,搅拌均匀,通过恒压漏斗缓慢向反应体系中滴加叔丁醇钾(1.98g,17.7mmol,2.5equiv)的叔丁醇(30mL)悬浊液,45分钟滴加完毕,继续在-20℃下搅拌反应4小时。然后在此温度下加入10mL水和约2mL冰醋酸淬灭反应,待反应体系恢复至室温后,乙酸乙酯(3×150mL)萃取,合并有机相,依次用10mL水、10mL饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩后硅胶柱层析快速分离得淡黄色固体产物(0.86g,2.83mmol)。
在20℃下将上述产物(0.86g,2.83mmol)直接溶于80mL甲苯中,再加入8mL甲醇和单水合对甲苯磺酸(0.107g,0.566mmol,0.20equiv),保持20℃搅拌反应10小时;之后,第二次加入单水合对甲苯磺酸(0.054g,0.283mmol,0.10equiv),继续在此温度下反应3小时;随后,第三次加入单水合对甲苯磺酸(0.054g,0.283mmol,0.10equiv),并继续反应5小时。加入10mL水淬灭反应,减压去除甲醇,所得混合物用乙酸乙酯(3×120mL)萃取,合并有机相,饱和食盐水(2×20mL)洗涤,无水硫酸钠干燥,减压浓缩后直接得到产物6(R=CH2OCH3,0.78g,2.83mmol,以上两步反应总产率40%)。
下面的步骤与实施例4-1完全相同。
实施例5
将化合物7(241.0mg,0.99mmol)溶于30mL苯中,加入乙二醇(0.083mL,1.48mmol,1.5equiv)和单水合对甲苯磺酸(18.8mg,0.099mmol,0.1equiv),此反应体系回流分水8小时后,直接将苯蒸馏分出,直至体系中约剩1mL左右溶剂,待恢复至室温后将剩余混合物直接柱层析分离得到白色固体8(276mg,0.96mmol,99%ee)。
该步骤产率97%,相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=6.96-6.92(m,2H),6.87-6.82(m,1H),5.02(t,3J=4.8Hz,1H),4.01-3.88(m,4H),3.87(s,3H),2.33-2.10(m,4H),1.87-1.79(m,1H),1.75-1.67ppm(m,1H);13C NMR(100MHz,CDCl3):δ=146.5,145.3,129.0,122.7,120.4,114.8,113.0,106.1,85.5,64.7,64.2,55.9,43.2,34.9,30.7,30.4ppm;IR:v=2230,1492,1287,1161,1150,1091,1044,949cm-1;MS(ESI):m/z(%):305.2[M+NH4]+
Figure BSA00000449776000111
实施例6-1
将化合物8(200.0mg,0.696mmol)溶于6.0mL干燥二氯甲烷中,-78℃下,逐滴滴加二异丁基氢化铝(DIBAL-H)的甲苯溶液(1.0M;1.25mL,1.25mmol,1.8equiv),保持-78℃搅拌反应3小时,然后在此温度下直接加入乙酸乙酯(3mL)淬灭反应。待反应体系慢慢升温到0℃,向其中加入20%酒石酸钠钾的水溶液(6mL),所得混合体系自然恢复至室温并剧烈搅拌6小时,然后用乙酸乙酯(3×60mL)萃取,合并有机相,饱和食盐水(10mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析分离得到淡黄色油状物9(125.0mg,0.431mmol,99%ee)。
该步骤产率62%,相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=9.58(s,1H),6.96-6.84(m,2H),6.75-6.72(m,1H),5.26(t,3J=6.8Hz,1H),3.97-3.89(m,4H),3.88(s,3H),2.31-2.20(m,2H),2.11-2.02(m,2H),1.71-1.63ppm(m,2H);13C NMR(100MHz,CDCl3):δ=197.6,147.7,145.5,127.6,122.2,115.8,113.0,107.3,82.6,64.5,64.2,59.5,56.0,36.3,30.4,24.2ppm;IR:v=1726,1490,1455,1291,1179,1153,1088,1048cm-1;HRMS(ESI):m/z calcd for C16H22NO5:308.1492;found:308.1495[M+NH4]+
