CN102166862B - Preparation method of high-performance prefabricated reinforced fabric for facilitating resin flow - Google Patents

Preparation method of high-performance prefabricated reinforced fabric for facilitating resin flow Download PDF

Info

Publication number
CN102166862B
CN102166862B CN 201010581859 CN201010581859A CN102166862B CN 102166862 B CN102166862 B CN 102166862B CN 201010581859 CN201010581859 CN 201010581859 CN 201010581859 A CN201010581859 A CN 201010581859A CN 102166862 B CN102166862 B CN 102166862B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
fabric
m2
resin
porous
polymer
Prior art date
Application number
CN 201010581859
Other languages
Chinese (zh)
Other versions
CN102166862A (en )
Inventor
益小苏
刘刚
张尧州
刘燕峰
胡晓兰
安学锋
Original Assignee
中国航空工业集团公司北京航空材料研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明属于树脂基复合材料预制技术,涉及一种新型、促进层间树脂快速浸渍流动、兼具定型与复合材料增韧的多功能复合材料用预制增强织物的制备方法以及应用技术。 The present invention pertains to resin-based composite material preform technology, relates to a novel, fast resin impregnation promoting interlayer flow, both the multi-functional composite material shaped composite prefabricated reinforced toughened preparation and application of technical fabrics. 本发明的目的是在现有多层、多向经编增强织物的基础上,利用一种高分子多孔介质在预制阶段的定型作用,在充模成型阶段的流动分配器作用,以及在固化阶段的增韧剂作用等,提出一种兼具快速导流、材料增韧和定型的多功能增强织物的材料制备技术和应用技术,在提高液态成型复合材料预制定型性能的同时,提高树脂在预制织物内的浸渍和流动特性,改善产品的制造质量并降低制造成本,得到固体复合材料的高韧性改性和基础性能提升。 Object of the present invention is the conventional multi-layer, multi-reinforcing warp knitting fabric based on the use of a polymer styling benefits preformed porous medium stage, acting filling flow distributor forming stage and the curing stage role of toughening agents, both to provide a rapid flow, toughened and styling versatility reinforcing fabric preparation technique and the application of technical material, while improving the liquid molding composite preform styling performance, improved resin preform dipping and flow characteristics in the fabric, improving manufacturing quality and reduce manufacturing costs, to give a solid composite material and high toughness modifier performance basis.

Description

一种促进树脂流动的高性能预制增强织物的制备方法 A method of promoting the flow of high-performance resin production method for prefabricated reinforced fabric

技术领域 FIELD

[0001] 本发明属于树脂基复合材料预制技术,涉及一种新型、促进层间树脂快速浸溃流动、兼具定型与复合材料增韧的多功能复合材料用预制增强织物的制备方法。 [0001] The present invention pertains to resin-based composite material preform technology, relates to a novel process for preparing interlayer resin impregnated fast flow, both shaping and toughened composites multifunctional prefabricated composite reinforcement fabric promoted.

背景技术 Background technique

[0002] 液态成型的树脂传递模塑(RTM, Resin Transfer Molding)以及各种真空辅助浸渗成型技术等是当前先进复合材料低成本技术的主流,这主要包括Seaman树脂浸溃成型(SCRIMP, Seaman,s Composite Resin Infusion Molding Process)、软模树脂浸渗成型(RIFT, Resin Infusion under Flexible Tooling)和真空辅助RTM (VARTM, VacuumAssistant)成型技术等。 [0002] The liquid molding resin transfer molding (RTM, Resin Transfer Molding) and vacuum-assisted impregnation of various molding techniques and the like are currently mainstream low-cost technology advanced composite materials, mainly comprising a resin impregnated molding Seaman (the SCRIMP, Seaman , s Composite resin Infusion molding Process), a soft resin impregnated molding mold (RIFT, resin Infusion under flexible Tooling) and vacuum-assisted RTM (VARTM, VacuumAssistant) molding technology. 在这些真空辅助成型技术里,都在复合材料预制织物的表面铺设了一层柔性的流动分配介质或分配器(Resin Distribution Media或Fabric),其作用是在与预制织物接触而平行的面内(XY方向)形成快速流动通道,促进树脂在预制织物厚度方向(Z向)的流动和浸溃。 In these vacuum assisted molding technology, and all the laid layer of flexible flow distribution medium or dispenser (Resin Distribution Media or Fabric) at the surface of the composite fabric preform, its role is in contact with the inner surface of the fabric and parallel to the preform ( XY direction) fast flow channels facilitate resin flow and impregnation the fabric preform in the thickness direction (Z direction). 实践证明,这种流动促进措施对于提高流动和浸溃速度的效果非常明显。 Practice has proved that this flow-promoting measures to improve liquidity and impregnated speed effect is very obvious.

[0003] 参考专利的中国发明专利“一种液态成型复合材料用预制织物及其制备方法”(申请号200810000135.2,简称ES织物即ES-Fabrics)提出了一种预制兼具层间选择性增韧和定型功能织物的方法,其结构原理都是在增强纤维织物的表面附载一层具有一定面密度的增韧层和/或定型层,其表面形态是离散颗粒或多孔膜等,在充模过程完成后的固化阶段,这个高分子材质的附载层被基体树脂溶解进入复合材料而不复独立存在。 [0003] (Application No. 200810000135.2, Acronym ES fabric i.e. ES-Fabrics) proposes an inter-layer preform both selective toughening Chinese invention patent patent reference "prefabricated fabric and method for preparing liquid molding composite" the method of setting and function of the fabric, which are structural principle surface of the reinforcing fiber woven fabric layer attached to the carrier layer toughened and / or fixing layer having a certain surface density, the surface morphology of a porous film or discrete particles, the filling process after completion of the curing stage, the polymer material-carrying layer is dissolved into the resin matrix composites without multiplexing independent existence. 实践证明,这种专利技术在液态成型复合材料的定型和增韧两方面均具有效果。 Practice has proved that this patent molded composite shape and toughened in a liquid has an effect in terms of both. 但是,其预制织物由于层间添加的增韧层自身的多孔性较差,导致在进行液态成型时,减弱了复合材料预制结构的层间流动性。 However, the preformed fabric is poor because the porous layer toughened added interlayer itself, leading to liquid during molding, diminished interlayer prefabricated composite fluidity.

