CN102176543B - Cross spiral frequency selective surface (FSS) structure with dual band characteristics and construction method thereof - Google Patents

Cross spiral frequency selective surface (FSS) structure with dual band characteristics and construction method thereof Download PDF

Info

Publication number
CN102176543B
CN102176543B CN 201010601816 CN201010601816A CN102176543B CN 102176543 B CN102176543 B CN 102176543B CN 201010601816 CN201010601816 CN 201010601816 CN 201010601816 A CN201010601816 A CN 201010601816A CN 102176543 B CN102176543 B CN 102176543B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
cross
fss
helical structure
structure
layer
Prior art date
Application number
CN 201010601816
Other languages
Chinese (zh)
Other versions
CN102176543A (en )
Inventor
阎照文
韩雅静
王涛
车明明
姜英杰
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

一种具有双频带特性的十字螺旋FSS结构及其构建方法,该结构由上、下介质层和中间的十字螺旋FSS结构层构成;该构建方法有六大步骤:一、用CST软件建立一个零厚度的十字螺旋FSS结构层的结构单元;二、将该结构单元向X、Y方向周期延拓得到一个6×6的完整十字螺旋FSS结构层;三、用CST软件建立十字螺旋FSS结构的介质层并将十字螺旋FSS结构层嵌入到介质的基片中;四、在CST软件中截取一个十字螺旋FSS结构单元进行入射波透射率分析,调整该结构单元的参量改变阻带的谐振频率,并将调整好的该结构单元替代原有的结构;五、根据已建好的十字螺旋FSS结构,设置其边界等参数,测试该结构的带宽稳定性和频率选择性;六:根据步骤四确定的最优尺寸,采用双面覆铜板加工制作十字螺旋FSS结构。 FSS cross helical structure of a dual-band characteristic and construction method, the structure consists of upper and lower dielectric layer and the intermediate layer is composed of cross-helical structure FSS; the construction method has six steps: First, establishing a zero with CST software FSS structural unit cross helical structure layer thickness; Second, the structural unit to the X, Y direction to give a complete periodic extension FSS cross helical layer a 6 × 6 structure; (3) establishing medium with a cross-helical structure CST software FSS FSS layer was cross helical structure layer is embedded into the substrate medium; Fourth, intercepting a helical cross FSS structural units CST incident transmittance software for analysis, to adjust the parameters of the structural unit change the resonant frequency of the stopband, and the structural unit of the adjusted substitute the original structure; V. the FSS cross helical structure has been built, which set the boundary parameters, measurement bandwidth and frequency selective stability of the structure; six: determined according to the four step optimal dimensions, using double-sided copper clad laminate manufacture FSS cross helical structure.

Description

-种具有双频带特性的十字螺旋FSS结构及其构建方法(-)技术领域 - Species Cross helical structure having a dual-band FSS characteristics and construction method (-) Technical Field

[0001] 本发明涉及一种应用于雷达系统和通信系统的十字螺旋频率选择表面结构(W 下简称十字螺旋FSS结构),尤其涉及一种具有双频带特性的十字螺旋FSS结构及其构建方法,该十字螺旋FSS结构可W减小天线雷达散射截面,设计多馈源多频复用的抛物面天线。 [0001] The present invention relates to a system used in radar and communication system according to frequency selective surface cross-helical structure (W hereinafter referred to as cross-helical structure FSS), in particular, relates to structure of a cross-helical dual-band FSS characteristics and construction method, the FSS cross helical antenna structure may reduce the radar cross section W, the multi-frequency design multi-feed parabola antenna multiplexing. 它属于微波频段天线工程技术领域。 It belongs to the field of microwave band antenna engineering. (二)背景技术 (B) Background Art

[0002] 现代战争,很大程度取决于电子侦察技术,于是反侦察技术迫在眉睫。 [0002] Modern Warfare, largely depends on electronic surveillance technology, thus counter-surveillance technology is imminent. 降低武器系统雷达反射截面(RC巧作为反侦察的重要手段受到重视。而天线的RCS对飞机或导弹的整体RCS贡献很大,如何设计一种天线罩,能有效的降低天线的RCS,该是隐身技术的研究方向之一。由于卫星距离地球遥远,电磁波空间传输损耗大,因此卫星通信中常使用具有高增益的抛物面天线。如何使同一部抛物面天线实现多馈源,多频段同时工作,有效提高卫星上的空间利用率,该也是天线工程中急需解决的难题之一。因此如何减小天线雷达散射截面和设计多馈源多频复用的抛物面天线是天线工程中遇到的两个主要问题。 Weapons systems to reduce radar cross section (RC skillfully taken seriously as an important means of anti-reconnaissance, while the antenna RCS RCS contributed significantly to the overall aircraft or missiles, how to design a radome, the antenna can effectively reduce RCS, which is one of stealth technology research. As the satellite from Earth far, large space electromagnetic wave transmission loss, and therefore is often used in satellite communications parabolic antenna with high gain. how a parabolic antenna with a multi-feed, multi-band simultaneously, improve space utilization on the satellite, one of the problems solved by the antenna is in urgent need of project. So how to reduce antenna radar cross section parabolic antenna design and multi-feed multi-frequency multiplexing are two major problems encountered in antenna engineering .

[0003] 将频率选择表面结构(FSS结构)用来设计天线罩降低天线系统的雷达散射截面, 可W实现雷达隐身的目的。 [0003] The structure of the frequency selective surface (FSS structure) used to design low radar cross section radome of the antenna system can achieve the purpose of the stealth W. 当平面波入射时,工作频段内的信号W最低的插入损耗透过天线罩进入本地天线,保证了本地天线的正常工作,而带外的电磁信号将被完全反射到远离来波的方向,阻止了其进入天线罩W至于在天线上产生感应电流而向外产生较大的散射, 实现了雷达隐身的功能,同时也因为屏蔽掉了工作波段W外的有害电磁波而提高了抗干扰的能力。 When the incident plane wave, the signal W lowest within the operating band insertion loss through the radome into the local antenna, to ensure the normal operation of the local antenna, and the electromagnetic signals outside the band will be fully reflected in the direction away from the incoming wave, preventing as it enters the radome W current is induced in the antenna a greater scattering outwardly of the stealth features, but also because of shielding off external harmful electromagnetic waves W operating band improves the anti-interference ability. 将频率选择表面用作抛物面天线的副反射面,提高天线的利用效率。 The frequency of the selected sub reflection surface as the parabolic antenna surface, to improve the utilization efficiency of the antenna. FSS用于抛物面天线的副反射面,可将副反射面做成双曲面,双曲面的虚焦点与抛物面焦点重合,将不同频率的馈源分置于双曲面的虚实焦点,实现双频复用。 FSS subreflector for a parabolic antenna, the sub-reflecting surface may be made of a hyperboloid, paraboloid focus coincides with the virtual focus of the hyperboloid, the feed points disposed at different frequencies of the focus of the hyperboloid actual situation, to achieve dual-band multiplexed . 该样有效的提高了抛物面的利用效率,从而降低天线系统的重量,体积和费用。 This sample was effectively improve the utilization efficiency of a paraboloid, thereby reducing the weight, volume and cost of the antenna system.