Figure BSA00000449776000121
实施例6-2
当实施例6-1中所用溶剂改为甲苯后,操作步骤同实施例6-1,所得产物9的产率为50%。
实施例7
将醛9(366.0mg,1.26mmol)溶于8mL硝基甲烷中,加入三乙胺(0.21mL,1.51mmol,1.2equiv),室温下搅拌反应12小时,减压去除溶剂,将剩余物重新溶于10mL二氯甲烷中,再在0℃下向反应体系中依次加入甲磺酰氯(0.29mL,3.78mmol,3.0equiv)和三乙胺(0.53mL,3.78mmol,3.0equiv),所得反应体系恢复至室温并继续搅拌反应1小时。加入10mL饱和碳酸氢钠水溶液淬灭反应,所得混合物用乙酸乙酯(4×50mL)萃取,合并有机相,饱和食盐水(10mL)洗涤,无水硫酸钠干燥,减压浓缩后硅胶柱层析分离得到淡黄色油状物10(410.0mg,1.23mmol,99%ee)。
该步骤产率98%,相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=7.38-7.34(m,1H),6.98-6.93(m,1H),6.88-6.85(m,1H),6.75-6.71(m,2H),4.83(dd,3J=7.6Hz,3J=6.4Hz,1H),4.00-3.90(m,4H),3.90(s,3H),2.27-2.09(m,3H),1.95-1.89(m,1H),1.74-1.62ppm(m,2H);13C NMR(100MHz,CDCl3):δ=146.8,145.9,145.4,139.8,130.0,122.5,115.1,112.9,107.1,86.5,64.5,64.4,56.0,48.7,36.6,30.2,28.0ppm;IR:v=2255,1526,1491,1454,1351,1287,1094,734cm-1;C17H23N2O6:351.1551;found:351.1546[M+NH4]+
Figure BSA00000449776000122
实施例8
在0℃下,将化合物10(103.0mg,0.309mmol)溶于6mL甲醇或乙醇中,分批加入硼氢化钠(35.1mg,0.928mmol,3.0equiv),所得反应体系恢复至室温并继续搅拌反应1.5小时。加入饱和氯化铵水溶液(6mL)淬灭反应,减压去除甲醇或乙醇,剩余混合物用乙醚萃取(4×50mL),合并有机相,依次用水(8mL)、饱和食盐水(8mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析分离得到淡黄色油状物11(95.1mg,0.284mmol,99%ee)。
该步骤产率92%,相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=6.93(t,3J=7.8Hz,1H),6.83(dd,3J=7.8Hz,4J=0.8Hz,1H),6.72(dd,3J=7.8Hz,4J=0.8Hz,1H),4.68(dd,3J=8.8Hz,3J=6.4Hz,1H),4.39-4.31(m,1H),4.18-4.10(m,1H),3.98-3.89(m,4H),3.88(s,3H),2.40-2.15(m,4H),1.97-1.89(m,1H),1.75-1.49ppm(m,3H);13C NMR(100MHz,CDCl3):δ=146.5,145.8,131.3,122.1,114.8,112.5,107.5,87.1,72.0,64.34,64.29,55.9,46.5,38.0,37.1,30.5,29.0ppm;
Figure BSA00000449776000131
Figure BSA00000449776000132
实施例9
在0℃下,将11(70.0mg,0.209mmol)溶于7mL四氢呋喃中,分批加入氢化锂铝(23.8mg,0.627mmol,3.0equiv),加完后恢复至室温并搅拌反应12小时。加入10%氢氧化钠水溶液(8mL),并继续搅拌30分钟,所得混合物用乙酸乙酯(3×60mL)萃取,合并有机相,饱和食盐水(6mL)洗涤,无水硫酸钠干燥,减压浓缩后得粗产品(无需柱层析分离纯化)。