发明内容 SUMMARY

[0004] 本发明的目的是:提出一种在现有多层、多向纤维铺层经编增强织物的基础上,增强复合材料预制结构的层间流动性的促进树脂流动的高性能预制增强织物及其制备方法。 [0004] The object of the present invention are: to provide a multi-layer in the conventional multi-ply reinforcing fibers to the base fabric on a warp, an interlayer prefabricated reinforced composite material of high performance pre-accelerated resin flowability of reinforcing flow fabric and its preparation method.

[0005] 本发明的技术方案是: [0005] aspect of the present invention is:

[0006] (I)高分子多孔介质的制备:a)将热塑性树脂或热固性树脂与热塑性树脂的混合物,按照溶液纺丝或熔融纺丝或电纺丝的方法进行纺丝,然后织造成为织物,孔隙率大于50%,面密度为4g/m2〜20g/m2,厚度为10 ym〜50 ym ;b)或将用上述a)制备的不同或相同的单层高分子多孔介质之间通过在100°C〜450°C下微热熔Imin〜30min,粘接成为孔隙率大于50%,面密度为4g/m2〜20g/m2,厚度为10 ym〜50 ym的多层高分子多孔介质;或缝纫成密度为30针/m2〜500针/m2,孔隙率大于50%,面密度为4g/m2〜20g/m2,厚度为10 ii m〜50 ii m的多层高分子多孔介质; [0006] Preparation of (I) a polymer porous media: a) a mixture of a thermoplastic resin or a thermosetting resin and a thermoplastic resin, spinning or solution spinning process according to melt-spinning or electrospinning, and then becomes a woven fabric, porosity is greater than 50%, an areal density of 4g / m2~20g / m2, a thickness of 10 ym~50 ym; b) or between the medium 100 by the above-described a) preparation of a monolayer of the same or different molecular porous micro melt at Imin~30min ° C~450 ° C, the adhesive becomes greater than a porosity of 50%, an areal density of 4g / m2~20g / m2, a thickness of 10 ym~50 ym multilayer porous polymer media; or to a density of 30 sewing needles / m2~500 pin / m2, a porosity greater than 50%, an areal density of 4g / m2~20g / m2, a thickness of 10 ii m~50 ii m a multilayer porous polymer media;

[0007] (2)高分子多孔介质附着定型剂:将单层或多层高分子多孔介质浸泡在定型剂溶液里,并在高分子多孔介质表面附载低熔点的定型剂;或在单层或多层的高分子多孔介质的表面热熔附载成短切纤维或颗粒形态的定型剂,热熔工艺条件是温度为100°c〜350°C,持续时间为Imin〜30min ;定型剂材料在高分子多孔介质上的面密度在4g/m2〜8g/m2之间; [0007] (2) high molecular porous medium is attached fixative: a monolayer or multilayer porous polymer media immersed in fixative solution, the surface of the porous medium and the annexed polymer styling agent in a low melting point; or in a single layer or surface melt polymer multilayer porous medium attached to carrier particles, or chopped fiber morphology styling agent, a hot-melt process conditions include a temperature of 100 ° c~350 ° C, duration Imin~30min; high styling agent material the areal density of molecules on the porous medium between 4g / m2~8g / m2;

[0008] (3)预制增强织物的制备:将附着定型剂后的高分子多孔介质作为附载材料直接铺放在增强织物铺层层间,其平均面接触率大于40%;然后按照非屈曲织物的制备方法进行制备,或在厚度方向进行缝纫,缝纫密度为30针/m2〜500针/m2,或通过热熔的方式把增强材料铺层间的高分子多孔介质微黏结各铺层,其工艺为在加热温度为100°C〜450°C下微热熔Imin〜30min,使得预制增强织物实现整体定型预制和铺层间的层_层连接。 [0008] (3) Preparation of prefabricated reinforced fabric: a polymer adhered to the porous medium as a styling agent directly carried material is laid between the reinforcing fabric layers laid, having an average surface contact rate greater than 40%; and in a non-crimp fabric preparation prepared, or sewing, the sewing needle density of 30 / m2~500 needles / m2 in the thickness direction, or by way of the hot melt polymer enhanced bond between the micro-porous medium plies each ply material, which process is a heating temperature of the hot melt micro Imin~30min at 100 ° C~450 ° C, so that the preform reinforcing fabric layers to achieve interlayer _ overall shape and preformed laminate connector.

[0009] 所述的定型剂的材质是所用树脂基体成分,其熔点范围为40°C〜150°C。 Material styling agent [0009] is used in the resin matrix component having a melting point in the range of 40 ° C~150 ° C.

[0010] 所述的高分子多孔介质为无纬布、网格纱或毡子。 [0010] The polymer for the porous medium without sheeting, mesh gauze or felt.

[0011] 本发明的优点是: [0011] The advantage of the present invention are:

[0012] 本发明的预制增强织物(简称MESF织物)兼具多层多向织物的组装定型与叠层连接、层间树脂流动促进和固体复合材料增韧等多功能于一体,在使用中,能够提高复合材料液态成型的工艺性能和良好的织物预制定型性能,同时实现了固体复合材料的高韧性化与高性能化。 [0012] Prefabricated reinforcing woven fabric of the present invention (referred to as fabric MESF) both assembled and shaping the multilayer stack multidirectional fabric connection, flow promoters and interlayer resin toughening composites solid-in-one, in use, possible to improve the properties of the composite liquid molding process and good fabric preform styling performance, while achieving a high toughness and high performance of the solid composite material.