[0004] FSS结构的主要性能是频率选择特性,对于激励源的入射方向及极化的敏感程度W及带宽的稳定性。 [0004] The main structure is the performance of FSS frequency selectivity, sensitivity and bandwidth W stability and the incident direction of polarization of the excitation source. 传统的单层平面FSS结构选择特性一般,对于平面波不同角度入射性能不稳定。 Conventional single-layer planar structure FSS general selection characteristics, different plane wave incident at an angle unstable. 为了提高选择特性,多层平面级联是最常采用的方法,但该样又导致制造成本高昂,而且结构比较复杂无法进行快速有效的设计。 In order to enhance the selectivity characteristics, a multilayer cascade plane is the most commonly used method, but this in turn leads to high production costs like, the structure is complicated and can not be designed quickly and efficiently. 因此本发明设计了一种新型的中也连接复合频率选择表面新单元即十字螺旋FSS结构,它实现了多频带特性和相对入射波的角度稳定性。 Thus, the present invention contemplates a new type of complex is also connected to the new cell frequency selective surface FSS i.e. cross helical structure, which implements the multi-band characteristics and incident angle of relative stability. (H)发明内容 (H) SUMMARY OF THE INVENTION

[0005] 1、发明目的 [0005] 1, object of the invention

[0006] 本发明的目的是提供一种具有双频带特性的十字螺旋FSS结构及其构建方法,它实现了多频带特性。 [0006] The object of the present invention is to provide a cross-helical structure of a dual-band FSS characteristics and construction method, which implements the multi-band characteristic. 该十字螺旋FSS结构与传统的单层平面FSS结构相比,克服了其平面波不同角度入射性能不稳定性的缺点并且能够实现双频的宽通带特性,它既可W用作反射也可W用作传输,在天线通信系统和雷达系统中具有广泛的应用前景。 The cross-helical structure FSS compared with conventional single-layer planar structure FSS, which overcomes the plane wave incident at an angle different performance instability drawbacks and to achieve dual-band width pass band characteristic, it can also be used as a reflective W W as a transmission has a broad application prospect in the antenna communication systems and radar systems. 本发明中十字螺旋FSS结构的角度稳定性,也为双频带FSS的设计提供了有用的参考。 Stability of the present invention, the cross angle of the helical structure of the FSS, also provides a useful reference for the design of a dual-band FSS.

[0007] 2、技术方案 [0007] 2 aspect

[0008] (1)见图1,本发明一种具有双频带特性的十字螺旋FSS结构,它由上、下两层介质层和中间的十字螺旋FSS结构层构成,它们之间的位置连接关系见图2 ;其中1和2为介质层,在上、下两面层,中间层3是十字螺旋FSS结构层。 FSS cross helical structure [0008] (1) shown in Figure 1, the present invention having a dual-band characteristic, which consists of upper and lower layers of the dielectric layer and the intermediate layer is composed of cross-helical structure FSS, position of the connection between them Figure 2; wherein the dielectric layer 1 and 2, the upper and lower sides, the middle layer 3 is a cross-helical structure layer FSS. 其中,该1和2介质层为两个厚度均为0. 5毫米介电常数为3. 0的介质材料。 Wherein the dielectric layer 1 and 2 had a thickness of 0.5 mm two dielectric material having a dielectric constant of 3.0. 十字螺旋FSS结构层为金属表面。 FSS cross helical structure layer is a metal surface. 十字螺旋FSS 结构金属层为周期结构,将组成十字螺旋FSS结构层的结构单元向X、Y方向周期延拓后得到一个6X6的完整十字螺旋FSS结构层,如图3所示。 FSS structural unit cross helical structure of the metal layer is a periodic structure, the composition of cross-helical structure layer FSS the X, Y direction after a complete cycle extension to give a cross-helical structure layer FSS 6X6, as shown in FIG. 十字螺旋FSS结构层的结构单元由一个大尺寸的十字螺旋结构和四个尺寸相对缩小一半的小尺寸十字螺旋结构组成,而大、 小十字螺旋结构由十字形臂和十字形末端的S形臂组成;大尺寸的十字螺旋结构位于十字螺旋FSS结构层的结构单元中也,四个小尺寸的十字螺旋结构由大尺寸的十字螺旋结构缩小一倍再旋转45°后分别向上向左、向上向右、向下向左和向下向右平移后得到,如图4所示。 FSS structural unit cross helical structure layer by the cross helical structure and a large size of four relatively narrow cross half spiral structure composed of a small-sized, and large and small cross-helical structure by an S-shaped cross arm and the end of the cross arm composition; structural unit cross-helical structure located in a large-sized cross-helical structure layer FSS also, four small-sized cross-helical structure is reduced by the cross-helical structure of a large size is further rotated 45 ° after double leftward direction, the upward the right, down left and right rear downward translation obtained, as shown in FIG. 将十字螺旋FSS结构层结构单元的大、小尺寸的十字螺旋结构终端设计为S形,可W使结构禪合紧密,十字螺旋FSS结构层中使用两种同构但尺寸大小相异的十字螺旋结构使产生的通带具有双频带特性,如图5所示。 The spiral cross large, a small-sized cross-helical structure FSS terminal structural unit is designed as a layer structure S-shaped, W may be bonded to make the structure compact Zen, cross-helical structure FSS two homogeneous layer but different size spiral cross structure having a pass band to produce a dual-band characteristic as shown in FIG.

[0009] (2)本发明一种具有双频带特性的十字螺旋FSS结构的构建方法,该方法具体步骤如下: [0009] (2) according to the present invention having a dual-band characteristic of the construction method FSS cross helical structure, the method the following steps:

[0010] 步骤一:使用仿真软件CST建立一个零厚度的十字螺旋FSS结构层的结构单元, 该十字螺旋FSS结构层的结构单元由一个大尺寸的十字螺旋结构和四个与其同形状结构的小尺寸十字螺旋结构组成(见图4)。 [0010] Step a: CST structural unit using simulation software layers to establish a cross-helical structure FSS zero thickness of the structural unit of the FSS cross helical structure layer by a cross-helical structure to its large size and the same shape of the structures of four smaller size cross helical structure (see Figure 4). 该大、小十字螺旋结构由十字形臂和十字形末端的S形臂组成;大尺寸的十字螺旋结构位于十字螺旋FSS结构层的结构单元中也,四个小尺寸的十字螺旋结构由大尺寸的十字螺旋结构缩小一倍再旋转45°后分别向上向左、向上向右、向下向左和向下向右平移后得到; The large and small cross-helical structure and a cross-shaped cross arm of the S-shaped arm end composition; structural unit cross-helical structure located in a large-sized cross-helical structure layer FSS also, four cross-helical structure of a small-sized large-sized cross reduced after double helical structure rotated by 45 ° leftward and then upward, up right, down left and down to give the rightward panning;