将上述所得粗产品直接溶于四氢呋喃(7mL)中,在0℃下加入三乙胺(0.087mL,0.627mmol,3.0equiv)和氯甲酸甲酯(0.032mL,0.413mmol,2.0equiv),滴加完毕后将反应体系恢复至室温,继续搅拌反应8小时。加入10mL乙酸乙酯和8mL水,所得混合物用乙酸乙酯(3×60mL)萃取,合并有机相,饱和食盐水(6mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析分离得到淡黄色油状物12(R3=OMe;55.0mg,0.151mmol,99%ee)。
该步骤产率72%,相关分析数据如下:
1H NMR(400MHz,CDCl3)(a mixture ofrotamer A and rotamer B):δ=6.88-6.69(m,3H),4.70-4.62(m,2H),3.95-3.82(m,7H),3.65-3.56(m,3H),3.18-3.05(brs,1H),3.05-2.95(m,1H),2.17-2.06(m,2H),1.91-1.68(m,4H),1.65-1.57(m,1H),1.53-1.45ppm(m,1H);13C NMR(100MHz,CDCl3)(the main rotamer):δ=156.8,146.6,145.5,133.2,121.5,115.1,111.8,107.8,87.1,64.18,64.16,55.8,51.8,46.7,40.7,36.94,36.89,30.6,29.2ppm;IR:v=2250,1719,1490,1455,1262,1148,1094,1057cm-1;C19H26NO6:364.1755;found:364.1749[M+H]+
Figure BSA00000449776000133
Figure BSA00000449776000134
实施例10
在室温下,化合物12(R3=OMe;39.4mg,0.108mmol)溶于6mL 1,2-二氯乙烷中,依次加入多聚甲醛(26.1mg,0.87mmol,8.0equiv)和三氟乙酸(0.080mL,0.413mmol,10.0equiv),然后将反应体系温度慢慢升温至50℃,并在此温度下搅拌反应8小时。将反应体系温度恢复至室温,加入饱和碳酸氢钠水溶液(5mL)淬灭反应,所得混合物用乙酸乙酯(3×60mL)萃取,合并有机相,饱和碳酸氢钠水溶液(8mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析分离得到淡黄色油状物13(R3=OMe;28.6mg,0.0863mmol,>99%ee)。
该步骤产率80%,相关分析数据如下:
1H NMR(400MHz,CDCl3)(a mixture of rotamer A′and rotamer B′):δ=6.82-6.64(m,2H),4.90-4.69(m,2H),4.43-4.04(m,2H),3.83-3.79(m,3H),3.65-3.60(m,3H),3.36-3.20(m,1H),3.03-2.97(m,1H),2.67-2.60(m,1H),2.38-2.27(m,2H),2.12-1.95(m,2H),1.86-1.76ppm(m,2H);13C NMR(100MHz,CDCl3)(a mixture of rotamer A′and rotamer B′):δ=208.43,155.97,155.76,147.31,147.25,143.93,131.14,130.86,129.05,128.95,121.81,121.23,111.08,110.90,87.93,87.84,55.80,52.60,51.06,50.58,47.58,47.53,45.80,45.42,39.85,39.80,38.99,35.36,29.96,29.87ppm;
Figure BSA00000449776000141
实施例11