[0013] 本发明的制备方法,通过优选高分子多孔介质的材料及其结构形态,使得这种附载材料不仅是复合材料预制过程的定型材料和固体复合材料的增韧组分,还特别巧妙地利用了层间多孔介质的液体浸溃和流动促进功能,省略了传统真空辅助成型中的柔性树脂流动分配器,提高了预制织物结构的渗透率以及渗透的均匀性,提高了液态成型的工艺效果和复合材料的制造质量,缩短了制备时间,降低了制造成本,实现了多功能、一体化、低成本的整合。 [0013] The production method of the present invention, the preferred polymer material and morphology of the porous medium, such that the carried material is not only a solid amorphous material and the composite material toughening component composite preform process, in particular also subtly using a liquid impregnated porous medium and the interlayer flow promoting function, is omitted in the conventional vacuum assisted molding flexible resin flow distributor, to improve the permeability of the textile structure preform and uniformity of penetration, the effect of improving the liquid molding process composites manufacturing quality and shorten the preparation time, reduce manufacturing costs, to achieve a multifunctional, integrated, low-cost integration.

[0014] 本发明的制备方法,由于附载材料可以设计固定在特定的层间,所以可以制备周期性的叠层结构,也可以制备非周期的叠层结构,还可以制备梯度分布的叠层结构,从而赋予复合材料巨大的改性和设计自由度。 [0014] The production method of the present invention, because the carried material may be secured between the specific design layer, the laminated structure can be prepared in a periodic, non-periodic stacked structure may also be prepared, the gradient of the laminated structure may also be prepared , thereby imparting enormous composite modification and design freedom.

具体实施方式 detailed description

[0015] 一种借助在增强织物铺层间铺放单向非皱折(Non-Crimp)或多层多向高分子多孔介质的复合材料液态成型用预制增强织物一简称MESF织物,它兼具织物定型、层间树脂流动促进和固体复合材料增韧及高性能化等多功能。 [0015] A reinforcing fabric by means of multi-polymer to a liquid composite molding preformed porous medium between the reinforcing fabric ply laying unidirectional non wrinkles (Non-Crimp) or a multilayer referred MESF fabric that both fabric shape, flow promoters and interlayer resin solids and high performance toughened composites and other functions.

[0016] 所述的MESF织物所用的增强纤维材料是下列纤维之一:玻璃纤维、碳纤维、芳纶纤维、玄武岩纤维和有机纤维,其纤维的丝束数及其单层织物厚度没有限制,包括使用大丝束。 [0016] The reinforcing fiber material according MESF fabric used is one of the following fibers: glass fibers, carbon fibers, aramid fibers, basalt fibers and organic fibers, tows and the number of single layer fabric thickness of the fibers is not limited, including use big tow.

[0017] 所述的MESF织物所用的高分子多孔介质的材质是下列材料之一:聚醚酮、聚砜、聚醚砜、热塑性聚酰亚胺、聚醚酰亚胺、聚苯醚、聚酰胺、聚烯烃;或者是下列热固性树脂其中之一与上述热塑性树脂其中之一的混合物:环氧树脂、双马来酰亚胺树脂、热固性聚酰亚胺树脂、聚苯并噁嗪树脂、酚醛树脂、氰酸酯树脂、不饱和聚酯树脂。 [0017] The fabric according MESF polymer materials used in porous media is one of the following materials: polyether ketone, polysulfone, polyether sulfone, thermoplastic polyimide, polyetherimide, polyphenylene ether, amides, polyolefin; or a mixture of one of these with a thermosetting resin wherein the thermoplastic resin is one wherein: epoxy resins, bismaleimide resins, thermosetting polyimide resin, polybenzoxazine resin, phenol resins, cyanate ester resins, unsaturated polyester resins. 上述热塑性树脂与热固性树脂的混合比例不限,只要能够制备成连续化的柔性多孔介质。 The mixing ratio of the thermoplastic resin and the thermosetting resin are not limited as long as it is prepared as a continuous flexible porous media. 一般上述热塑性树脂与热固性树脂的质量混合比例为1:20〜20:1。 Usually the mixing mass ratio of the thermoplastic resin and the thermosetting resin is 1: 20~20: 1.

[0018] 这种织物所用的柔性多孔介质是下列形态之一:各种单层或多层的织物、无纬布、网格纱或毡子,包括在这些织物、无纬布、网格纱或毡子表面上附载了上面所述的热塑性树脂或热固性树脂与热塑性树脂混合物的涂料或颗粒,且涂料或颗粒的材质与上述织物、无纬布、网格纱或毡子的材质相同或不同。 [0018] The flexible porous media of this fabric is used in one of the following forms: a variety of single or multiple layers of fabric, laid fabric, yarn mesh or felt, included in these fabrics, laid fabrics, yarns or grid upper batt surface attached to the carrier described above or a thermoplastic resin coating material or a mixture of particles of thermosetting resin and thermoplastic resin, and the above-described materials or textile coating particles, no sheeting, the same or different mesh yarns or felt material.

[0019] 这种MESF织物整体的结构特征在于单向非皱折和多层多向,也就是说,增强织物可以利用高分子材质的多孔介质实现定型而不散,同时依靠高分子材质的多孔介质实现单向非皱折铺放和层与层的连接。 [0019] Such structural features MESF way that the entire fabric and multilayer corrugations non multidirectional, i.e., reinforcing fabric porous medium may be utilized to achieve styling polymer materials and leave, while relying on the porous polymer material one-way non-media access and placement corrugations of the layers.

[0020] 对于此类促进树脂流动的高性能预制增强织物的制备方法,其特征在于,制备的步骤如下: [0020] For such high-performance facilitate resin flow preformed reinforcing fabric production method, wherein the step of preparing the following:

[0021] (I)高分子多孔介质的制备:1)将上述高分子多孔介质材质的的热塑性树脂或热固性树脂与热塑性树脂的混合物,按照常规技术(溶液纺丝或熔融纺丝或电纺丝)纺丝织造成为织物、无纬布、网格纱或毡子的高孔隙率的单层高分子多孔介质;或将用上述I)制备的不同或相同的单层高分子材质多孔介质之间通过在100°c〜450°C下微热熔Imin〜30min,或缝纫成为低密度(缝纫密度为30针/m2〜500针/m2)多层高分子多孔介质;通过上述方法制备的高分子多孔介质三向孔隙率大于50%,其面密度为4g/m2〜20g/m2,其厚度为10 um 〜50 u m0 [0021] Preparation of (I) a polymer porous media: a) a thermoplastic resin mixture of the polymer material of the porous medium or a thermosetting resin and a thermoplastic resin, according to conventional techniques (solution spinning or melt spinning or electrospinning ) be spun woven fabric, laid fabric, a single layer of high porosity polymer mesh or felt porous media yarn; or the above I) by a single layer of the same or different polymer materials prepared from porous medium at 100 ° c~450 ° C melt micro Imin~30min, or sewing becomes a low density (density of 30 sewing needles / m2~500 pin / m2) of multilayered polymer porous media; porous polymer prepared by the above method medium III 50% greater than the porosity of its surface density of 4g / m2~20g / m2, a thickness of 10 um ~50 u m0