[0011] 步骤二:将步骤一得到的十字螺旋FSS结构层的结构单元,使用仿真软件CST的建模工具建立一个零厚度的十字螺旋FSS结构层(见图3)。 [0011] Step 2: structural unit FSS cross helical structure layer obtained in step a, using CST simulation software modeling tool to establish a zero-cross helical structure FSS layer thickness (see FIG. 3). 具体操作方法是将步骤一得到的十字螺旋FSS结构层的结构单元向X、Y方向周期延拓后得到一个6X6的完整十字螺旋FSS结构层(见图6)。 Specific methods of operation after the structural unit FSS cross helical structure layer obtained in step a continuation to the X, Y direction to give a complete cycle FSS cross-helical structure of a 6X6 layer (see FIG. 6).

[0012] 步骤H ;利用仿真软件CST建立十字螺旋FSS结构的介质层,将十字螺旋FSS结构层嵌入到介质的基片中。 [0012] Step H; established using the simulation software CST FSS dielectric layer cross-helical structure, embedded FSS cross helical structure layer into the substrate medium. 首先用软件作图工具画出一个长方体模型作为介质层,介质层下表面和十字螺旋FSS结构层的上表面重合,介质层材料选择介电常数et = 3. 0的介质。 First, a drawing tool to draw software model of a rectangular parallelepiped as a dielectric layer, an upper surface and surface FSS cross helical structure in the dielectric layer superposed layers, dielectric layer of a material selected et = dielectric permittivity of 3.0. 再作一个同样尺寸的长方体模型作为介质层,使介质层的上表面与十字螺旋FSS结构层的下表面重合。 Then make a model of a rectangular parallelepiped as a dielectric layer of the same size, so that the lower surface of the dielectric layer and the upper surface FSS cross-helical structure layer overlap. 介质层材料同样选择介电常数£ t = 3. 0的介质(见图2)。 Permittivity dielectric layer material is also chosen medium £ t = 3.0 (see FIG. 2).

[0013] 步骤四:在仿真软件CST软件中截取十字螺旋FSS结构的一个单元进行入射波透射率分析,根据实际的工程应用中对平坦通带带宽范围的要求,调整十字螺旋FSS结构单元的参量改变阻带的谐振频率,将调整好的十字螺旋FSS结构替代原来的该结构。 [0013] Step Four: intercepting a unit cross helical FSS structure in the simulation software CST software for incident transmittance analysis, the actual engineering application requirements for flat passband bandwidth, adjusting the cross helical FSS structural unit parameters changing the resonant frequency of the stopband, the adjusted will replace the original cross-helical structure of the FSS structure.

[0014] 假设一平面波入射在如图2所示的十字螺旋FSS结构上(模型中间是理想金属层,位于XZ平面内,金属层上周期分布着贴片单元结构,X方向和Z方向的单元间距分别表示为Dy和町;两侧是介质层。),该入射波的传播方向可W表示为S = xSy+ySy+zs,。 [0014] Consider a plane wave incident on the FSS cross-helical structure as shown in FIG. 2 (the middle layer of metal over the model, located in the XZ plane, a periodic pattern on the metal layer patch element structure, X and Z directions of the unit Dy and spacing are represented cho; sides is a dielectric layer), the direction of propagation of the incident wave W may be expressed as S = xSy + ySy + zs ,..

[0015] 波通过十字螺旋FSS结构透射侧的电磁场分布为: [0015] The electromagnetic wave by cross-helical structure FSS transmission side distribution:

Figure CN102176543BD00061

[0018] 如果电流分布1(1)未知,则可W采用矩量法,把线性方程式(1)中的未知函数即感应电流1(1)表示成一组基函数的线性组合,然后选用合适的检验函数在线性方程两边取内积生成一个线性方程组,求解该线性方程组就可求得未知函数,从而可W方便地求出电磁波经过十字螺旋FSS结构阵列后的透射电磁场。 [0018] If the current distribution 1 (1) is unknown, may be W using the method of moments, the linear equation (1) is the unknown function of the induced current 1 (1) is represented as a set of linear combination of basis functions, and appropriate choice of both sides take the test function generates a linear equation product of linear equations, the linear equations can be solved to obtain unknown function, thereby easily obtaining the electromagnetic wave W after cross-helical structure array FSS transmission field.

[0019] 步骤五;添加集总端口计算水平极化的入射波从不同角度入射时,各个入射角度下的频率响应特性。 [0019] Step Five; lumped port when adding calculation of the horizontally polarized incident wave from different angles, each angle of incidence frequency response characteristic. 根据已经建好的十字螺旋FSS结构,设置该结构的边界,扫频频率W及入射波的角度,测试十字螺旋FSS结构的带宽稳定性和频率选择性。 The FSS cross helical structure has been built, the boundaries of the structure is provided, and the sweep frequency of the incident angle W, the bandwidth and frequency selective stability test FSS cross helical structure.

[0020] 步骤六;根据步骤四确定的最优尺寸,加工制作十字螺旋FSS结构。 [0020] Step six; according to the optimal size determined in step four, manufacture FSS cross helical structure. 十字螺旋FSS 结构的材料采用双面覆铜板。 FSS material cross helical double-sided copper clad laminate structure.

[0021] 3、优点及功效 [0021] 3, advantages and effects

[0022] 1)在设计过程中,由于十字螺旋FSS结构包含两种尺寸的结构,通过两种不同谐振模式的禪合在其通带内实现了双频带特性的滤波。 [0022] 1) In the design process, since the cross-helical structure FSS structure comprises two sizes by Zen bonding two different resonance modes to achieve dual-band characteristics of the filter in its passband. 选择性能显著改善。 Select the significantly improved performance. 并且每个通带的性能完全由其中一类尺寸的单元结构控制,该样每类单元的尺寸可W分别作修改,可W加快设计的进程。 And each of the passband performance of a complete control type wherein the size of the unit structure from the sample size of each type of unit may be modified separately W, W can be designed to accelerate the process.

[0023] 2)该种具有双频带特性的十字螺旋FSS结构性能稳定,它的高选择性和带宽稳定性不随入射波的入射角度的变化而变化。 [0023] 2) the kind of cross-helical stabilizing properties of a dual-band FSS structure characteristics, angle of incidence changes its stability is not high selectivity and bandwidth varies with the incident.