在0℃下,将化合物13(R3=OMe;27.7mg,0.0836mmol)溶于3mL二氯甲烷中,向其中加入三乙胺(0.036mL,0.259mmol,3.1equiv)和叔丁基二甲基硅基三氟甲磺酸酯(0.039mL,0.170mmol,2.03equiv),反应体系恢复至室温并搅拌反应1小时。之后将反应体系降温至0℃,用饱和氯化铵水溶液(8mL)淬灭反应,所得混合物用乙酸乙酯(3×50mL)萃取,合并有机相,饱和食盐水(8mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析分离得到烯醇硅醚中间体(32.4mg,0.0727mmol,产率87%)。
将平行反应累加所得烯醇硅醚中间体(142.5mg,0.320mmol)溶于4mL乙腈中,在0℃下加入醋酸钯(108.0mg,0.481mmol,1.5equiv)和对苯醌(51.8mg,0.481mmol,1.5equiv),所得反应体系升温至50℃,并在此温度下搅拌反应2天,反应混合物经短硅胶柱快速滤去不溶物,滤液浓缩后硅胶柱层析分离得到黄色油状物14(R3=OMe;60.1mg,0.182mmol,此步产率57%)。
此步骤两步总产率50%,相关分析数据如下:
1H NMR(400MHz,CDCl3)(a mixture of rotamer A″and rotamer B″):δ=6.90-6.64(m,3H),6.09-6.00(m,1H),5.03-4.66(m,2H),4.48-4.10(m,2H),3.91-3.75(m,3H),3.75-3.58(m,3H),3.48-3.28(m,1H),3.21-3.11(m,1H),2.80-2.70(m,1H),2.20-2.00ppm(m,2H);13C NMR(100MHz,CDCl3)(a mixture of rotamer A″and rotamer B″):δ=194.02,155.99,155.85,147.65,144.31,143.47,143.41,129.83,129.55,129.20,129.14,127.42,121.54,120.93,111.92,111.73,87.71,87.63,55.97,52.81,51.97,51.46,49.07,46.08,45.65,37.17,36.55,35.59ppm;
Figure BSA00000449776000142
Figure BSA00000449776000143
实施例12
将化合物14(R3=OMe;36.3mg,0.110mmol)溶于4mL四氢呋喃中,在-78℃下缓慢向反应体系中滴加三仲丁基硼氢化锂(1.0Min THF;0.35mL,0.350mmol,3.2equiv),滴加完毕后将反应体系温度缓慢升至室温,期间反应5小时。然后将反应体系降温至0℃,直接加入氢化锂铝(29.3mg,0.771mmol,7.0equiv),之后升温至50℃,并在此温度下搅拌反应6小时。将反应体系冷却至0℃,加入10%氢氧化钠水溶液(6mL),恢复至室温并继续搅拌1小时,所得混合物用氯仿(6×40mL)萃取,合并有机相,饱和食盐水(6mL)洗涤,无水硫酸钠干燥,减压浓缩后经硅胶柱层析(洗脱剂∶二氯甲烷/甲醇=60∶1)分离得到(-)-Galanthamine(19.0mg,0.0661mmol)。
该步骤产率60%,相关分析数据如下:
1H NMR(400MHz,CDCl3):δ=6.66,6.63(ABq,3J=8.2Hz,2H),6.09-5.98(m,2H),4.62(brs,1H),4.14(t,3J=4.4Hz,1H),4.10,3.69(ABq,2J=15.2Hz,2H),3.84(s,3H),3.32-3.23(m,1H),3.10-3.02(m,1H),2.73-2.66(m,1H),2.53-2.29(brs,1H;OH),2.41(s,3H),2.13-1.98(m,2H),1.62-1.55ppm(m,1H);13C NMR(100MHz,CDCl3):δ=145.8,144.1,133.0,129.2,127.6,126.8,122.1,111.2,88.7,62.1,60.6,55.9,53.8,48.2,42.0,33.8,29.9ppm;
Figure BSA00000449776000151
Figure BSA00000449776000152
{文献报道
Figure BSA00000449776000153
}.。