[0022] (2)高分子多孔介质附着定型剂:将点(I)所述的高孔隙率高分子多孔介质浸泡在定型剂溶液里,并在高分子多孔介质表面附载低熔点的定型剂;或在点(I)所述的单层或多层的高孔隙率高分子多孔介质的表面热熔附载的短切纤维或颗粒形态的定型剂,热熔工艺条件是温度为100°c〜350°C,持续时间为Imin〜30min ;无论采用哪种方法,定型剂材料在高分子多孔介质上的面密度在4g/m2〜8g/m2之间。 [0022] (2) high molecular porous medium is attached fixative: the high porosity point (I) the polymer styling agent in the porous media immersed in the solution, the surface of the porous medium and the annexed polymer styling agent in a low melting point; or the point (I) of the chopped fiber-carrying or particle morphology of the surface of the high porosity of the hot-melt monolayer or multilayer porous polymer media styling agent, a hot-melt process conditions include a temperature of 100 ° c~350 ° C, duration Imin~30min; Whichever method is used, the surface density of the material on the polymer styling agent in the porous medium 4g / m2~8g / between m2.

[0023] (3)预制增强织物的制备:根据MESF预制织物的设计,将具有柔性的高分子多孔介质作为附载材料直接铺放在增强织物铺层层间,其平均面接触率大于40% ;然后按照非屈曲织物(参考欧洲发明专利“Non-Crimp Fabrics”(W0/2002/057527))的制备方法进行多层多向叠层铺放制备,或在厚度方向进行缝纫(缝纫密度为30针/m2〜500针/m2)连接,或通过热熔的方式(加热温度为100°C〜450°C下微热熔Imin〜30min)把增强材料铺层间的高分子多孔介质微黏结各铺层,使得MESF织物实现整体定型预制和铺层间的层-层连接。 [0023] (3) Preparation of prefabricated reinforced fabric: According MESF preformed fabric, the porous medium having a flexible polymer directly as the carried material is laid between the reinforcing fabric layers laid, having an average surface contact rate greater than 40%; then in a non-crimp fabric (refer to European patent "non-Crimp fabrics" (W0 / 2002/057527)) for the preparation of a multi laid preparation stack, or sewing (sewing needle density is 30 in the thickness direction / m2~500 pin / m2) connection, or by a hot melt method (hot melt Imin~30min micro heating temperature at 100 ° C~450 ° C) to enhance the bond between the micro-porous polymer media material plies each SHOP layer, so that interlayer achieve MESF fabric preform and the overall styling ply - layer connection.

[0024] (4)复合材料液态成型:在低于高分子多孔介质的特征溶解温度(60°C〜280°C)之下和真空辅助下,把树脂基体注射到MESF织物中,完成快速充模和浸溃;并在较高温度(60°C〜350°C )的固化窗口,完成该柔性高分子多孔介质在树脂基体中的溶解或扩散,实现热塑性树脂对热固性基体的增韧。 [0024] (4) liquid composite molding: wherein the porous medium is lower than the polymer melting temperature (60 ° C~280 ° C) and under lower vacuum assisted, the resin matrix is ​​injected into MESF fabric, quick charging is completed and dipping the mold; and at elevated temperature (60 ° C~350 ° C) a curing window porous medium to complete the flexible polymer dissolved or dispersed in a resin matrix, the thermoplastic resin to achieve toughening thermosetting matrix.

[0025] 根据上面所述的一种促进树脂流动的高性能预制增强织物的制备方法,其特征在于,所述的定型剂的材质是所用树脂基体成分或高分子多孔介质的组分,其熔点低于高分子多孔介质的玻璃化转变温度,范围为40°C〜150°C ; [0025] According to one of the above high-performance resin flow preformed reinforcing fabric production method, wherein the setting agent is a material of a resin or a porous polymer matrix component medium used components which promote m.p. lower than the glass transition temperature of the polymer of the porous medium, in the range of 40 ° C~150 ° C;

[0026] 实施例1 [0026] Example 1

[0027] 制备多孔附载介质:将市售常规共聚聚酰胺(尼龙)化纤织造成为空心平纹布,面密度为8.48g/m2,孔隙率60%。 [0027] Preparation of Loaded Porous Media: conventional commercially available copolymer polyamide (nylon) fiber becomes hollow woven plain weave fabric, areal density of 8.48g / m2, a porosity of 60%.

[0028] 在通用的NCF制备装铬上(幅宽约900mm)制备碳纤维铺层结构,[+45° /0° /90° /-45° ]3S铺放;将上述聚酰胺(尼龙)空心平纹布平整地放铬在各层单向纤维层的层间,空心平纹布与碳纤维铺层的面接触率约40%,形成碳纤维铺层与空心平纹布的交替叠层预制结构。 [0028] (width about 900mm) preparing a carbon fiber lay on a common structure mounted NCF prepared chromium, [+ 45 ° / 0 ° / 90 ° / -45 °] 3S laid; and the polyamide (nylon) Hollow plain weave fabric flatly placed between the chromium layer of the layers of unidirectional fiber layer, in contact with the surface of the hollow carbon fiber plain weave fabric ply to about 40%, are formed alternately laminated structure of the carbon preform with a hollow fiber ply plain weave fabric.