[0024] 3)该种具有双频带特性的十字螺旋FSS结构简单,该结构在普通的上下表面覆有金属的介质基片上就可W实现。 [0024] 3) the kind of cross-helical structure having a dual-band characteristic FSS simple, the structure can be coated on the dielectric substrate W realized in the conventional metal top and bottom surfaces. 在设计过程中只需要调节十字螺旋FSS结构层的结构单元形状和尺寸W及周期的大小就可W得到所需要的性能。 In the design process only need to adjust the cross section of the structural layer FSS helical shape and size of the structure cycle dimension W and W can give the required performance. 该结构参数少,大大节省设计优化的时间。 The small structure parameters, saving time design optimization.

[0025] 4)该种具有双频带特性的十字螺旋FSS结构制造简单方便,采用现有常规印刷电路板制造工艺就能够实现,成本较低。 [0025] 4) the kind of cross-helical structure for producing dual-band FSS characteristics and simple, using conventional printed circuit board manufacturing conventional process can be achieved, lower costs. (四)附图说明 (Iv) Brief Description of Drawings

[0026] 图1是本发明中十字螺旋FSS结构的具体组成示意图 [0026] FIG. 1 is a schematic view of the specific composition of the present invention in cross-helical structure FSS

[0027] 图2是本发明中十字螺旋FSS结构示意图 [0027] FIG. 2 is a schematic cross-helical structure of the present invention, FSS

[0028] 图3本发明中十字螺旋FSS结构层侧视图 [0028] FSS cross-helical structure layer side in FIG. 3 of the present invention

[0029] 图4是本发明中十字螺旋FSS结构层的结构单元俯视图 [0029] FIG. 4 is a plan view of the structural unit of the present invention, the cross-helical structure layer FSS

[0030] 图5是本发明中大尺寸十字螺旋结构俯视图 [0030] FIG. 5 of the present invention is a large-size plan view of a cross-helical structure

[0031] 图6是本发明中十字螺旋FSS结构层俯视图 [0031] FIG. 6 is a cross-helical the present invention, a plan view of the structured layer FSS

[0032] 图7是入射波从不同角度入射时十字螺旋FSS结构的透射系数曲线图。 [0032] FIG. 7 is a graph of transmission coefficient FSS cross-helical structure when incident wave from different angles.

[0033] 图8是入射波入射角度为0°时使用HFSS和CST仿真十字螺旋FSS结构透射系数曲线对比图 [0033] FIG. 8 is incident and the incident angle using HFSS simulation CST cross helical structure FSS transmission coefficient curve comparison chart at 0 °

[0034] 图9是入射波入射角度为30°时使用HFSS和CST仿真十字螺旋FSS结构透射系数曲线对比图 [0034] FIG. 9 is incident to the incident angle and the CST using HFSS simulation FSS cross helical configuration diagram of the transmission coefficient curve comparison 30 °

Figure CN102176543BD00062

[0035] 图10是使用软件仿真时的仿真原理模型图。 [0035] FIG. 10 is a simulation model diagram principle when using software emulation.

[0036] 图中符号说明如下: [0036] FIG symbols as follows:

[0037] A缝隙臂;B缝隙终端大圆弧;C缝隙终端小圆弧; [0037] A slit arm; B terminal large arc gap; C terminal small arc gap;

[0038] R1缝隙终端大圆弧的外圆半径;R2缝隙终端大圆弧的内圆半径;R3缝隙终端小圆弧的外圆半径;R4缝隙终端小圆弧的内圆半径; [0038] The large outer radius R1 of the arc slit terminal; inner radius R2 of the arcuate slot terminal large; outer radius R3 of the arc slit small terminal; R4 arc gap within the terminal small radius;

[0039] 1介质层;2介质层;3FSS层;CST仿真软件;HFSS仿真软件。 [0039] dielectric layer; the dielectric layer 2; 3FSS layer; CST simulation software; HFSS simulation software. (五)具体实施方式 (E) Detailed Description

[0040] 下面将结合附图对本发明做进一步的详细说明。 [0040] The following with reference to the present invention will be further described in detail.

[0041] 本发明针对雷达系统和通信系统设计了一种具有双频带特性的十字螺旋FSS结构,它实现了多频带特性。 [0041] The present invention is directed to communication systems and radar systems designed FSS cross helical structure of a dual-band characteristic, which achieve a multi-band characteristic. 该结构将十字螺旋FSS结构层结构单元的大、小尺寸的十字螺旋结构的终端设计为S形,可W使结构禪合紧密,十字螺旋FSS结构层中使用两种同构但尺寸大小相异的十字螺旋结构使产生的通带具有双频带特性,该十字螺旋FSS结构是由一个十字螺旋FSS结构单元在一个平面上周期延拓构成的。 The large structure, a small-sized terminal helix cross FSS cross-helical structure layer structural unit designed as S-shaped, W may be bonded to make the structure compact Zen, cross-helical structure layer FSS two different size but homogeneous the cross-helical structure having a pass band to produce a dual-band characteristic, the cross-helical structure FSS FSS is a cross-helical structure in a unit periodic extension plane thereof.

[0042] 如图2所示,本发明中的十字螺旋FSS结构计算模型由上、下两层介质层1、2和中间的十字螺旋FSS结构层3构成,它们之间的位置连接关系:其中1和2为介质层,在上、下两面层,中间层3是十字螺旋FSS结构层。 [0042] As shown in FIG. 2, cross-helical structure FSS calculation model of the present invention by the upper and lower layers 1,2 and the intermediate dielectric layer FSS cross helical structure layer 3, the position of the connections between them: wherein 1 and 2 as a dielectric layer, the upper and lower sides, the middle layer 3 is a cross-helical structure layer FSS. 其中,该上、下介质层1和2为两个厚度均为0. 5 毫米介电常数为3. 0的介质材料。 Wherein the upper and lower dielectric layers 1 and 2 are for the two thicknesses of 0.5 mm as a dielectric material the dielectric constant of 3.0. 十字螺旋FSS结构层3为金属表面。 FSS cross helical structure of the surface of the metal layer 3.