Claims (8)

1.一种加兰他敏不对称催化合成方法,其特征在于包括如下步骤:
(1)将邻香兰素1溶于四氢呋喃,加入氢化钠反应后,加入酚羟基保护试剂,将所得酚羟基保护产物溶于甲醇或乙醇中后将醛基还原,将得到的苄醇中间体溶于二氯甲烷后与三乙胺和甲磺酰氯反应,得到苄位羟基甲磺酰化产物,然后将所得产物溶于DMF中,加入氰化钠生成氰基取代化合物2,其反应式如下:
Figure FSA00000449775900011
(2)将溶于四氢呋喃中的化合物2与氢化钠和酰化试剂R1OAc反应得到α-芳基-α-氰基丙酮3,其反应式如下:
Figure FSA00000449775900012
(3)将溶于对二甲苯溶液中的α-芳基-α-氰基丙酮3和丙烯酸酯4在手性硫脲催化剂Cat.a作用下进行对映选择性Michael加成反应得到含有“全碳季碳手性中心”的加成产物5;将上述所得手性产物5溶于溶剂中,再在其中加入异丙醇和正己烷,混合均匀后于室温下静置结晶得到晶体5,其反应式如下:
Figure FSA00000449775900013
(4)将溶于四氢呋喃和叔丁醇的混合溶液中的晶体5在金属醇盐MOtBu的作用下,通过酮酯缩合反应,得到取代1,3-环己二酮中间体,四氢呋喃和叔丁醇的体积比为2∶1至1∶2,然后在20℃下将产物直接溶于体积比为10∶1的甲苯与甲醇的混合溶液中,在酸的催化作用下,得到烯醇醚化合物6;
室温下将化合物6溶于甲醇中,再在其中加入Luche还原试剂,再将经Luche还原得到的产物溶于体积比为5∶1的甲苯和二氯甲烷的混合溶液中,在质子酸作用下得到氢化二苯并呋喃化合物7;
以上四步反应式如下:
(5)将化合物7溶于苯中,加入乙二醇和单水合对甲苯磺酸,回流分水制得化合物8,其反应式如下:
Figure FSA00000449775900022
(6)将化合物8溶于溶剂中,-78℃下在二异丁基氢化铝作用下还原得到醛9,其反应式如下:
(7)将醛9溶于硝基甲烷,在三乙胺作用下发生Henry反应,反应完去除溶剂,将剩余物重新溶于二氯甲烷中,在甲磺酰氯和三乙胺作用下消除羟基得到α,β-不饱和硝基化合物10,其反应式如下:
Figure FSA00000449775900024
(8)将化合物10溶于甲醇或乙醇,加入硼氢化钠还原得到饱和硝基化合物11,其反应式如下:
Figure FSA00000449775900031
(9)在0℃下将化合物11溶于四氢呋喃中,用氢化锂铝还原得到一级胺化合物,经萃取和去除溶剂所得产物重新溶于四氢呋喃中,在三乙胺和保护剂作用下反应得到氨基保护化合物12,其反应式如下:
Figure FSA00000449775900032
(10)将化合物12溶于1,2-二氯乙烷中,加入多聚甲醛和三氟乙酸,经Pictet-Spengler反应得到化合物13,其反应式如下:
Figure FSA00000449775900033
(11)将化合物13溶于二氯甲烷中,加入叔丁基二甲基硅基三氟甲磺酸酯反应生成区域选择性烯醇硅醚化合物;将所得烯醇硅醚化合物溶于乙腈中,在醋酸钯和对苯醌的作用下发生氧化反应,得到羰基α,β-位脱氢的烯酮产物14;以上两步反应式如下:
(12)将化合物14溶于四氢呋喃中,加入还原剂进行还原反应生成光学纯(-)-Galanthamine,其反应式如下:
Figure FSA00000449775900041
2.按照权利要求1所述的加兰他敏不对称催化合成方法,其特征在于步骤(1)中所用的酚羟基保护试剂RX为氯甲基烷基醚(R′CH2OCH2Cl)或苄卤化合物(PhCH2X)。
3.按照权利要求2所述的合成方法,其特征在于步骤(2)中所用酰化试剂为乙酸乙酯。
4.按照权利要求1或2或3所述的合成方法,其特征在于步骤(3)中所用Michael反应受体CH2=CHCO2R2为丙烯酸对碘苯酚酯(R2=4-C6H4I)或丙烯酸对溴苯酚酯(R2=4-C6H4Br)或丙烯酸对氯苯酚酯(R2=4-C6H4Cl)。
5.按照权利要求4所述的合成方法,其特征在于步骤(4)中所用金属醇盐MOtBu为叔丁醇钠(M=Na)或叔丁醇钾(M=K),加入单水合对甲苯磺酸的方法是分多次间隔加入,所用质子酸为甲磺酸。
6.按照权利要求5所述的合成方法,其特征在于步骤(6)中所用溶剂为二氯甲烷或甲苯。
7.按照权利要求6所述的合成方法,其特征在于步骤(9)中所用保护试剂R3COX为氯甲酸酯,其中的R3为烷氧基或苄氧基或芳氧基。
8.按照权利要求7所述的合成方法,其特征在于步骤(12)中所用还原剂为三仲丁基硼氢化锂和氢化锂铝,反应时先加入三仲丁基硼氢化锂,再加入氢化锂铝。
CN201110059950.8A 2011-03-05 2011-03-05 加兰他敏不对称催化合成方法 Expired - Fee Related CN102180886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110059950.8A CN102180886B (zh) 2011-03-05 2011-03-05 加兰他敏不对称催化合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110059950.8A CN102180886B (zh) 2011-03-05 2011-03-05 加兰他敏不对称催化合成方法