[0029] 加热整个织物至其中的聚酰胺空心平纹布微熔,适当施压,即得到该多向多层、附载了聚酰胺空心平纹布作为浸溃和流动促进层的平面MESF多功能预制增强体织物。 [0029] The entire fabric is heated to a plain weave fabric wherein polyamide hollow microfusion, suitable pressure, to obtain the multi-layers, annexed as polyamide plain weave cloth impregnated hollow flow-promoting layer and the planar precast reinforced multifunctional MESF fabric body.

[0030] MESF多功能预制织物的成型加工:将该平面预制织物按照常规真空辅助成型的方法组装进模具,以E54环氧为基体树脂,在50° C左右采用VARI工艺吸入模具中,并按照E54树脂体系的标准工艺固化。 [0030] MESF multifunctional fabric preform molding process: The flat fabric preform according to a conventional method for vacuum assisted molding into the mold assembly to E54 epoxy matrix resin, VARI process using a suction mold at about 50 ° C, and in accordance with E54 standard processes cured resin system.

[0031] 实测该固体复合材料层合板的孔隙率接近零,实测该复合材料的冲击后压缩强度253MPa,说明该MESF多功能预制织物的液态成型工艺性质和冲击损伤容限性质良好。 [0031] The solid composite Found Laminates near zero porosity, measured after compression of the shock strength of the composite material 253MPa, the molding process described liquid fabric preform MESF multifunctional good impact properties and damage tolerance properties.

[0032] 实施例2 [0032] Example 2

[0033] 制备带定型功能的化纤线多孔附载介质:将市售常规聚醚砜(PES)化纤按照实施例I的方法织造成为空心平纹布,采用B-阶固化双马树脂作为定型剂,将其溶于丙酮后,浸溃该空心平纹布,干燥后得到预附载定型剂的空心平纹布,其面密度为12g/m2,孔隙率60%。 [0033] Preparation of fiber tape shaped medium-carrying porous function: Commercially available conventional polyether sulfone (PES) fiber according to Example I become hollow woven plain weave cloth using B- stage cured bismaleimide resin as a setting agent, the after it was dissolved in acetone, the hollow plain weave cloth impregnated, and dried to obtain a pre-setting agent-carrying hollow plain weave fabric having an areal density of 12g / m2, a porosity of 60%.

[0034] 手工制备[±45° ]2S多层单向碳纤维铺层,将上述预附载定型剂的空心平纹布平整地放铬在各单向碳纤维层之间,空心平纹布与碳纤维铺层的面接触率约40%,形成碳纤维铺层与空心平纹布的交替叠层预制结构。 [0034] prepared by hand [± 45 °] 2S multilayered unidirectional carbon fiber plies, the above-described pre-attached carrier styling agent hollow plain weave cloth flatly placed chromium between the unidirectional carbon fiber layers, hollow plain weave fabric and the carbon fiber ply about 40% of surface contact, are alternately laminated to form a carbon fiber preform and the hollow structural ply plain weave fabric.

[0035] 该预制织物的定型:将上述预制织物贴靠在一个直角模具上,用电熨斗对其进行均匀局部加热至120° C左右约I分钟,导致预附载在该空心平纹布表面的B-阶固化双马树脂软化微熔,粘接相邻的碳纤维层,然后保形冷却,即得到直角定型的四层织物预制体。 [0035] The shape of the preformed fabric: the fabric rests on said preform mold at a right angle, with its iron locally uniformly heated to about 120 ° C for about I minute, resulting in a pre-B-carrying surface of the hollow plain weave fabric - stage cured bismaleimide resin is softened microfusion, bonding the adjacent carbon fiber layers, and conformal cooling, i.e., at right angles to give a four-layer fabric preform shape.

[0036] 该直角预制体的成型加工:将该预制体按照常规高温真空辅助成型的方法铬入模具,以6421双马树脂为基体树脂,在105° C左右采用VARI工艺吸入模具中,并按照6421树脂体系的标准工艺固化,即得到所需的直角的复合材料制件。 [0036] Forming of the angle of the preform: The preform in accordance with the method of the chromium conventional high-temperature vacuum-assisted molding into the mold to 6421 pairs horse resin as the matrix resin, using VARI process the suction mold at about 105 ° C, and in accordance with process 6421 standard curing resin system, i.e., to obtain the desired composite article at right angles.

[0037] 实测该固体直角复合材料制件的孔隙率接近零,说明该MESF多功能预制织物的定型工艺和液态成型工艺性质良好。 [0037] Found right angles to the solid composite article porosity close to zero, indicating good MESF the multifunctional setting process and liquid fabric preform molding properties.

[0038] 实施例3 [0038] Example 3

[0039] 制备多孔附载介质:将市售常规聚芳醚酮(PAEK)化纤织造成为无纺布,再将标准定型剂粉末ES-T321均匀撒布在该无纺布表面,加热使其微熔而黏结在该无纺布上,即得到面密度为10g/m2左右,空隙率55%、预附载定型剂粉末的无纺布多孔流动介质。 [0039] Preparation of Loaded Porous Media: conventional commercially available polyaryletherketone (the PAEK) the nonwoven fabric becomes a woven fiber, then the standard setting agent powder ES-T321 spreading evenly the surface of the nonwoven fabric, and heated to microfusion bonding in the nonwoven fabric, i.e., to give an areal density of about 10g / m2, a porosity of 55%, the nonwoven fabric pre-attached porous medium flowing powder carrier styling agent.

[0040] 在通用的NCF制备装铬上铺放结构为[+45° /O。 [0040] NCF prepared chromium plated discharge means is in the general structure [+ 45 ° / O. /90° /-45° ]2S的多层单向碳纤维织物,将上述的预附载定型剂粉末的无纺布多孔流动介质放铬在各单层单向的纤维铺层的层间,即得到所需要的MESF预制增强织物。 / 90 ° / -45 °] 2S multilayer unidirectional carbon fiber fabric, the above-mentioned pre-setting agent-carrying porous nonwoven fabric powder discharge flow medium chromium layer between the individual layers of unidirectional fiber plies, i.e., to obtain MESF required prefabricated reinforcing fabric.