[0043] 所述十字螺旋FSS结构层如图6所示。 [0043] The FSS cross-helical structure layer as shown in FIG. 此结构为周期结构,周期单元形状是一个大尺寸的十字螺旋结构和四个尺寸相对缩小一半的小尺寸十字螺旋结构组成,十字螺旋结构由中也的十字形臂和十字形末端的S形臂组成。 This structure is a periodic structure, the cell shape is a period of large cross-helical structure and four relatively narrow half the size of a small-sized cross-helical structures, neutral cross-helical structure also cross-shaped cross arm and the end of the S-shaped arm composition. 大尺寸的十字螺旋结构位于中也,四个小尺寸的十字螺旋结构由大尺寸的十字螺旋结构旋转45°后分别向上向左;向上向右;向下向左;向下向右平移后得到,如图4所示。 Cross helical structure also located in a large size, four cross-helical structure is rotated by a small-sized cross-helical structure of a large size after 45 ° upward to the left, respectively; the right direction; Down Left; obtained after down rightward ,As shown in Figure 4. 将得到的十字螺旋FSS结构层的结构单元横向纵向平移得到一个6X6的十字螺旋FSS层(见图6)。 FSS structural unit cross helical structure layer resulting lateral longitudinal translation to give a cross-helical FSS 6X6 layer (see FIG. 6). 根据不同的工程应用需要,仿真计算模型具体的尺寸大小决定了相应周期新单元的数量。 Depending on the needs of engineering applications, simulation model of a particular size determines the number of cycles corresponding to the new unit. 只要该周期新单元的数量横向和纵向超过H个就可W提供很好的频带选择作用。 The number of cycles as long as the new horizontal and vertical units can be more than one H W provided good band selection effect. 为了增强十字螺旋FSS结构的频率选择特性, 在十字螺旋FSS结构层的上下表面加入介质层。 In order to enhance the frequency selection characteristic FSS cross helical structure, the upper and lower surfaces of the cross-helical structure FSS layer dielectric layer is added. 如图2所示。 as shown in picture 2.

[0044] 参见图2所示,本发明一种具有双频带特性十字螺旋FSS结构,需要用到一台可W 运行CST软件和HFSS的电脑进行建模和仿真计算。 [0044] FIG 2, the present invention provides a dual-band characteristic FSS cross helical structure, W may be a need to use software running CST and HFSS modeling and computer simulation. 本发明一种具有双频带特性十字螺旋FSS结构的构建方法,该方法具体步骤如下: The present invention having a dual-band characteristic FSS cross helical structure construction method, the method the following steps:

[0045] 步骤一;建立一个零厚度的十字螺旋FSS结构层的结构单元。 [0045] Step a; establishing structural unit FSS cross helical structure layer of a thickness of zero. 首先使用CST仿真软件中的作图工具建立一个大尺寸的十字螺旋结构,其中缝隙臂长A为2. 0mm,宽0. 187mm, 臂终端为两段圆弧,大圆弧B的外半径为1. 5mm,内半径为1. 3mm大圆弧B和缝隙臂A在缝隙臂A右端垂直相交;小圆弧C的外半径为0. 737mm,内半径为0. 55mm,大圆弧B圆也向右移动1. 7mm,向下移动1. 1mm为小圆弧C的圆也。 First, the use of simulation software CST plotting tools to create a large cross-helical structure, wherein A is the arm length slot 2. 0mm, width of 0. 187mm, the terminal arm of two arcs, the radius of the large outer arc B is 1. 5mm, the large arc radius of 1. 3mm slit arm a and B perpendicular to the slot in the right arm a; an outer radius of the small arc C is 0. 737mm, the radius of 0. 55mm, a large circle arc B also moves to the right 1. 7mm, 1. 1mm moved downwardly into a circular arc C is also small. 十字螺旋结构的其它H个缝隙臂依次为缝隙臂A逆时针旋转90度、180度和270度得到。 Other cross-arm slits H helical structure A were slit arm is rotated counterclockwise by 90 degrees, 180 degrees and 270 degrees to give. 将得到的大尺寸十字螺旋结构顺时针旋转6°,得到如图5所示的大尺寸的十字螺旋结构。 Large cross helical structure clockwise obtained 6 °, to give a large-sized cross-helical structure as shown in FIG. 5. 然后利用CST软件的建模功能将图5所示的结构缩小一倍,旋转45°后使用CST软件建模功能中的平移功能向X、Y方向作平移,X, Y方向的平移距离均为4. 5mm。 Then using the CST function modeling software structure shown in FIG. 5 double reduction, use pan CST software modeling functions translational rotated 45 ° to the X, Y direction, a translation distance X, Y directions are 4. 5mm. 最后得到X,Y两个方向四个小尺寸的十字螺旋结构,大尺寸的十字螺旋结构在四个小尺寸十字螺旋结构的中也,如图4所示。 Finally to obtain X, Y two directions cross four helical structure of small size, large size cross-helical structure in the four small-sized cross-helical structure also, as shown in FIG.

[0046] 步骤二:将步骤一得到的十字螺旋FSS结构层的结构单元沿X,Y方向做周期延拓得到十字螺旋FSS结构层。 [0046] Step 2: the structural units in the X, Y direction FSS cross helical structure layer obtained in step a periodic extension obtained do FSS cross helical structure layer. 使用CST仿真软件建模中的图形平移功能,将步骤一中得到的十字螺旋FSS结构层的结构单元沿X,Y方向做周期延拓,X和Y方向图形的平移距离均为9mm,平移后的十字螺旋FSS结构层为6X6的结构平面,如图6所示。 After the shift function using the graphical simulation modeling software in the CST, the structural unit FSS cross helical structure layer obtained in step a along the X, Y translational direction from the extension period, X and Y pattern are 9mm, translation FSS cross helical structure of 6X6 planar layer structure, as shown in FIG.

[0047] 步骤H ;建立十字螺旋FSS结构的介质层。 [0047] Step H; FSS establishing the dielectric layer cross-helical structure. 将十字螺旋FSS结构层嵌入到介质的基片中。 The cross-helical structure FSS layer is embedded into the substrate medium. 首先用CST仿真软件中的作图工具作一个61mmX 61mmX 0. 5mm的长方体,长方体底面和十字螺旋FSS结构层的上表面重合。 First with CST simulation software tool for plotting a rectangular parallelepiped 61mmX 61mmX 0. 5mm, the upper surface and the bottom surface of rectangular cross-helical structure layer coincides FSS. 长方体材料设置为介电常数为3. 0,磁导率为1, 损耗角正切为0. 025。 Material is set to a rectangular parallelepiped dielectric constant of 3.0, permeability of 1, the loss tangent of 0.025. 然后再用CST软件中的作图工具作一个61mmX61mmX0. 5mm的长方体,长方体顶面和十字螺旋FSS结构层的下表面重合。 CST then use software tools for mapping a rectangular parallelepiped 61mmX61mmX0. 5mm, the rectangular top surface and a lower surface FSS cross-helical structure layer overlap. 长方体材料设置为介电常数为3. 0, 磁导率为1,损耗角正切为0. 025。 Material is set to a rectangular parallelepiped dielectric constant of 3.0, permeability of 1, the loss tangent of 0.025. 该样就得到一个添加介质层的十字螺旋FSS结构,如图2所示。 This sample is obtained to add a cross-helical structure FSS dielectric layer, as shown in FIG.