Publications (2)

Publication Number Publication Date
CN102180886A true CN102180886A (zh) 2011-09-14
CN102180886B CN102180886B (zh) 2015-01-21

Family

ID=44567200

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110059950.8A Expired - Fee Related CN102180886B (zh) 2011-03-05 2011-03-05 加兰他敏不对称催化合成方法

Country Status (1)

Country Link
CN (1) CN102180886B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532149A (zh) * 2011-12-14 2012-07-04 南开大学 加兰他敏和力可拉敏的不对称合成方法
CN104592243A (zh) * 2014-12-19 2015-05-06 北京大学 加兰他敏和力克拉敏的不对称合成方法
WO2023221022A1 (zh) * 2022-05-19 2023-11-23 暨南大学 加兰他敏、其衍生物及其中间体的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018043A (en) * 1995-04-06 2000-01-25 Janssen Pharmaceutica, N.V. Process for preparing galanthamine derivatives by asymmetric reduction
CN1554658A (zh) * 2003-12-25 2004-12-15 阎家麒 一种加兰他敏全合成的新方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018043A (en) * 1995-04-06 2000-01-25 Janssen Pharmaceutica, N.V. Process for preparing galanthamine derivatives by asymmetric reduction
CN1554658A (zh) * 2003-12-25 2004-12-15 阎家麒 一种加兰他敏全合成的新方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BARRY M.T. , TOSTE F. D.: "Enantioselective Toal Synthesis of (-)-Galanthamine", 《J.CHM.SOC.》, vol. 122, no. 45, 25 October 2000 (2000-10-25), pages 262 - 263 *
HOLTON R.A. , SIBI M. P. , MUKUND P.S. ET AL: "Palladiummediated biominetic synthesis of naruedine", 《J. AM. CHEM. SOC.》, vol. 110, no. 1, 31 January 1988 (1988-01-31), pages 314 - 316 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532149A (zh) * 2011-12-14 2012-07-04 南开大学 加兰他敏和力可拉敏的不对称合成方法
CN102532149B (zh) * 2011-12-14 2015-05-13 南开大学 加兰他敏和力可拉敏的不对称合成方法
CN104592243A (zh) * 2014-12-19 2015-05-06 北京大学 加兰他敏和力克拉敏的不对称合成方法
WO2023221022A1 (zh) * 2022-05-19 2023-11-23 暨南大学 加兰他敏、其衍生物及其中间体的制备方法

Also Published As

Publication number Publication date
CN102180886B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
Li et al. L-DMDP, L-homoDMDP and their C-3 fluorinated derivatives: synthesis and glycosidase-inhibition
Slosse et al. Myrtine and epimyrtine, quinolizidine alkaloids from Vaccinium myrtillus
CN101553485A (zh) 制备奈必洛尔的方法
CN108341828B (zh) 用于制备艾日布林的方法及其中间体
EP0759915B1 (en) Asymmetric synthesis of chiral secondary alcohols
CN108440553A (zh) 一种钌复合物催化的不对称合成光学纯度的光甘草定的方法
CN102180886B (zh) 加兰他敏不对称催化合成方法
Yang et al. New concise asymmetric total synthesis of (+)-desoxoprosophylline and prosophylline
JP2001504081A (ja) パロキセチン合成用中間体としての光学的に濃縮された4―アリール―3―ヒドロメチル置換ピペリジンの製法
Kovács et al. Hydrogenolysis of N-protected aminooxetanes over palladium: An efficient method for a one-step ring opening and debenzylation reaction
CN107602382A (zh) 一种有机催化合成手性芳基烯丙基醚类化合物的方法
JPH11501313A (ja) スピロ縮合アゼチジノンの触媒エナンチオ選択的合成
Bataille et al. Enantioselective syntheses of α-phenylalkanamines via intermediate addition of Grignard reagents to chiral hydrazones derived from (R)-(−)-2-aminobutan-1-ol
CN109535120B (zh) 7-取代-3,4,4,7-四氢环丁烷并香豆素-5-酮的制备方法
CN115197178B (zh) 一种布立西坦关键中间体的合成方法
CN102344431A (zh) 一种制备奈必洛尔盐酸盐的方法
CN112430208A (zh) 一种pf-06651600中间体的制备方法
WO2012089177A1 (en) Method of producing (2r,3r)-na-dimethyl-3-(3-hydroxyphenyi)-2-methylpentylamine (tapentadol)
Harada et al. Stereoselective acetalization of 1, 3-alkanediols controlled by intramolecular van der Waals attractive interactions and its application to an enantiodifferentiating transformation of. sigma.-symmetric 1, 3, 5-pentanetriols
CN109265385B (zh) 一种手性催化剂的合成工艺
Laars et al. Structural constraints for C2-symmetric heterocyclic organocatalysts in asymmetric aldol reactions
CN104230880A (zh) 2-((4r, 6r)-6-氨乙基-2,2-二甲基-1,3-二氧六环-4-基)乙酸酯的简便制备方法
KR101874021B1 (ko) 1-메틸-2-(2-하이드록시에틸)피롤리딘의 효과적인 합성방법
JP4540197B2 (ja) (e)−3−メチル−2−シクロペンタデセノンの製造法
Farkas et al. Hydrogenolysis of O-protected hydroxyoxetanes over palladium: An efficient method for a one-step ring opening and detritylation reaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150121

Termination date: 20170305