[0041] 该预制织物的定型:将该预制织物贴靠在一个曲面模具上,用电加热滚轮反复碾压加热至预附载的ES-T321粉末定型剂软化后粘接相邻的各碳纤维层,即得到一个曲面定型的预制体。 [0041] The shape of the preformed fabric: the fabric preform bears against a mold surface, heating the electric heating roller repeatedly passed to each of the carbon fiber layer softened ES-T321 styling agent powder pre-attached adhesive adjacent carrier, i.e., obtain a curved shape of the preform.

[0042] 该曲面预制体的成型加工:将该预制体按照常规真空辅助成型的方法铬入模具,以市售苯并噁嗪为基体树脂,采用该苯并噁嗪的标准VaRTM工艺进行成型加工,并按照该树脂体系的标准工艺进行固化,即得到所需的曲面复合材料制件。 [0042] The molding surface of the preform: The preform according to a conventional method for vacuum assisted molding chromium into the mold, a commercially available benzoxazine matrix resin, benzoxazine using the standard technology for forming VaRTM and in accordance with standard procedures of the cured resin system, i.e., to obtain the desired surface composite article.

[0043] 实测该固体曲面复合材料制件的孔隙率接近零,说明该MESF多功能预制织物的曲面定型工艺和液态成型工艺性质良好。 [0043] Found composite solid surface article porosity close to zero, indicating a good surface of the fabric preform MESF multifunctional setting process and the nature of the liquid molding process. [0044] 实施例4 [0044] Example 4

[0045] 制备多孔附载介质:将市售常规聚醚酰亚胺(PEI)化纤织造成为疏松网格纱,其面密度8g/m2左右,空隙率65%左右;将市售常规共聚聚酰胺(尼龙)溶解,在该PEI网格布的上下表面采用静电纺丝工艺制备具有疏松多孔结构的尼龙无纺布,使其微粘在该PEI网格纱上,得到平均面密度12g/m2左右,空隙率60%的复合多层多孔附载介质。 [0045] Preparation of Loaded Porous Media: A commercially available conventional polyetherimide (PEI) fiber yarn woven to become loose mesh, a sheet density of about 8g / m2, a porosity of about 65%; conventional commercially available copolymer polyamide ( nylon) was dissolved, using upper and lower surfaces of the mesh PEI electrospinning process for preparing a nylon nonwoven fabric having loose and porous structure, so that the slightly sticky on PEI mesh yarn, to give an average surface density of about 12g / m2, 60% of the porosity of a composite multilayer porous media annexed.

[0046] 按照实施例1同样的方法制备MESF预制织物及其复合材料层合板,实测该固体复合材料层合板的孔隙率接近零,实测该复合材料的冲击后压缩强度260MPa,说明该MESF多功能预制织物的液态成型工艺性质和冲击损伤容限性质良好。 [0046] was prepared as in Example same one embodiment of MESF prefabricated fabrics and composite laminates, found that the solid porosity of the composite laminate material close to zero, found after the impact of the composite compressive strength of 260MPa, indicating that the MESF multifunction liquid fabric preform molding properties and good impact damage tolerance properties.

[0047] 实施例5 [0047] Example 5

[0048] 制备多孔附载介质:按照实施例3的方法指标聚芳醚酮(PAEK)无纺布,将羧基封端丁腈橡胶(CTBN)颗粒与AG80环氧树脂按5:100的重量比混合,低温冷冻粉碎制成定型剂颗粒,在横向往复撒粉机上通过振动筛将该定型剂颗粒均匀撒布,然后加热使其微熔而黏结在该PAEK无纺布上,即得到面密度为10g/m2左右,空隙率55%、预附载增韧-定型剂粉末的无纺布多孔流动介质。 [0048] Preparation of Loaded Porous Media: Following the method of Example 3 of Index polyaryletherketone (the PAEK) nonwoven fabric, a carboxy-terminated nitrile rubber (CTBN) AG80 particles with an epoxy resin 5: 100 weight ratio , cryogenic grinding is made of fixative particles, uniformly spreading the setting agent particles in the transverse direction by a reciprocating shaker dusting machine, and then heated to melt and bond the micro PAEK on the nonwoven fabric, i.e., to obtain the surface density of 10g / about M2, a porosity of 55%, pre-attached carrier toughened - a porous nonwoven fabric styling agent powder flow medium.

[0049] 在通用的NCF制备装铬上(幅宽约900mm)分别铺放结构为[+45° /O。 [0049] NCF prepared on a common means of chromium (width about 900mm) are laid structure [+ 45 ° / O. /90° /-45° ]2S 和[+45° /O。 / 90 ° / -45 °] 2S and [+ 45 ° / O. /90° /-45° ]3S 的多层单向碳纤维织物,将上述的预附载定型剂粉末的无纺布多孔流动介质放铬在各单层单向的纤维铺层的层间,因为[+45° /0° /90° /-45° ]3S预制体较厚,因此按照常规NCF方法在该预制织物厚度方向用玻璃纤维线稀密度缝纫,即得到所需要的MESF预制增强织物。 / 90 ° / -45 °] 3S multilayer unidirectional carbon fiber fabric, the above-mentioned pre-setting agent-carrying porous nonwoven fabric powder discharge flow medium chromium layer between the individual layers of unidirectional fiber plies, as [ + 45 ° / 0 ° / 90 ° / -45 °] 3S thicker preform, thus according to a conventional method NCF dilute density fiberglass thread sewing the fabric in the thickness direction of the preform, i.e., to obtain the desired preform MESF reinforcing fabric.

[0050] 该预制织物的定型:将该预制织物贴靠在一个平面模具上,加热至预附载的粉末定型剂软化后粘接相邻的碳纤维层,即得到一个平面定型的复合材料预制体。 [0050] The shape of the preformed fabric: the fabric preform rests on a flat mold, pre-heated to soften the powder-carrying styling agent adhered adjacent to the carbon fiber layer, i.e., to obtain a composite preform shape of plane.

[0051] 该片面预制体的成型加工:将该预制体按照常规真空辅助成型的方法组装入模具,以标准的3266环氧树脂的VaRTM工艺进行成型加工,并按照3266树脂的标准工艺进行固化,即得到该MESF织物增强的平面复合材料层合板。 [0051] The one-sided molding preform: The preform according to a conventional method of vacuum-assisted molding into a mold assembly, a standard epoxy resin 3266 VaRTM process for molding, and cured in accordance with standard process 3266 resin, the MESF obtain fabric reinforced composite planar laminates.