[0048] 步骤四:在CST仿真软件中截取十字螺旋FSS结构一个单元进行入射波透射率分析。 [0048] Step Four: intercepting FSS cross helical structure in CST simulation software unit performs a transmittance of incident analysis. 由于在实际应用中入射波照射在十字螺旋FSS结构上的角度范围大,水平极化的入射波入射角度0分别取0°、30°、45°和60。 Due to the large range of angles incident on the irradiation cross-helical structure in the FSS practical application, a horizontally polarized incident wave incident angle 0 were taken 0 °, 30 °, 45 ° and 60. (见图10),利用HFSS软件设置十字螺旋FSS 结构的仿真边界条件和入射波的端口激励,对十字螺旋FSS结构阵列进行计算和分析,得到各个入射角度下的频率响应特性曲线如图7所示。 (See FIG. 10), using the HFSS simulation software to set the port boundary conditions and incident excitation cross FSS helical structure, an array of cross-helical structure FSS calculation and analysis, the frequency obtained at each angle of incidence response curve in FIG. 7 shows. 两种十字螺旋结构组合的十字螺旋FSS结构表现出了一种兼具高通和阻带的特性。 FSS cross helical structure of the two cross-helical structure exhibiting a combination of both high pass and stopband characteristics. 对于TE极化的入射电磁波,该十字螺旋FSS 结构的第一个阻带的中也频率稳定在5GHz,通带的中也频率稳定在lOGHz,第二个阻带的中也频率即使在0°和60°大角度入射时的漂移量仍很小,仅为0. 3G化,因此该十字螺旋FSS结构具有很好的角度稳定性。 For TE polarized incident electromagnetic wave, the first stop band FSS cross-helical structure is also stable at 5GHz frequency, the passband frequency stability also in lOGHz, the second frequency of the stopband also even at 0 ° drift for the large incident angles 60 ° and is still very small, only 0. 3G technology, so that the cross-helical structure FSS has good angular stability. 不同入射角度对十字螺旋FSS结构的阻带中也频率的影响见下表: Effect of different incident angles with cross helical resistance structure FSS frequency to be as follows:

[0049] [0049]

Figure CN102176543BD00081

[0050] 在实际的工程应用中,对平坦通带带宽范围的要求不同。 [0050] In practical engineering applications, different requirements for the bandwidth of the passband flatness. 由于阻带的谐振频率主要受贴片阵列的影响,因此可W通过调整贴片的参量改变阻带的谐振频率,从而调整十字螺旋FSS结构透波系数曲线的带宽。 Since the resonance frequency of the stopband is mainly affected by the patch array, it is possible to change the resonant frequency of the stopband W by adjusting the amount of the patch parameters to adjust the bandwidth of the wave through the cross helical structure FSS coefficient curve. 对于TE极化的入射电磁波,入射角度越大十字螺旋FSS结构的带宽越窄。 For TE polarized incident electromagnetic wave, the bandwidth of the incident angle larger cross-helical structure, the narrower the FSS. 该两个通带的距离W及带宽可W通过改变大小十字螺旋FSS结构贴片单元尺寸的比值和相对位置来调节。 The distance W between two passband bandwidth W and be adjusted by changing the ratio of the relative position and size of cross-helical structure FSS patch element size. 入射角0对十字螺旋FSS结构的通带带宽特性的影响见下表: Effect of angle of incidence of 0 pass bandwidth characteristics FSS cross helical structure in the table below:

Figure CN102176543BD00082

[0051] [0051]

Figure CN102176543BD00091

[0052] 步骤五:进一步验证对十字螺旋FSS结构仿真结果的准确性。 [0052] Step Five: To further verify the accuracy of the cross-helical structure FSS simulation results. 将十字螺旋FSS结构使用CST仿真软件做波透射率分析。 The cross-helical structure FSS using CST wave transmittance simulation software to do the analysis. 当波入射角度为0°时,得到的HFSS和CST波透射系数对比曲线如图8所示,当波入射角度为45。 When the wave incident angle is 0 °, the resulting wave transmission coefficient HFSS and CST contrast curve shown in Figure 8, when the wave incident angle is 45. 时,得到的HFSS和CST波透射系数对比曲线如图9所示。 , The resulting wave transmission coefficient HFSS and CST contrast curve as shown in FIG.

[0053] 步骤六:根据W上确定的十字螺旋FSS结构最优尺寸,加工制作十字螺旋FSS结构。 [0053] Step Six: The cross-helical structure FSS determines the optimal size W, manufacture FSS cross helical structure. 使用激光刻蚀的工艺加工本发明的十字螺旋FSS结构。 FSS cross helical structure using a laser etching process of the present invention is processed. 该里选用介电常数为3.0,上下两层介质的厚度均为0. 5mm,中间十字螺旋FSS结构层用上下表面覆有金属铜膜的金属片即可。 The choice of dielectric constant was 3.0, the thickness of the upper and lower media are 0. 5mm, intermediate layer cross-helical structure FSS upper and lower surfaces of the metal sheet can be coated with a metallic copper film.

Figure CN102176543BD00092

Claims (2)

  1. 1. 一种具有双频带特性的十字螺旋FSS结构,其特征在于:它由上、下两层介质层和中间的十字螺旋FSS结构层构成,上、下两层介质层为厚度均为0. 5毫米、介电常数为3.O的介质材料,中间的十字螺旋FSS结构层为金属表面;十字螺旋FSS结构层的结构单元由一个大尺寸的十字螺旋结构和四个尺寸相对缩小一半的小尺寸十字螺旋结构组成,而大、小尺寸十字螺旋结构由十字形臂和十字形末端的S形臂组成;大尺寸的十字螺旋结构位于十字螺旋FSS结构层的结构单元中心,四个小尺寸的十字螺旋结构由大尺寸的十字螺旋结构缩小一倍再旋转45°后分别向上向左、向上向右、向下向左和向下向右平移后得到;该十字螺旋FSS结构金属层为周期结构,将组成十字螺旋FSS结构层的结构单元向X、Y方向周期延拓后得到一个6X6的完整十字螺旋FSS结构层;十字螺旋FSS结构层结构 FSS cross helical structure of a dual-band characteristic, which is characterized in that: it is made, the two dielectric layers and the intermediate layer structure at cross helical FSS configuration, the upper and lower layers of the dielectric layer had a thickness of 0. 5 mm, a dielectric constant of a dielectric material 3.O intermediate cross FSS helical structure layer is a metal surface; structural unit FSS cross helical structure layer by cross-helical structure and a large size of four relatively narrow half small size cross helical structures, and large and small size of the cross-arm spiral structure cruciform cross arm and the end of the S composition; cell Center large cross-helical structure are located FSS cross-helical structure layer, four small-sized a reduced cross-helical structure of large size cross-helical structure is further rotated 45 ° after double leftward direction, rightward direction, the resulting downward translation rightward and leftward down; the FSS cross helical structure of the metal layer is a periodic structure the structural units of the cross-helical structure layer FSS to X, Y direction after a complete cycle extension to give a cross-helical structure layer FSS 6X6; a cross-helical structure of a layer structure FSS 元的大、小尺寸的十字螺旋结构的终端设计为S形,可以使结构耦合紧密,十字螺旋FSS结构层中使用两种同构但尺寸大小相异的十字螺旋结构使产生的通带具有双频带特性。 Tai Yuen, terminal helix cross a small-sized S-shaped design, the coupling structure can be made compact, cross-helical structure layer FSS two different size but homogeneous cross helical structure having a pass band to produce bis band characteristics.
  2. 2. -种具有双频带特性的十字螺旋FSS结构的构建方法,其特征在于:该方法具体步骤如下: 步骤一:使用仿真软件CST建立一个零厚度的十字螺旋FSS结构层的结构单元,该十字螺旋FSS结构层的结构单元由一个大尺寸的十字螺旋结构和四个与其同形状结构的小尺寸十字螺旋结构组成;该大、小尺寸十字螺旋结构由十字形臂和十字形末端的S形臂组成; 大尺寸的十字螺旋结构位于十字螺旋FSS结构层的结构单元中心,四个小尺寸的十字螺旋结构由大尺寸的十字螺旋结构缩小一倍再旋转45°后分别向上向左、向上向右、向下向左和向下向右平移后得到; 步骤二:将步骤一得到的十字螺旋FSS结构层的结构单元,使用仿真软件CST的建模工具建立一个零厚度的十字螺旋FSS结构层;具体操作方法是将步骤一得到的十字螺旋FSS 结构层的结构单元向X、Y方向周期延拓后得到 2. - methods for constructing a dual-band characteristic FSS cross helical structure, characterized in that: the method the following steps: Step 1: Using simulation software to establish a structural unit CST FSS cross helical structure of a layer of zero thickness, the cross FSS structural units helical structure layer by a cross-helical structure of a large size and a small size and its four helical structure with a cross-shaped structure of the composition; the large and small size of the S-shaped cross-helical structure cross arms and the cross arm end composition; doubled again after 45 ° rotation center of the cell structure of large cross-helical structure are located FSS cross-helical structure layer, four small-sized cross-helical structure is reduced by the cross-helical structure of large dimensions are left up, right up after down left and right downward translation obtained; step 2: structural unit FSS cross helical structure layer obtained in step a, using CST simulation software modeling tool to establish a cross-helical structure layer FSS zero thickness; the specific operation method is a structural unit obtained after cross FSS helical structure layer obtained in step a to the X, Y direction periodic extension 个6X6的完整十字螺旋FSS结构层; 步骤三:利用仿真软件CST建立十字螺旋FSS结构的介质层,将十字螺旋FSS结构层嵌入到介质的基片中;首先用软件作图工具画出一个长方体模型作为介质层,介质层下表面和十字螺旋FSS结构层的上表面重合,介质层材料选择介电常数L= 3. 0的介质;再作一个同样尺寸的长方体模型作为介质层,使介质层的上表面与十字螺旋FSS结构层的下表面重合,介质层材料同样选择介电常数% = 3. 0的介质; 步骤四:在仿真软件CST软件中截取十字螺旋FSS结构的一个单元进行入射波透射率分析,根据实际的工程应用中对平坦通带带宽范围的要求,调整十字螺旋FSS结构单元的参量改变阻带的谐振频率,将调整好的十字螺旋FSS结构替代原来的该结构; 设一平面波入射在十字螺旋FSS结构上,该结构中间是理想金属层,位于XZ平面内,金属层上 Full cross FSS helical structure layer of a 6X6; Step Three: CST established using simulation software dielectric layer FSS cross helical structure, embedded FSS cross helical structure layer into the substrate medium; first software to draw a rectangular drawing tool model as a dielectric layer, an upper surface and surface FSS cross helical structure layer overlap the lower dielectric layer, a dielectric layer of a material selected L = dielectric permittivity of 3.0; then make a model of a rectangular parallelepiped of the same size as the dielectric layer such that the dielectric layer lower surface of the upper surface of the cross-helical structure layer FSS coincides permittivity dielectric layer material is also chosen in 3.0% = medium; step four: intercepting a spiral cross section is incident in the FSS structure CST software simulation software transmittance analysis, the actual engineering application requirements for flat passband bandwidth, adjusting the cross helical FSS structural unit in an amount parameter changes the resonant frequency of the stopband to the adjusted cross-helical FSS structure to replace the original of the structure; provided a a plane wave is incident on the cross FSS helical structure, the structure is over the intermediate metal layer, located within the XZ plane, the metal layer 期分布着贴片单元结构,X方向和z方向的单元间距分别表示为Dx和Dz ;两侧是介质层,该入射波的传播方向可以表示为s=xsx+ysy+zsz ; 平面波通过十字螺旋FSS结构透射侧的电磁场分布为: Distribution of the patch element structure, X cell pitch direction and the z direction are denoted as Dx and Dz; is a dielectric layer on both sides of the propagation direction of the incident wave can be expressed as s = xsx + ysy + zsz; plane wave by the cross coil FSS transmission side electromagnetic field distribution of the structure:
    Figure CN102176543BC00021
    式中e± = [pXr±]Xr±;p表示线电流矢量;i3 = <i/ ; 1表示线电流源的长度;Z是媒质的波阻抗;β是媒质的传播常数;ry是EBG单元位置矢量的y方向分量;r± 表示传播方向单位矢量;R是场点的位置矢量;R(1)表示源点的位置矢量; 如果电流分布I(I)未知,则可以采用矩量法,把线性方程式(1)中的未知函数即感应电流I(I)表示成一组基函数的线性组合,然后选用检验函数在线性方程两边取内积生成一个线性方程组,求解该线性方程组就可求得未知函数,从而就方便地求出电磁波经过十字螺旋FSS结构阵列后的透射电磁场; 步骤五:添加集总端口计算水平极化的入射波从不同角度入射时,各个入射角度下的频率响应特性;根据已经建好的十字螺旋FSS结构,设置该结构的边界,扫频频率以及入射波的角度,测试十字螺旋FSS结构的带宽稳定性和频率选择性; 步骤六: Where e ± = [pXr ±] Xr ±; p represents the line current vector; i3 = <i /; length 1 represents a line current source; Z is medium wave impedance; beta] is the medium of propagation constant; Ry is EBG cells y-direction position vector component; r ± indicates a propagation direction of a unit vector; R is a position vector field point; R (1) indicates a position vector of the source node; if the current distribution I (I) is unknown, may be employed the method of moments, the linear equation (1) is the unknown function of the induced current I (I) represented as a set of linear combination of basis functions, and then choose to take the both sides of the test function of linear equations product generating a set of linear equations to solve the system of linear equations can be unknown function obtained, whereby the electromagnetic wave can be easily obtained after the cross-helical structure array FSS transmission field; step five: added when calculating the aggregate port of the horizontally polarized incident wave from different angles, each angle of incidence frequency response characteristic; the FSS cross helical structure has been built, the boundaries of the structure is provided, and the incident angle of sweep frequency, bandwidth, stability and frequency selectivity test FSS cross helical structure; step six: 据步骤四确定的最优尺寸,采用双面覆铜板加工制作十字螺旋FSS结构。 According to the optimal size determined in step four, using double-sided copper clad laminate manufacture FSS cross helical structure.
CN 201010601816 2010-12-22 2010-12-22 Cross spiral frequency selective surface (FSS) structure with dual band characteristics and construction method thereof CN102176543B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010601816 CN102176543B (en) 2010-12-22 2010-12-22 Cross spiral frequency selective surface (FSS) structure with dual band characteristics and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010601816 CN102176543B (en) 2010-12-22 2010-12-22 Cross spiral frequency selective surface (FSS) structure with dual band characteristics and construction method thereof