[0052] 实测该固体复合材料层合板的孔隙率接近零,说明该MESF多功能预制织物的液态成型工艺性质良好;实测该[+45° /0° /90° /-45° ]2S复合材料的开口拉伸强度500MPa,开口压缩强度310MPa,说明由于碳纤维铺层的非皱折单向取向性质导致复合材料层合板的基础性能很高;实测该复合材料([+45° /0° /90° /-45° ]3S)的冲击后压缩强度252MPa,说明该复合材料层合板的冲击损伤容限性质良好。 [0052] The solid composite Found Laminates porosity close to zero, indicating good liquid molding process MESF the multifunctional nature of the fabric preform; found the [+ 45 ° / 0 ° / 90 ° / -45 °] 2S Composites opening the tensile strength 500MPa, opening compressive strength 310MPa, described since properties of unidirectional carbon fiber plies of non-buckling of the base results in high performance composite laminates; Found the composite material ([+ 45 ° / 0 ° / 90 after ° / -45 °] 3S) impact compressive strength of 252MPa, the impact of the described composite laminate good damage tolerance properties.

Claims (3)

  1. 1.一种促进树脂流动的高性能预制增强织物的制备方法,其特征在于,制备的步骤如下: (1)高分子多孔介质的制备:a)将热塑性树脂或热固性树脂与热塑性树脂的混合物,按照溶液纺丝或熔融纺丝或电纺丝的方法进行纺丝,然后织造成为织物,孔隙率大于50%,面密度为4g/m2〜20g/m2,厚度为10 ym〜50 ym ;b)或将用上述a)制备的不同或相同的单层高分子多孔介质之间通过在100°C〜450°C下微热熔Imin〜30min,粘接成为孔隙率大于50%,面密度为4g/m2〜20g/m2,厚度为10 ym〜50 ym的多层高分子多孔介质;或缝细成密度为30针/m2〜500针/m2,孔隙率大于50%,面密度为4g/m2〜20g/m2,厚度为10 ym〜50 um的多层高分子多孔介质; (2)高分子多孔介质附着定型剂:将单层或多层高分子多孔介质浸泡在定型剂溶液里,并在高分子多孔介质表面附载低熔点的定型剂;或在单层或多层的高分子多孔介质的 A high-performance flow-accelerated resin production method for prefabricated reinforced fabric, wherein the step of preparation is as follows: Preparation of porous polymer media (1): a) The mixture of a thermoplastic resin or a thermosetting resin and a thermoplastic resin, follow spinning or melt spinning or electrospinning solution spinning method, then be a woven fabric, a porosity greater than 50%, an areal density of 4g / m2~20g / m2, a thickness of 10 ym~50 ym; b) or through different or the same between the single-layer medium prepared by the above a) a porous polymer at 100 ° C~450 ° C melt micro Imin~30min, the adhesive becomes a porosity greater than 50%, a surface density of 4g / m2~20g / m2, a thickness of 10 ym~50 ym multilayer porous polymer media; or slot tapers to a density of 30 needles / m2~500 pin / m2, a porosity greater than 50%, an areal density of 4g / m2 ~20g / m2, a thickness of the multilayer polymer 10 ym~50 um porous medium; (2) high molecular porous medium is attached styling agent: the high molecular monolayer or multilayer porous media immersed in the fixative solution, and molecular porous surface of the medium contained in the low melting point of attachment styling agent; or single- or multi-molecular porous medium 面热熔附载成短切纤维或颗粒形态的定型剂,热熔工艺条件是温度为100°C〜350°C,持续时间为Imin〜30min ;定型剂材料在高分子多孔介质上的面密度在4g/m2〜8g/m2之间; (3)预制增强织物的制备:将附着定型剂后的高分子多孔介质作为附载材料直接铺放在增强织物铺层层间,其平均面接触率大于40% ;然后按照非屈曲织物的制备方法进行制备,或在厚度方向进行缝纫,缝纫密度为30针/m2〜500针/m2,或通过热熔的方式把增强材料铺层间的高分子多孔介质微黏结各铺层,其工艺为在加热温度为100°C〜450°C下微热熔Imin〜30min,使得预制增强织物实现整体定型预制和铺层间的层-层连接。 Melt-carrying surface of chopped fibers or particles to form the styling agent, the hot melt process conditions include a temperature of 100 ° C~350 ° C, duration Imin~30min; surface density of the material on the polymer styling agent in a porous medium between 4g / m2~8g / m2; (3) preparation of prefabricated reinforced fabric: a polymer adhered to the porous medium as a styling agent directly carried material is laid between the reinforcing fabric layers laid, surface contact rate greater than the average 40 %; then the non-crimp fabric prepared according to the method of preparation, or in the thickness direction of sewing, the sewing needle density of 30 / m2~500 pin / m2, or by way of the reinforcing polymer melt porous medium between laminate each micro-laminate bond, which process is a heating temperature of the hot melt micro Imin~30min at 100 ° C~450 ° C, such that the reinforcing fabric preform to achieve the overall interlayer and overlay shaped preform - layer connection.
  2. 2.根据权利要求1所述的一种促进树脂流动的高性能预制增强织物的制备方法,其特征在于,所述的定型剂的材质是所用树脂基体成分,其熔点范围为40°C〜150°C。 2. A method according to claim 1 to promote high performance resin flow prefabricated reinforced fabric production method, wherein the setting agent is a material of a resin matrix composition used has a melting point in the range of 40 ° C~150 ° C.
  3. 3.根据权利要求1所述的一种促进树脂流动的高性能预制增强织物的制备方法,其特征在于,所述的高分子多孔介质为无纬布、网格纱或毡子。 3. A method according to claim 1 to promote high performance resin flow prefabricated reinforced fabric production method, wherein said medium is a non-porous polymeric sheeting, mesh gauze or felt.
CN 201010581859 2010-12-10 2010-12-10 Preparation method of high-performance prefabricated reinforced fabric for facilitating resin flow CN102166862B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010581859 CN102166862B (en) 2010-12-10 2010-12-10 Preparation method of high-performance prefabricated reinforced fabric for facilitating resin flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010581859 CN102166862B (en) 2010-12-10 2010-12-10 Preparation method of high-performance prefabricated reinforced fabric for facilitating resin flow