Publications (2)

Publication Number Publication Date
CN102176543A true CN102176543A (en) 2011-09-07
CN102176543B true CN102176543B (en) 2015-03-25

Family

ID=44519668

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010601816 CN102176543B (en) 2010-12-22 2010-12-22 Cross spiral frequency selective surface (FSS) structure with dual band characteristics and construction method thereof

Country Status (1)

Country Link
CN (1) CN102176543B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103000999B (en) * 2011-09-16 2015-06-17 深圳光启高等理工研究院 Metamaterial
CN102479994B (en) * 2011-10-31 2013-08-07 深圳光启高等理工研究院 Metamaterial antenna housing
CN103186680B (en) * 2011-12-27 2016-03-02 深圳光启高等理工研究院 An artificial electromagnetic material design method and apparatus
CN103186685B (en) * 2011-12-30 2016-04-13 深圳光启高等理工研究院 The method based on the configuration of the cell structure cst metamaterial simulation software and device
CN102570034A (en) * 2012-01-04 2012-07-11 电子科技大学 Reconfigurable antenna based on conformal active frequency selection surface
CN103247851B (en) * 2012-02-09 2018-07-24 深圳光启创新技术有限公司 Radome
CN103296437B (en) * 2012-02-29 2017-04-26 深圳光启创新技术有限公司 A method for producing ultra Laminates, metamaterial antenna cover and manufacturing method thereof
CN103296442B (en) * 2012-02-29 2017-10-31 洛阳尖端技术研究院 And metamaterial antenna cover made of a metamaterial
CN103296419A (en) * 2012-03-02 2013-09-11 深圳光启创新技术有限公司 Broadband metamaterial antenna housing and antenna system
KR20130105358A (en) * 2012-03-16 2013-09-25 삼성전자주식회사 Artificial atom and metamaterial and device including the same
CN102694254A (en) * 2012-04-27 2012-09-26 深圳光启创新技术有限公司 Metamaterial base station antenna radome and antenna system
CN102683864B (en) * 2012-05-14 2014-08-20 中国科学院国家天文台 Four-ridge-type broad band feed source
CN102646869B (en) * 2012-05-18 2014-06-04 中国电子科技集团公司第三十六研究所 Electronic control scanning antenna based on meta-material
CN102723540B (en) * 2012-05-30 2014-06-04 深圳光启创新技术有限公司 Dual passband frequency selective surface and dual passband radome prepared from same
CN102769201B (en) * 2012-06-29 2016-06-22 深圳光启创新技术有限公司 Transparent material and dual-band wave radome and antenna systems
CN103682642B (en) * 2012-08-31 2018-07-06 深圳光启创新技术有限公司 Kind of microstrip patch antenna
CN104716425A (en) * 2015-03-30 2015-06-17 宁波高新区宁源科技服务有限公司 Antenna and FSS (frequency selective surface) system construction method
CN105069235B (en) * 2015-08-13 2018-05-25 西安电子科技大学 Extraction dual band frequency selective surface equivalent circuit parameters of the method
CN106252855A (en) * 2016-07-21 2016-12-21 北京邮电大学 Cross fold line type slotted wideband uniplanar compact electromagnetic band gap UC-EBG structure and design method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151507B1 (en) * 2005-06-16 2006-12-19 Rockwell Collins, Inc. Low-loss, dual-band electromagnetic band gap electronically scanned antenna utilizing frequency selective surfaces
CN101894990A (en) * 2010-06-24 2010-11-24 东南大学 Double-frequency polarization insensitive active frequency selective surface
CN201994420U (en) * 2010-12-22 2011-09-28 北京航空航天大学 Cross helical frequency selective surface (FSS) structure with dual-band characteristic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7151507B1 (en) * 2005-06-16 2006-12-19 Rockwell Collins, Inc. Low-loss, dual-band electromagnetic band gap electronically scanned antenna utilizing frequency selective surfaces
CN101894990A (en) * 2010-06-24 2010-11-24 东南大学 Double-frequency polarization insensitive active frequency selective surface
CN201994420U (en) * 2010-12-22 2011-09-28 北京航空航天大学 Cross helical frequency selective surface (FSS) structure with dual-band characteristic

Also Published As

Publication number Publication date Type
CN102176543A (en) 2011-09-07 application

Similar Documents

Publication Publication Date Title
Dong et al. Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures
US6426722B1 (en) Polarization converting radio frequency reflecting surface
US7256753B2 (en) Synthesis of metamaterial ferrites for RF applications using electromagnetic bandgap structures
Mosallaei et al. A one-layer ultra-thin meta-surface absorber
Zhou et al. Filter-antenna consisting of conical FSS radome and monopole antenna
US20030034933A1 (en) Electromagnetic window
CN1787284A (en) Micro band slot array antenna
US20070046557A1 (en) Wideband planar dipole antenna
Cheng et al. Study of 2-bit antenna–filter–antenna elements for reconfigurable millimeter-wave lens arrays
CN101505004A (en) High gain slot array antenna based on left-hand material
Luukkonen et al. An efficient and simple analytical model for analysis of propagation properties in impedance waveguides
CN1658433A (en) Variable-polarization microstrip reflectarray antenna
Parker The gentleman's guide to frequency selective surfaces
CN102176543A (en) Cross spiral frequency selective surface (FSS) structure with dual band characteristics and construction method thereof
US20110273348A1 (en) Metamaterial antenna device with mechanical connection
CN103762423A (en) Reflection array antenna beam scanning antenna based on rotation phase shift surface technology
Rafique et al. Frequency selective surface absorber for WLAN security
CN203589220U (en) Antenna
CN105428825A (en) Super-surface based variable-polarization multifunctional microstrip array antenna
Zheng et al. High impedance ground plane (HIGP) incorporated with resistance for radar cross section (RCS) reduction of antenna
Rahmati et al. High-efficient wideband slot transmitarray antenna
CN102354810A (en) Omni-directional electric scanning radome consisting of sub-wavelength resonance structure units
CN101192713A (en) Microstrip array antenna
CN203983490U (en) Novel broadband circularly-polarized antenna
Meriah et al. Gain enhancement for microstrip reflectarray using superstrate layer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model