Publications (2)

Publication Number Publication Date
CN102166862A true CN102166862A (en) 2011-08-31
CN102166862B true CN102166862B (en) 2013-09-04

Family

ID=44488273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010581859 CN102166862B (en) 2010-12-10 2010-12-10 Preparation method of high-performance prefabricated reinforced fabric for facilitating resin flow

Country Status (1)

Country Link
CN (1) CN102166862B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644199B (en) * 2011-11-25 2014-07-02 中国航空工业集团公司北京航空材料研究院 Preparation method of fiber fabric with shaping and toughening double functions
CN102924741B (en) * 2012-10-24 2014-02-26 中国航空工业集团公司北京航空材料研究院 Method for enhancing surface abrasion resistance of liquid molding composite material
GB201323007D0 (en) * 2013-12-24 2014-02-12 Hexcel Composites Ltd Improvements in or relating to laminates
CN104018344B (en) * 2014-06-06 2016-03-30 中航复合材料有限责任公司 A liquid molding process styling - retardant fabric and preparation method
CN104058777B (en) * 2014-07-09 2015-09-09 四川创越炭材料有限公司 One kind of carbon fiber felt rigid insulation semi-continuous production method
CN104943200A (en) * 2015-07-02 2015-09-30 东华大学 Liquid molding method of resin-based composite material of interlayer thermoplasticity flow guide net

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049388A (en) 1989-07-18 1991-02-20 三井石油化学工业株式会社 Nonwoven fabric and method of manufacturing same
CN1205368A (en) 1992-10-09 1999-01-20 金伯利-克拉克环球有限公司 Nonwoven webs having improved tensile strength charcteristics and method for preparing the same
CN1923506A (en) 2006-07-19 2007-03-07 中国航空工业第一集团公司北京航空材料研究院 Toughening composite material lamination board and method for making same
CN1950199A (en) 2004-03-26 2007-04-18 阿兹代尔公司 Fiber reinforced thermoplastic sheets with surface coverings
CN101065526A (en) 2004-11-08 2007-10-31 阿兹代尔公司 Composite thermoplastic sheets including natural fibers
CN101220561A (en) 2008-01-04 2008-07-16 中国航空工业第一集团公司北京航空材料研究院 Prefabricated fabric for liquid condition shaping composite material and preparation thereof
JP2009143159A (en) 2007-12-14 2009-07-02 Nippon Zeon Co Ltd Fiber-reinforced composite material and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1049388A (en) 1989-07-18 1991-02-20 三井石油化学工业株式会社 Nonwoven fabric and method of manufacturing same
CN1205368A (en) 1992-10-09 1999-01-20 金伯利-克拉克环球有限公司 Nonwoven webs having improved tensile strength charcteristics and method for preparing the same
CN1950199A (en) 2004-03-26 2007-04-18 阿兹代尔公司 Fiber reinforced thermoplastic sheets with surface coverings
CN101065526A (en) 2004-11-08 2007-10-31 阿兹代尔公司 Composite thermoplastic sheets including natural fibers
CN1923506A (en) 2006-07-19 2007-03-07 中国航空工业第一集团公司北京航空材料研究院 Toughening composite material lamination board and method for making same
JP2009143159A (en) 2007-12-14 2009-07-02 Nippon Zeon Co Ltd Fiber-reinforced composite material and its manufacturing method
CN101220561A (en) 2008-01-04 2008-07-16 中国航空工业第一集团公司北京航空材料研究院 Prefabricated fabric for liquid condition shaping composite material and preparation thereof

Also Published As

Publication number Publication date Type
CN102166862A (en) 2011-08-31 application

Similar Documents

Publication Publication Date Title
US7029267B2 (en) Reusable vacuum bag and methods of its use
US6096669A (en) Unidirectional fiber-random mat preform
US20060121805A1 (en) Non-woven, uni-directional multi-axial reinforcement fabric and composite article
US20080277053A1 (en) Method for producing fibre reinforced laminated structures
WO2000027632A1 (en) Moulding materials
US20070149080A1 (en) Preform, frp, and processes for producing these
US20080286564A1 (en) Nanotube-enhanced interlayers for composite structures
EP1419875A1 (en) Reinforcing fiber substrate, composite material obtained therefrom and methods of producing the same
US20090309260A1 (en) Method of delivering a thermoplastic and/or crosslinking resin to a composite laminate structure
JP2003082117A (en) Carbon fiber reinforcement, and preform and composite material prepared therefrom
WO1998034979A1 (en) Fiber material partially impregnated with a resin
US20050255766A1 (en) Prepregs for use in building lay-ups of composite materials and processes for their preparation
US20030219578A1 (en) Sheet moulding compound (SMC) with ventilating structure for entrapped gases
JP2003080607A (en) Preform, frp comprising the same and method for manufacturing them
US20100080952A1 (en) Preform for molding fiber-reinforced resin beam, process for producing the same, apparatus for producing the same, and process for producing fiber-reinforced resin beam
US20100215887A1 (en) Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
CN101134368A (en) Thermoplasticity composite sheet material winded with composite fiber and technique of preparing the same
JP2004160927A (en) Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2003019763A (en) Preform, molding method, carbon fiber-reinforced plastic and aircraft structural member
JP2003136550A (en) Method for manufacturing carbon fiber base material, method for manufacturing preform, and method for manufacturing composite material
CN101007443A (en) Preparation method of nanofiber toughening carbon fiber reinforced composite
JP2008149708A (en) Thermoplastic resin multilayer reinforced sheet material, its manufacturing method, and thermoplastic resin multilayer reinforced molded article
CN103182784A (en) Vacuum infusion forming method for carbon fiber composite structure member
US7261930B2 (en) Moulding materials
JP2003011136A (en) Method for manufacturing large-sized planar object made of frp

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted