CN102148266A - Multi-junction solar cell - Google Patents

Multi-junction solar cell Download PDF

Info

Publication number
CN102148266A
CN102148266A CN2010101170143A CN201010117014A CN102148266A CN 102148266 A CN102148266 A CN 102148266A CN 2010101170143 A CN2010101170143 A CN 2010101170143A CN 201010117014 A CN201010117014 A CN 201010117014A CN 102148266 A CN102148266 A CN 102148266A
Authority
CN
China
Prior art keywords
layer
structure
solar cell
junction
photovoltaic junction
Prior art date
Application number
CN2010101170143A
Other languages
Chinese (zh)
Inventor
陈泽澎
Original Assignee
晶元光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光电股份有限公司 filed Critical 晶元光电股份有限公司
Priority to CN2010101170143A priority Critical patent/CN102148266A/en
Priority claimed from US12/981,780 external-priority patent/US9559229B2/en
Publication of CN102148266A publication Critical patent/CN102148266A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

The invention provides a multi-junction solar cell and a manufacturing method thereof. The manufacturing method comprises the following step of: forming a first photovoltaic junction structure and a second photovoltaic junction structure in sequence, wherein at least one of the first photovoltaic junction structure and the second photovoltaic junction structure comprises a discontinuous photoelectric conversion structure.

Description

多接面太阳能电池 Multi-junction solar cells

技术领域 FIELD

[0001] 本发明关于一多接面太阳能电池结构及其制造方法。 [0001] The solar cell structure and method of the present invention relates to a multi-junction. 背景技术 Background technique

[0002] 因应原油资源有限,各式替代能源已被广泛研究及产品化,其中太阳能电池不管在工业及民生用途,均已达商业生产的程度,III-V族多接面层太阳能电池(multi-junction solar cell)因其具有高转换效率主要应用于太空或工业电力用途,其晶片结构例如包括晶格互相匹配的锗/砷化镓/磷化镓铟(Ge/GaAs/fe^nP)系列的三接面堆叠结构,其最上层以具有较大能隙的(iaxInl-XP(1.85eV ;χ〜0. 5)为上部电池(Top cell),能吸收具有较高能量的光子,即紫外光至可见光范围的波长;GaAs的能隙1. 4&V, 为中间电池(Middlecell),吸收近红外光范围的波长;锗具有较低的能隙0. 74eV,为底部电池(Bottom cell),吸收通过前二叠层电池的红外光范围的波长。由于可吸收的太阳辐射光谱范围较广,转换效率约30 %以上。 [0002] In response to the limited resources of crude oil, all kinds of alternative energy sources have been widely studied and commercialization, no matter where in the solar cell industry and people's livelihood purposes, are reached commercial production degree, III-V family of multi-junction solar cell layer (multi -junction solar cell) having a high conversion efficiency because the space is mainly used in industrial or electric power use, which comprises a wafer structure, for example, germanium / gallium arsenide / gallium indium phosphide lattice-matched with each other (Ge / GaAs / fe ^ nP) series the triple junction stacked structure, in which the uppermost layer having a larger energy gap (iaxInl-XP (1.85eV;. χ~0 5) of the upper cell (Top cell), can absorb photons with higher energy, i.e., ultraviolet to the wavelength range of visible light; the energy gap of the GaAs 1. 4 & V, the intermediate cell (Middlecell), near-infrared light absorption wavelength range; germanium has a lower energy gap 0. 74eV, of the bottom cell (bottom cell), absorption Since the absorption of the solar radiation spectrum can be broader, the conversion efficiency of about 30% over the wavelength range of infrared light of the first two laminate battery.

发明内容 SUMMARY

[0003] 本发明提出一新颖的多接面太阳能电池(multi-junction solar cell)结构及其制造方法,具有高效率并可改善元件的散热特性。 [0003] The present invention provides a novel multi-junction solar cell (multi-junction solar cell) structure and its manufacturing method having high heat dissipation characteristics can be improved element efficiency.

[0004] 本发明一方面提出一多接面太阳能电池的制造方法,包括提供一生长基板、生长一缓冲层在所述的生长基板之上、生长一接触层在所述的缓冲层上、生长一第一光伏接面结构在所述的接触层之上、生长一第一隧穿接面结构在所述的第一光伏接面结构之上、生长一第二光伏接面结构在所述的第一隧穿接面结构之上、形成一光子回收层在所述的第二光伏接面结构之上、提供一支撑体,并形成一接合层在所述的支撑体之上、利用所述的接合层接合所述的光子回收层及支撑体、移除所述的生长基板,使裸露出所述的接触层、去除部分所述的接触层使裸露一部分所述的第一光伏接面结构、形成一第一电极在所述的接触层上以及形成一第二电极电性连接所述的支撑体、以及形成一抗反射层在所述的第一光伏接面结构的至少裸露的表面上;其中,至少第一光 [0004] In one aspect the present invention provides a method for producing a multi-junction solar cell, comprising providing a growth substrate, growing a buffer layer over the growth substrate, growing a contact layer on said buffer layer, growing a first photovoltaic junction structure on top of said contact layer, and growing a first tunnel junction structure on top of said first photovoltaic junction structure, a second photovoltaic junction structure growth in the through a first tunnel junction structure on top, forming a second photovoltaic junction over the one-photon structure in the recovered layer, there is provided a support member, and is formed on a support layer in the joining means of said the bonding layer and the support layer, the photonic recovery, the growth substrate is removed so that the bare contact layer, removing a portion of the contact layer of the first photovoltaic junction structure of the exposed portion of forming a first electrode on the contact layer and forming a second support member connected to said electrodes, and forming at least a reflection layer on exposed surfaces of the first photovoltaic junction structure ; wherein the at least first light 伏接面结构及第二光伏接面结构的至少其中之一包括一不连续光电转换结构。 Wherein at least one surface structure and the underlying structure of the second photovoltaic junction comprises a photoelectric conversion discontinuous structure. 在本发明的一实施例中,所述的不连续光电转换结构位于一图形化结构层所定义的多个空腔内。 In an embodiment of the present invention, the discontinuous structure of the photoelectric conversion cavity is located a plurality of patterned layers defined by the structure. 在本发明的另一实施例中,所述的不连续光电转换结构为一量子点层包括多个量子点。 In another embodiment of the present invention, the discontinuous structure of the photoelectric conversion layer is a quantum dot comprises a plurality of quantum dots.

[0005] 本发明另一方面提出一多接面太阳能电池结构,包括一支撑体、一接合层位于所述的支撑体的一表面上、一第一电极位于所述的支撑体的另一表面上、一光子回收层位于所述的接合层之上、一具有第一能隙的第一光伏接面结构位于所述的光子回收层的另一部分表面上、一第一隧穿接面结构位于所述的第一光伏接面结构之上、一具有第二能隙的第二光伏接面结构位于所述的第一隧穿接面结构之上、一接触层位于所述的第二光伏接面结构的一部分表面上,并与所述的第二光伏接面结构形成欧姆接触、一第二电极位于所述的接触层之上、以及一抗反射层位于所述的第二光伏接面结构的至少另一部分表面之上;其中,至少第一光伏接面结构及第二光伏接面结构的至少其中之一包括一不连续光电转换结构。 [0005] In another aspect of the present invention proposed a multi-junction solar cell structure, comprising a further support surface, located on a surface of a support body bonding layer, a first electrode located on said support member on top of a bonding layer of the photonic layer is recovered, a first photovoltaic junction structure having a first energy gap in said another portion of the surface of the photonic recovered layer, a first tunnel junction structure is located tunneling junction over the first photovoltaic junction structure of a second structure over the first photovoltaic junction structure, having a second energy bandgap is located, and a contact layer of said second photovoltaic positioned contact portion of the surface structure of the surface, and forms an ohmic contact with said second photovoltaic junction structure, a second electrode located on said contact layer, and a second photovoltaic junction structure is an anti-reflective layer on the at least another portion of the surface of the above; wherein at least at least one of the first photovoltaic junction and a second photovoltaic junction structure comprises a discontinuous structure photoelectric conversion structure. 在本发明的一实施例中,所述的不连续光电转换结构位于一图形化结构层所定义的多个空腔内。 In an embodiment of the present invention, the discontinuous structure of the photoelectric conversion cavity is located a plurality of patterned layers defined by the structure. 在本发明的另一实施例中,所述的不连续光电转换结构为一量子点层包括多个 Discontinuous photoelectric conversion structure In another embodiment of the present invention, according to a quantum dot layer comprising a plurality of

量子点。 Quantum dots.

附图说明 BRIEF DESCRIPTION

[0006] 图1〜图3显示根据本发明的多接面太阳能电池的第一实施例的制造方法及其结构; [0006] FIG. 1 ~ 3 shows a manufacturing method and structure according to a first embodiment of a multi-junction solar cell of the present invention;

[0007] 图4显示根据本发明的第一实施例的图形化结构层; [0007] FIG. 4 shows a patterned layer of the first embodiment of the structure of the present invention;

[0008] 图5〜图7显示根据本发明的多接面太阳能电池的第二实施例的制造方法及其结构; [0008] FIG -5 to FIG. 7 shows a manufacturing method and structure according to a second embodiment of the multi-junction solar cell of the present invention;

[0009] 图8显示根据本发明的的第二实施例的量子点层的能隙示意图; [0009] FIG. 8 shows a schematic view of a quantum dot layer of the second embodiment of the present invention, the energy gap;

[0010] 图9显示根据本发明的多接面太阳能电池结构的第三实施例。 [0010] FIG. 9 shows a third embodiment of a multi-junction solar cell structure according to the invention.

[0011] 主要元件符号说明 [0011] Main reference numerals DESCRIPTION

[0012] 1、2、3 :多接面太阳能电池; [0012] 2,3: multi-junction solar cell;

[0013] 10:生长基板; [0013] 10: a growth substrate;

[0014] 11 :缓冲层; [0014] 11: buffer layer;

[0015] 12:接触层; [0015] 12: contact layer;

[0016] 21 :第一光伏接面结构; [0016] 21: a first photovoltaic junction structure;

[0017] 211:第一射极层; [0017] 211: a first emitter layer;

[0018] 212:第一基极层; [0018] 212: The first base layer;

[0019] 22:第一隧穿接面结构; [0019] 22: the first tunneling junction structure;

[0020] 221 :第一隧穿层; [0020] 221: a first tunneling layer;

[0021] 222:第二隧穿层; [0021] 222: second tunneling layer;

[0022] 31 :第二光伏接面结构; [0022] 31: second photovoltaic junction structure;

[0023] 311 :第二射极层; [0023] 311: second emitter layer;

[0024] 312 :第二基极层; [0024] 312: second base layer;

[0025] 32 :第二隧穿接面结构; [0025] 32: the second tunneling junction structure;

[0026] 321 :第三隧穿层; [0026] 321: The third tunneling layer;

[0027] 322:第四隧穿层; [0027] 322: The fourth tunneling layer;

[0028] 40:图形化结构层; [0028] 40: patterning the structural layer;

[0029] 41,90 :第三光伏接面结构; [0029] 41,90: a third photovoltaic junction structure;

[0030] 411,91 :第三射极层; [0030] 411,91: a third emitter layer;

[0031] 412、93 :第三基极层; [0031] 412,93: third base layer;

[0032] 51 :光子回收层; [0032] 51: photon recycling layer;

[0033] 60 :支撑体; [0033] 60: support;

[0034] 61 :接合层; [0034] 61: bonding layer;

[0035] 71:第一电极; [0035] 71: a first electrode;

[0036] 72:第二电极;[0037] 81 :抗反射层; [0036] 72: second electrode; [0037] 81: anti-reflection layer;

[0038] 92 :量子点区; [0038] 92: a quantum dot region;

[0039] 921 :覆盖层; [0039] 921: cover layer;

[0040] 922 :量子阱层; [0040] 922: the quantum well layer;

[0041] 923:量子点层。 [0041] 923: quantum dot layer.

具体实施方式 Detailed ways

[0042] 图1〜图3公开本发明多接面太阳能电池的第一实施例的制造方法及其结构,其制造方法的详细步骤公开如下: [0042] FIG. 1 ~ 3 manufacturing method and structure of the first embodiment of the present invention is disclosed a multi-junction solar cell, the detailed steps of the method for manufacturing disclosed as follows:

[0043] 步骤一:如图1所示,首先提供一生长基板10,其材质包括锗(Ge)、硅锗合金(SiGe)、或砷化镓(GaAs),以及生长一缓冲层11于生长基板10之上,其中缓冲层11为与生长基板10相异的材质且具有与生长基板相匹配的晶格常数,例如为砷化镓(GaAs)或磷化铟镓(InGaP); [0043] Step a: 1, a growth substrate 10 is first provided, which material comprises germanium (Ge), a silicon germanium alloy (SiGe), gallium arsenide (GaAs), and growing a buffer layer 11 grown on 10 on the substrate, wherein the buffer layer 11 with the material of the growth substrate 10 and having a different lattice constant matched to the growth substrate, such as gallium arsenide (GaAs) or indium gallium phosphide (InGaP);

[0044] 步骤二:形成一接触层12在缓冲层11上,接触层12包括半导体材料,例如为砷化镓,并且具有一高杂质浓度,例如为大于l*1018cm-3的杂质浓度; [0044] Step two: forming a contact layer 12 on the buffer layer 11, contact layer 12 includes a semiconductor material such as gallium arsenide, and having a high impurity concentration, for example, an impurity concentration greater than l * 1018cm-3; and

[0045] 步骤三:生长一第一光伏接面结构21在接触层12之上,其中,第一光伏接面结构21及接触层12之间形成一低电阻的欧姆接触;其中第一光伏接面结构21具有一第一能隙,包括一第一射极层(emitter layer) 211具有第一电性型态,例如为η型、以及一第一基极层(base layer)212具有相异于第一电性的第二电性型态,例如为ρ型,其中第一射极层211及第一基极层212具有与生长基板10相匹配的晶格常数,其材质例如包括磷化铝铟镓(AlaInbGa(1-ab)P ;0 a,b 1); [0045] Step Three: 21 grown on the contact layer 12, in which a low resistance is formed between the first photovoltaic junction structure 21 and contact layer 12 a first photovoltaic junction structure of an ohmic contact; wherein the first photovoltaic contact surface structure 21 having a first bandgap, comprising a first emitter layer (emitter layer) 211 having a first electrical type, η-type, for example, and a first base layer (base layer) 212 having a different a second electrically to the first electrical type, for example, ρ type, wherein the first emitter layer 211 and the first base layer 212 having a lattice constant matched to the growth substrate 10, the material comprising a phosphate e.g. aluminum indium gallium (AlaInbGa (1-ab) P; 0 a, b 1);

[0046] 步骤四:生长一第一隧穿接面结构22在第一光伏接面结构21之上,包括第一隧穿层221具有第一电性型态,例如为ρ型,及一高于IXlO18cnT3的杂质浓度、以及一第二隧穿层222具有第二电性型态相异于第一电性型态,例如为η型,及一高于1 X 1018CnT3的杂质浓度,其中第一隧穿层221及第二隧穿层222具有高杂质浓度及低厚度,例如为小于500埃, 以形成一高导电接面结构; [0046] Step Four: growing a first tunnel junction structure 22 in the structure 21 over the first photovoltaic junction, comprising a first tunneling layer 221 having a first electrical type, for example, ρ type, and a high IXlO18cnT3 in impurity concentration, and a second tunneling layer 222 having a second conductivity type different from the first electrical type, for example, η-type, and an impurity concentration higher than 1 X 1018CnT3, wherein the first tunneling layer 221 and the second tunneling layer 222 having a high impurity concentration and low thickness, for example less than 500 Å, to form a highly conductive junction structure;

[0047] 步骤五:生长一第二光伏接面结构31在第一隧穿接面结构22之上,其中第二光伏接面结构31具有一第二能隙小于所述的第一能隙,包括一第二射极层(emitter layer)311具有第一电性型态,例如为η型、以及一第二基极层(base layer) 312具有相异于第一电性的第二电性型态,例如为P型,其中第二射极层311及第二基极层312具有与生长基板10相匹配的晶格常数,其材质例如包括砷化镓O^aAs); [0047] Step Five: growing a second photovoltaic junction structure 31 in the structure above the first tunneling junction 22, wherein the second photovoltaic junction structure 31 having a second gap is less than said first energy gap, It comprises a second emitter layer (emitter layer) 311 having a first electrical type, η-type, for example, and a second base layer (base layer) 312 having a second conductivity different from the first electrical resistance type, for example P-type, wherein the second emitter layer 311 and 312 has a lattice constant matched to the growth of the base layer of the second substrate 10, for example, a material which comprises gallium arsenide O ^ aAs);

[0048] 步骤六:生长一第二隧穿接面结构32于第二光伏接面结构31之上,包括第三隧穿层321具有第一电性型态,例如为ρ型,及一高于IXlO18cnT3的杂质浓度、以及一第四隧穿层322具有第二电性型态相异于第一电性型态,例如为η型,及一高于1 X 1018CnT3的杂质浓度,其中第三隧穿层321及第四隧穿层322具有高杂质浓度及低厚度,例如为小于500埃, 以形成一高导电接面结构; [0048] Step Six: growing a second tunneling junction structure 32 in a second photovoltaic junction over the structure 31, comprising a third tunneling layer 321 having a first electrical type, for example, ρ type, and a high IXlO18cnT3 in impurity concentration, and a fourth tunneling layer 322 having a second electrical type different from the first electrical type, for example, η-type, and an impurity concentration higher than 1 X 1018CnT3, wherein the third tunneling layer 321 and the fourth tunneling layer 322 having a high impurity concentration and low thickness, for example less than 500 Å, to form a highly conductive junction structure;

[0049] 步骤七:形成一图形化结构层40在第二隧穿接面结构32之上,图形化结构层40 具有一图案界定出多个空腔,并且裸露出对应空腔区域内的第二隧穿接面结构32的部分表面;[0050] 步骤八:生长一第三光伏接面结构41在所述的多个空腔内,并且被图形化结构层40界定出多个不连续光伏接面区块,第三光伏接面结构41具有一第三能隙小在所述的第二能隙,包括一第三射极层(emitter layer)411具有第一电性型态,例如为η型、以及一第三基极层(base layer)412具有相异于第一电性的第二电性型态,例如为ρ型;其中,第三射极层411及第三基极层412具有与生长基板10不匹配的晶格常数,例如晶格常数差异大于以上,其材质例如包括砷化铟镓GncGa(IC)As ;0 c 1)或砷磷化铟镓(Inpfei (l_p) AsqP (1-q) ;0 ρ, q 1); [0049] Step 7: forming a patterned layer 40 over the structure of the second tunneling junction structure 32, patterning structure layer 40 having a pattern defining a plurality of cavities, and corresponding to the exposed region of the cavity two tunneling junction portion of the surface of the structure 32; [0050] step eight: growing a third plurality of photovoltaic junction structure 41 in the cavity and is patterned structural layer 40 defines a plurality of discrete photovoltaic junction block, a third photovoltaic junction structure 41 having a smaller energy gap of the second third of the energy gap, comprising a third emitter layer (emitter layer) 411 having a first electrical type, for example, η-type, and a third base layer (base layer) 412 having a second conductivity type different from the first electrical properties, for example, ρ type; wherein the third emitter layer 411 and the third base layer 412 having a lattice constant mismatch growth substrate 10, for example, the above difference in lattice constant is greater than, for example, a material which comprises gallium indium arsenide GncGa (IC) As; 0 c 1) or indium gallium arsenide phosphide (Inpfei (l_p) AsqP (1-q); 0 ρ, q 1);

[0051] 步骤九:形成一光子回收层51在第三光伏接面结构41及图形化结构40之上, 光子回收层51的材质包括对特定光波长范围的光线具有大于70%的高反射率,优选为对第三光伏接面结构41的吸收波长范围的光线具有大于70%的反射率,例如为符合上述条件的金属材质,或符合上述条件的导电分散式布拉格反射层(Distributed Bragg Reflector ;DBR)结构; [0051] Step 9: forming a photonic layer 51 is recovered over the third photovoltaic junction structure 41 and patterned structures 40, photon recycling layer 51 comprises a material having a high reflectance greater than 70% for light of a specific wavelength range , preferably having a reflectance greater than 70% for the third photovoltaic junction structured light absorption wavelength range 41, for example, a metal material meets the above conditions, meets the above conditions or conductive distributed Bragg reflector layer (Distributed Bragg reflector; DBR) structure;

[0052] 步骤十:如图2所示,提供一支撑体60,并形成一接合层61在支撑体60之上,其中接合层61的材质例为金属、金属合金、或导电高分子材料,并利用接合层61接合光子回收层51及支撑体60 ;接合的方式,例如为胶合接合(glue bonding)、焊接接合(solder bonding)、或共金接合(eutectic bonding)等方式; [0052] Step 10: As shown in FIG. 2, there is provided a support member 60, and forming a bonding layer 61 on a support 60, wherein the material layer 61 is bonded embodiment is a metal, a metal alloy, or a conductive polymer material, bonded by the bonding layer 61 and the photon recycling layer 51 and the support member 60; bonded manner, for example glued bond (glue bonding), solder joint (solder bonding), or co-gold bonding (eutectic bonding), etc.;

[0053] 步骤十一:移除生长基板10及缓冲层11,使裸露出接触层12,其中移除的方法可用直接研磨去除生长基板10及缓冲层11,或以蚀刻液蚀刻去除缓冲层11造成生长基板10 脱落去除,亦可以激光照射缓冲层11,使缓冲层11分解熔融,造成生长基板10脱落去除; [0053] Step 11: removing the growth substrate 10 and the buffer layer 11, so that the exposed contact layer 12, which may be used directly polishing method for removing the growth substrate 10 is removed and the buffer layer 11, etching solution or buffer layer 11 is removed causing the growth substrate 10 is removed off, the laser irradiation may also buffer layer 11, the buffer layer 11 is an exploded melted, resulting in the growth substrate 10 is removed off;

[0054] 步骤十二:如图3所示,去除部分的接触层12使裸露一部分的第一光伏接面结构21,形成一第一电极71在接触层12上,以及形成一第二电极72电性连接支撑体60 ;第一电极71及第二电极72为一单层或多层叠层的金属或金属合金层; [0054] Step 12: 3, the portion of the contact layer 12 is removed so that the exposed portion of the first photovoltaic junction structure 21, a first electrode 71 is formed on the contact layer 12, and forming a second electrode 72 is electrically connected to a support member 60; the first electrode 71 and the second electrode 72 is a single layer or a multilayer stack of metal or metal alloy layer;

[0055] 步骤十三:形成一抗反射层81在第一光伏接面结构21的至少裸露部分的表面上, 以完成本发明第一实施例的多接面太阳能电池1。 [0055] Step Thirteen: an anti-reflection layer 81 is formed on the surface of at least the exposed portion of the first photovoltaic junction structure 21, to complete the multi-junction solar cell of the first embodiment of the present invention 1.

[0056] 如图3所示,多接面太阳能电池1包括支撑体60、接合层61位于支撑体60的一表面上、第二电极72位于支撑体60的另一表面上、光子回收层51位于接合层61之上、图形化结构层41位于光子回收层51的一部分表面上,并定义出多个空腔、具有第三能隙的第三光伏接面结构41位于光子回收层51的另一部分表面上及多个空腔内,包括第三基极层412 及第三射极层411、第二隧穿接面结构32位于第三光伏接面结构41及图形化结构层40之上,包括第四隧穿层322及第三隧穿层321、具有第二能隙的第二光伏接面结构31位于第二隧穿接面结构32之上,包括第二基极层312及第二射极层311、第一隧穿接面结构22位于第二光伏接面结构31之上,包括第二隧穿层222及第一隧穿层221、具有第一能隙的第一光伏接面结构21位于第一隧穿接面结构22之上,包括第一基极层212及第一射极层211、接触 [0056] As shown in FIG. 3, multi-junction solar cell 1 includes a support body 60, the supporting member 60 engaging a surface of the layer 61, a second electrode 72 positioned on the other surface of the support body 60, a photonic layer 51 is recovered located above the bonding layer 61, patterned layer 41 is located on the surface structure of a portion of the photon recycling layer 51, and defines a plurality of cavities, a third photovoltaic junction structure having an energy gap 41 is located at the third photon recycling another layer 51 and a portion of the surface over a plurality of cavities, comprising a third base layer 412 and a third emitter layer 411, a second tunneling junction photovoltaic junction structure 32 in the third pattern structure 41 and the layer structure 40, a second photovoltaic junction tunneling structure layer 322 includes a fourth and a third tunneling layer 321, having a second band gap 31 positioned above the second tunneling junction structure 32, including a second base layer 312 and the second emitter layer 311, a first tunneling junction structure 22 in the second photovoltaic junction over the structure 31, including a second tunneling layer 222 and the first tunneling layer 221, a first photovoltaic junction having a first bandgap structure 21 is located above the first tunneling junction structure 22, comprising a first base layer 212 and the first emitter layer 211, the contact 12位于第一光伏接面结构21的一部分表面上,并与第一光伏接面结构21形成欧姆接触、第一电极71位在接触层12之上、以及抗反射层81位于第一光伏接面结构21的至少另一部分表面之上。 12 located on the surface of the first photovoltaic junction structure part 21, and forms an ohmic contact with the first photovoltaic junction structure 21, the first electrode 71 on the contact layer 12, and the anti-reflection layer 81 located between the first photovoltaic junction at least another part of the surface of the structure 21 above.

[0057] 太阳光自抗反射层81进入多接面太阳能电池1,并依序由具有第一能隙的第一光伏接面结构21吸收较短波长范围的光线,并转换产生第一电流值;具有小于第一能隙的第二能隙的第二光伏接面结构31吸收中间波长范围的光线,并转换产生第二电流值;具有小于第二能隙的第三能隙的第三光伏接面结构41吸收较长波长范围的光线,并转换产生第三电流值;剩余未被吸收的光线可借由光子回收层51将剩余的光线再反射回第三光伏接面结构41再吸收,以补偿第三光伏接面结构41因图形化结构层40占据部分的表面面积而造成的可转换区域的损失。 [0057] Since the sunlight anti-reflection layer 81 to enter the multi-junction solar cell 1, and sequentially absorbed by the first photovoltaic junction structure having a first bandgap wavelength range shorter light 21, and converts the current value to generate a first a third photovoltaic having a third gap is less than a second energy bandgap;; a second photovoltaic junction structure having a first energy gap smaller than an energy gap of the second 31 intermediate light absorption wavelength range and generate a second conversion current value surface structure 41 absorbs light of a longer wavelength range, and generating a third current value conversion; the remaining light is not absorbed can be recovered by means of photonic layer 51 and the remaining light is then reflected back to the third reabsorption photovoltaic junction structure 41, 41 to 40 due to the patterned layer structure occupies a portion of the surface area caused by regional compensation convertible third photovoltaic junction structure loss. 图形化结构层40的图案包括如图4所示的平行条纹如或交错条纹4b,所形成的条纹密度约占多接面太阳能电池1的面积的1〜10%,使得第三光伏接面结构41转换产生的第三电流值接近或大于第一光伏接面结构21转换产生的第一电流值或第二光伏接面结构31转换产生的第二电流值的二者之一。 Patterning patterned structural layer 40 comprises of parallel stripes as shown in FIG. 4 or interlaced stripes 4b, fringe density of about 1~10% of the formed area of ​​multi-junction solar cell 1, so that the third photovoltaic junction structure third current value converter 41 generated near or greater than the second current value of the first photovoltaic junction structure 21 converts a current value generated by the first or the second photovoltaic junction structure 31 resulting from the conversion of either. 所述的平行条纹或交错条纹的宽度约介于0. 5 μ m〜5 μ m之间,高度约介于0. 5 μ m〜5 μ m,取决于形成的第三光伏接面结构41的厚度;所述的平行条纹或交错条纹的高度与宽度的比值约介于0. 1〜10之间, 优选为介于0. 5〜5之间。 Or staggered parallel stripes of the stripe width is between about 0. 5 μ m~5 μ m, a height ranging from about 0. 5 μ m~5 μ m, depending on the structure forming the third photovoltaic junction 41 thickness; the interleaving of parallel stripes or stripes of height to width ratio of between about 0.5 1~10, preferably 5~5 interposed between 0.. 图形化结构层40的材质优选为绝缘性良好的非晶材质,例如为氧化物或氮化物材质。 Material patterned structural layer 40 is preferably amorphous good insulation material such as an oxide or nitride material. 另外,由于第三光伏接面结构41与基板10为晶格不匹配,在外延生长时,容易形成线错位(threaddislocation)并向上延伸,而影响外延品质,进而影响多接面太阳能电池的转换效率;晶格不匹配的结果亦会造成应力累积而容易有晶圆弯曲过度而破损的情形。 Further, since the third photovoltaic junction structure 41 and the substrate 10 is a lattice mismatch, the epitaxial growth, the dislocation line is easily formed (threaddislocation) and extend upwards, to affect the quality of epitaxial, thereby affecting the conversion efficiency multi-junction solar cell ; results lattice mismatch will cause stress accumulation of circumstances likely to have excessive wafer bending and breakage. 本发明的图形化结构层40可以有效阻止线错位(thread dislocation)继续向上延伸,并且借由将第三光伏接面结构41置于图形化结构层40所形成的多个空腔内,可将晶格不匹配所形成的应力释放,消除晶圆翘曲破片的情形。 Patterning the structural layer 40 of the present invention can effectively prevent the dislocation line (thread dislocation) to continue extending upwardly, and disposed by means of a third photovoltaic junction structure over 41 cavity layer 40 is patterned structures formed may be lattice mismatch stress relief is formed, eliminating the case where wafer warpage fragments.

[0058] 图5〜图6公开本发明多接面太阳能电池的第二实施例的制造方法及其结构,其制造方法的详细步骤公开如下: [0058] FIG -5 to manufacturing method and structure of the second embodiment of the disclosed embodiment of the present invention is a multi-junction solar cell of FIG. 6, the detailed steps of the method for manufacturing disclosed as follows:

[0059] 步骤一:如图5所示,首先提供一生长基板10,其材质包括锗(Ge)、硅锗合金(SiGe)、或砷化镓(GaAs),以及生长一缓冲层11在生长基板10之上,其中缓冲层11具有与生长基板10相匹配的晶格常数及与生长基板10相异的材质,例如为砷化镓(GaAs)或磷化铟镓(InGaP); [0059] Step a: 5, a growth substrate 10 is first provided, which material comprises germanium (Ge), a silicon germanium alloy (SiGe), gallium arsenide (GaAs), and growing a buffer layer 11 grown 10 on the substrate, wherein the buffer layer 11 and the growth substrate 10 a material having a lattice constant matched to the growth substrate 10 and distinct, for example, gallium arsenide (GaAs) or indium gallium phosphide (InGaP);

[0060] 步骤二:形成一接触层12在缓冲层11上,接触层12包括半导体材料,例如为砷化镓,并且具有一高杂质浓度,例如为大于IXlO18cnT3的杂质浓度; [0060] Step two: forming an impurity concentration in the contact layer 12 on the buffer layer 11, contact layer 12 includes a semiconductor material such as gallium arsenide, and having a high impurity concentration, for example of greater than IXlO18cnT3;

[0061] 步骤三:生长一第一光伏接面结构21在接触层12之上,其中,第一光伏接面结构21及接触层12之间形成一低电阻的欧姆接触;第一光伏接面结构21具有一第一能隙, 包括一第一射极层(emitterlayerdl具有第一电性型态,例如为η型、以及一第一基极层(base layer)212具有相异于第一电性的第二电性型态,例如为ρ型,其中第一射极层211及第一基极层212具有与生长基板10相匹配的晶格常数,其材质例如包括磷化铝铟镓(AlaInbGa(1-ab)P ;0 a,b 1); [0061] Step Three: contact layer 12 is grown over, in which a low resistance is formed between the first photovoltaic junction structure 21 and a contact layer 12 of the first photovoltaic junction structure 21 in ohmic contact; a first photovoltaic junction structure 21 having a first bandgap, comprising a first emitter layer (emitterlayerdl having a first electrical type, η-type, for example, and a first base layer (base layer) 212 having a first electrically in different of the second conductivity type, for example, ρ type, wherein the first emitter layer 211 and the first base layer 212 having a lattice constant matched to the growth substrate 10, for example, a material which comprises aluminum indium gallium phosphide ( AlaInbGa (1-ab) P; 0 a, b 1);

[0062] 步骤四:生长一第一隧穿接面结构22在第一光伏接面结构21之上,包括第一隧穿层221具有第一电性型态,例如为ρ型,及一高于IXlO18cnT3的杂质浓度、以及一第二隧穿层222具有第二电性型态相异于第一电性型态,例如为η型,及一高于1 X IO18CnT3的杂质浓度,其中第一隧穿层221及第二隧穿层222具有高杂质浓度及低厚度,例如为小于500埃, 以形成一高导电接面结构; [0062] Step Four: growing a first tunnel junction structure 22 in the structure 21 over the first photovoltaic junction, comprising a first tunneling layer 221 having a first electrical type, for example, ρ type, and a high IXlO18cnT3 in impurity concentration, and a second tunneling layer 222 having a second conductivity type different from the first electrical type, for example, η-type, and an impurity concentration higher than 1 X IO18CnT3, wherein the first tunneling layer 221 and the second tunneling layer 222 having a high impurity concentration and low thickness, for example less than 500 Å, to form a highly conductive junction structure;

[0063] 步骤五:生长一第二光伏接面结构31在第一隧穿接面结构22之上,其中第二光伏接面结构31具有一第二能隙小在所述的第一能隙,包括一第二射极层(emitter layer)311具有第一电性型态,例如为η型、以及一第二基极层(base layer) 312具有相异于第一电性的第二电性型态,例如为P型,其中第二射极层311及第二基极层312具有与生长基板10相匹配的晶格常数,其材质例如包括砷化镓(GaAs); [0063] Step Five: growing a second photovoltaic junction over the first structure 31 in the tunneling junction structure 22, wherein the second photovoltaic junction structure 31 having a first and a second energy bandgap in said small gap comprising a second emitter layer (emitter layer) 311 having a first electrical type, η-type, for example, and a second base layer (base layer) 312 having a second electrical resistance different from the first electrical of patterns, for example, a P-type, wherein the second emitter layer 311 and 312 has a lattice constant matched to the growth of the base layer of the second substrate 10, for example, a material which comprises gallium arsenide (the GaAs);

[0064] 步骤六:生长一第二隧穿接面结构32包括第三隧穿层321具有第一电性型态,例如为P型,及一高于ι χ IO18CnT3的杂质浓度、以及一第四隧穿层322具有第二电性型态相异于第一电性型态,例如为n型,及一高于IXlO18cnT3的杂质浓度,其中第三隧穿层321及第四隧穿层322具有高杂质浓度及低厚度,例如为小于500埃,以形成一高导电接面结构; [0064] Step Six: growing a second tunneling junction tunneling structure 32 includes a third layer 321 having a first electrical type, for example, a P-type and a higher impurity concentration ι χ IO18CnT3, and a second four tunneling layer 322 having a second conductivity type different from the first electrical type, for example n-type, and an impurity concentration higher than IXlO18cnT3, wherein the tunneling layer 321 of the third and the fourth tunneling layer 322 having high impurity concentration and low thickness, for example less than 500 Å, to form a highly conductive junction structure;

[0065] 步骤七:生长一第三光伏接面结构90在第二隧穿接面结构32之上,其中第三光伏接面结构90具有一第三能隙小于或等在所述的第二能隙,包括一第三射极层91具有第一电性型态,例如为η型、一第三基极层93具有相异于第一电性的第二电性型态,例如为ρ 型、以及一量子点区92介于第三射极层91及第三基极层93之间,其中第三射极层91及第三基极层93具有与生长基板10相匹配的晶格常数,其材质例如包括砷化铟镓ancGa(1-c) As ;Oc 1)或砷磷化铟镓(InpGa(1-p)AsqP(Ι-q) ;0 p, q 1);量子点区92包括多个覆盖层(cap layer)921、多个量子阱层922、及多个量子点层923依序交互堆叠形成,其中,覆盖层921可同时作为一阻障层(barrier layer)以集中载流子(电子或空穴)在量子点层923 或量子阱层922及平坦层以平坦化量子点层923造成的表面起伏,以维持元件表面的平整度;覆盖层921 [0065] Step 7: growing a third photovoltaic junction structure 90 in the structure on the second tunneling junction 32, wherein the third photovoltaic junction structure 90 having a third energy bandgap less than or equal to the second bandgap, comprising a third emitter layer 91 having a first conductivity type, η-type, for example, a third base layer 93 having a second conductivity type different from the first electrical properties, for example, ρ type, a quantum dot and a third region 92 between the emitter layer 91 and third base layer 93, wherein the third emitter layer 91 and the third base layer 93 and the growth substrate 10 has a lattice match constant, which, for example, a material comprising indium gallium arsenide ancGa (1-c) As; Oc 1) or indium gallium arsenide phosphide (InpGa (1-p) AsqP (Ι-q); 0 p, q 1); quantum dots zone 92 comprises a plurality of cover layers (cap layer) 921, a plurality of quantum well layers 922, 923 and a plurality of quantum dot layers are sequentially stacked to form the interaction, wherein the cover layer 921 can operate as a barrier layer (barrier layer) to concentration of carriers (electrons or holes) in the quantum dot layer or a quantum well layer 923 and the planarization layer 922 to planarize the surface relief caused by the quantum dot layer 923, to maintain the flatness of the surface of the element; cover layer 921 的材质例如与第三射极层91相同的材质,以及与第三射极层91相同电性的非本征(extrinsic)半导体层或非掺杂的本征(intrinsic)半导体层;量子阱层922形成在覆盖层921之上,具有一能隙低于覆盖层921,以及一晶格常数不匹配于生长基板10的材质,例如晶格常数与生长基板10差异大于以上的砷化铟镓andGa(ld)As ;0 d 1)或砷磷化铟镓(InpGa (1-r) AsqP (1-s) ;0 r,s 1)材质,量子阱层922的厚度介于1〜IOnm之间,优选为1〜5nm之间,使晶格缺陷实质上不致于形成及向上延伸;量子点层923形成在量子阱层922之上,并且由多个不规则排列的量子点(quantum dot)所组成,具有与量子阱层922实质上相同的材质,并且量子点层923形成多个能隙相异于量子阱层922的能隙,如图8所示的不同尺寸的量子点8a、8b、8c对应具有多个相异的量子能隙Ega、Egb、及Egc大于量子阱层922的能隙Egd,借以提高 The material of the third example, the same material of the emitter layer 91, and a third emitter layer 91 of the same electrically extrinsic (an extrinsic) semiconductor layer of intrinsic or undoped (intrinsics) semiconductor layer; quantum well layer 922 is formed over the capping layer 921 having a bandgap less than 921, and a lattice constant of the material of the covering layer does not match the growth substrate 10, for example 10 and difference in lattice constant is greater than the growth over the substrate of indium gallium arsenide andGa (ld) As; 0 d 1) or indium gallium arsenide phosphide (InpGa (1-r) AsqP (1-s); 0 r, s 1) the material thickness, the quantum well layer 922 interposed between 1~IOnm , preferably between 1~5nm, so as not substantially lattice defects are formed and extending upwardly; quantum dot layer 923 is formed over the quantum well layer 922, and a plurality of irregularly arranged quantum dots (quantum dot) of the composition, having substantially the same material as that of the quantum well layer 922, and the quantum dot layer 923 is formed in a plurality of different band gap energy gap of the quantum well layer 922, as shown in 8 different size quantum dots 8a, 8b, 8c having a corresponding plurality of different quantum energy gap Ega, Egb, Egc and greater than the energy gap of the quantum well layer of Egd 922, in order to enhance 应可吸收光谱的范围,进而提高第三光伏接面结构90的转换效率;量子点层923实质上为直径介于1〜IOnm的多个彼此分离的量子点所组成的不连续光电转换结构,除可提高转换效率,更有助于释放因晶格不匹配而产生的应力; Range of the spectrum can be absorbed, thereby improving the conversion efficiency of the third photovoltaic junction 90 of the structure; quantum dot layer 923 substantially continuous diameter between the photoelectric conversion structure is not composed of a plurality of separated from each other 1~IOnm quantum dot, in addition to improved efficiency, but also help relieve the stress generated due to the lattice mismatch;

[0066] 步骤八:形成一光子回收层51在第三光伏接面结构41之上,光子回收层51的材质包括对特定光波长范围的光线具有大于70%的反射率,特别是对第三光伏接面结构90 的吸收波长范围的光线具有大于70%的反射率,例如为符合上述条件的金属材质,或符合上述条件的导电分散式布拉格反射层(Distributed Bragg Reflector ;DBR)结构; [0066] Step Eight: forming a photonic layer 51 is recovered over the third photovoltaic junction structure 41, the material layer 51 includes a photonic recovered having a reflectivity of greater than 70% for light of a specific wavelength range, particularly for a third photovoltaic junction structure of the light absorption wavelength region 90 has a reflectivity of greater than 70%, for example, a metal material meets the above conditions, meets the above conditions or conductive distributed Bragg reflector layer (Distributed Bragg reflector; DBR) structure;

[0067] 步骤九:如图6所示,提供一支撑体60,并形成一接合层61在支撑体60之上,其中接合层61的材质例为金属、金属合金、或导电高分子材料,并利用接合层61接合光子回收层51及支撑体60 ;接合的方式,例如为胶合接合(glue bonding)、焊接接合(solder bonding)、或共金接合(eutectic bonding)等方式; [0067] Step 9: As shown in FIG. 6, a support member 60, and forming a bonding layer 61 on a support 60, wherein the material layer 61 is bonded embodiment is a metal, a metal alloy, or a conductive polymer material, bonded by the bonding layer 61 and the photon recycling layer 51 and the support member 60; bonded manner, for example glued bond (glue bonding), solder joint (solder bonding), or co-gold bonding (eutectic bonding), etc.;

[0068] 步骤十:移除生长基板10及缓冲层11,使裸露出接触层12,其中移除的方法可用研磨去除生长基板10及缓冲层11,或以蚀刻液蚀刻缓冲层11造成生长基板10脱落去除, 亦可以激光照射缓冲层11,使缓冲层11分解熔融,造成生长基板10脱落去除; [0068] Step 10: removing the growth substrate 10 and the buffer layer 11, so that the exposed contact layer 12, which may be used polishing method for removing the growth substrate 10 is removed and the buffer layer 11, etching solution or buffer layer 11 caused by the growth substrate 10 is removed off, the laser irradiation may also buffer layer 11, the buffer layer 11 is an exploded melted, resulting in the growth substrate 10 is removed off;

[0069] 步骤十一:如图7所示,去除部分的接触层12使裸露一部分的第一光伏接面结构21,并且形成一第一电极71在接触层12上,以及形成一第二电极72电性连接支撑体60 ;第一电极71及第二电极72为一单层或多层叠层的金属或金属合金层; [0069] Step 11: 7, the portion of the contact layer 12 is removed so that the exposed portion of the first photovoltaic junction structure 21, and a first electrode 71 is formed on the contact layer 12, and forming a second electrode 72 is electrically connected to a support member 60; the first electrode 71 and the second electrode 72 is a single layer or a multilayer stack of metal or metal alloy layer;

[0070] 步骤十二:形成一抗反射层81在第一光伏接面结构的至少裸露部分的表面上,以完成本发明第二实施例的多接面太阳能电池2。 [0070] Step 12: an anti-reflection layer 81 is formed on the surface of at least the exposed portion of the first photovoltaic junction structure to complete the second embodiment of the present invention is a multi-junction solar cell 2.

[0071] 如图7所示,多接面太阳能电池2包括支撑体60、接合层61位于支撑体60的一表面上、第二电极72位于支撑体60的另一表面上、光子回收层51位于接合层61之上、具有第三能隙的第三光伏接面结构90位于光子回收层51之上,包括第三基极层93、量子点区92、及第三射极层91、第二隧穿接面结构32位于第三光伏接面结构90之上,包括第四隧穿层322及第三隧穿层321、具有第二能隙的第二光伏接面结构31位于第二隧穿接面结构32之上,包括第二基极层312及第二射极层311、第一隧穿接面结构22位于第二光伏接面结构31及之上,包括第二隧穿层222及第一隧穿层221、具有第一能隙的第一光伏接面结构21位于第一隧穿接面结构22之上,包括第一基极层212及第一射极层211、接触层12位于第一光伏接面结构21的一部分表面上,并与第一光伏接面结构21形成欧姆接触、第一电极71位在 [0071] As shown in FIG. 7, the multi-junction solar cell 60 includes a support body 2, the bonding layer 60 is located on a support surface 61, a second electrode 72 positioned on the other surface of the support body 60, a photonic layer 51 is recovered located above the bonding layer 61, a third photovoltaic junction structure having a third band gap layer 90 located over the photonic recovery 51, comprising a third base layer 93, a quantum dot region 92, and a third emitter layer 91, a second photovoltaic junction structure two structures tunneling junction 32 is located above the third photovoltaic junction structure 90, comprising a fourth layer 322 and the third tunneling tunneling layer 321, having a second band gap in the second tunnel 31 on the wear surface structure 32, including a second base layer 312 and the second emitter layer 311, a first tunneling junction 31 and the structure 22 is located over the second photovoltaic junction structure includes a second tunneling layer 222 and first tunneling layer 221, a first photovoltaic junction structure having a first energy gap 21 is located above the first tunneling junction structure 22, comprising a first base layer 212 and the first emitter layer 211, the contact layer 12 located on the surface of the first photovoltaic junction structure part 21, and forms an ohmic contact with the first photovoltaic junction structure 21, the first electrode 71 in 触层12之上、以及抗反射层81位于第一光伏接面结构21的至少另一部分表面之上。 12 above, and at least another portion of the surface of the contact layer over the antireflective layer 81 located between the first photovoltaic junction structure 21.

[0072] 太阳光自抗反射层81进入多接面太阳能电池2,并依序由具有第一能隙的第一光伏接面结构21吸收较短波长范围的光线,并转换产生第一电流值;具有小于第一能隙的第二能隙的第二光伏接面结构31吸收中间波长范围的光线,并转换产生第二电流值;具有小于第二能隙的第三能隙的第三光伏接面结构90包括一由量子点层所组成的不连续光电转换结构,吸收较长波长范围的光线,并转换产生第三电流值;剩余未被吸收的光线可借由光子回收层51将剩余的光线再反射回第三光伏接面结构90再吸收,以补偿第三光伏接面结构41因部分未形成量子点区域而造成的可转换区域的损失。 [0072] Since the sunlight anti-reflection layer 81 to enter the multi-junction solar cell 2, and sequentially absorbed by the first photovoltaic junction structure 21 having a first band gap light shorter wavelength range and generate a first conversion current value a third photovoltaic having a third gap is less than a second energy bandgap;; a second photovoltaic junction structure having a first energy gap smaller than an energy gap of the second 31 intermediate light absorption wavelength range and generate a second conversion current value surface structure 90 comprises a discontinuous structure of a photoelectric conversion layer consisting of a quantum dot, a long light absorption wavelength range, and generating a third current value conversion; residual light not absorbed by the remainder can be recovered from the photonic layer 51 the light reflected back again third resorbable photovoltaic junction structure 90, partially due to the quantum dot region 41 is not formed may be converted caused regional compensation structure a third photovoltaic junction losses. 另外,由于第三光伏接面结构90与基板10为晶格不匹配,在外延生长时,容易形成线错位(thread dislocation) 并向上延伸,而影响外延品质,进而影响多接面太阳能电池的转换效率;晶格不匹配的结果亦会造成应力累积而容易有晶圆翘曲破片的情形。 Further, since the third photovoltaic junction structure 90 and the substrate 10 is a lattice mismatch, the epitaxial growth, the dislocation line is easily formed (thread dislocation) and extend upwards, to affect the quality of epitaxial, thereby affecting the conversion of a multi-junction solar cell efficiency; results lattice mismatch will cause stress accumulation warpage of wafers readily broken pieces. 本实施例的量子点区92包括量子点层923的多个不连续的量子点所组成的不连续光电转换结构,可以有效阻止线错位(threaddislocation)继续向上延伸,消除晶格不匹配造成的应力,并且因为所述的多个量子点具有不同的尺寸,因此可形成多个不同的量子能隙而提高转换效率。 Quantum dot region 92 of the present embodiment comprises a plurality of photoelectric conversion 923 discontinuous structure composed of discrete quantum dot dot layer, can effectively prevent the dislocation line (threaddislocation) continues to extend upwardly, to eliminate stress caused by lattice mismatch , and because the plurality of quantum dots having different sizes, thus forming a plurality of different bandgap quantum conversion efficiency is improved. 量子点层923的叠层数介于5〜100层,优选为10〜70层,使得第三光伏接面结构90转换产生的第三电流值接近或大于第一光伏接面结构21转换产生的第一电流值或第二光伏接面结构31转换产生的第二电流值的二者之一。 The number of stacked layers of quantum dot layer 923 interposed 5~100, preferably 10~70 layer, such that the third photovoltaic junction structure 90 generated by converting the third current value is greater than or close to the first photovoltaic junction structure 21 resulting from the conversion a first current value or the second photovoltaic junction structure 31 either conversion value generated by the second current.

[0073] 图9公开本发明多接面太阳能电池结构的第三实施例,相较于图7所示的多接面太阳能电池2,主要差异在于多接面太阳能电池3的量子点区92仅包括多个覆盖层(cap layer) 921及多个量子点层923依序交互堆叠形成,并未包括图7的量子阱层922,因此,在多接面太阳能电池3中,造成晶格不匹配的量子点层923呈点状不连续的三维分布,并未包括如图7的量子阱层922全面连续地覆盖在整个表面,因此可更进一步降低晶格缺陷以及晶格不匹配造成的应力,提高元件的光电转换效率。 [0073] Figure 9 discloses a third embodiment of the present invention, a multi-junction solar cell structure, a multi-junction solar cell shown in FIG. 72 as compared to, the main difference is that multi-junction quantum dot solar cell 92 only area 3 comprising a plurality of cover layers (cap layer) 921 and a plurality of the quantum dot layer 923 are sequentially stacked to form interactions, does not include a quantum well layer 922 of FIG. 7, therefore, in a multi-junction solar cell 3, resulting in lattice mismatch the quantum dot layer 923 punctiform discrete three-dimensional distribution, does not include a quantum well layer 922 in FIG. 7 fully continuously cover the entire surface, thus further reducing the stress and lattice defects due to lattice mismatch, photoelectric conversion efficiency of the element.

[0074] 本发明公开一多接面太阳能电池包括一不连续光电转换结构,在本发明的范围内,所述的不连续光电转换结构可形成在第一光伏接面结构、第二光伏接面结构、及第三光伏接面结构的至少其中之一。 [0074] The present invention discloses a multi-junction solar cell comprising a photoelectric conversion discontinuous structure, within the scope of the present invention, the photoelectric conversion discontinuous structure may be formed in a first photovoltaic junction structure, a second photovoltaic junction wherein the at least one structure, and a third photovoltaic junction structure. 所述的不连续光电转换结构包括但不限于本发明实施例所提出的位于所述的图形化结构层所定义的多个空腔内的不连续光伏接面区块;或在本发明的另一实施例所提出的所述的量子点层包括所述的多个量子点。 The discontinuous structure of the photoelectric conversion include but are not limited a plurality of discrete photovoltaic junction block located within the cavity of the patterned layer structure of embodiment of the proposed invention as defined in the embodiment; the present invention or other a quantum dot layer of the embodiment of the proposed embodiment includes a plurality of quantum dots of the.

[0075] 本发明所列举的各实施例仅用以说明本发明,并非用以限制本发明的范围。 [0075] The present invention is exemplified embodiments are merely intended to illustrate the present invention and are not intended to limit the scope of the invention. 任何人对本发明所作的任何显而易知的修饰或变更均不脱离本发明的精神与范围。 Any known modifications apparent to any person or change made to the invention without departing from the spirit and scope of the present invention.

Claims (10)

1. 一多接面太阳能电池包括: 一支撑体;一第一光伏接面结构位于该支撑体上,用以吸收第一波长范围的光线转换产生第一电流值;及一第二光伏接面结构位于该第一光伏接面结构上,晶格不匹配于第一光伏接面结构, 用以吸收相异于第一波长范围的第二波长范围的光线转换产生第二电流值;其中,至少一部分的该第一光伏接面结构或一部分的该第二光伏接面结构包括一不连续光电转换结构。 1. A multi-junction solar cell comprising: a support; a first photovoltaic junction structure is located on the support, to absorb light of the first wavelength range to generate a first conversion current value; and a second photovoltaic junction structure disposed on the first photovoltaic junction structure, lattice mismatched to the first photovoltaic junction structure for absorbing light of the second wavelength range different from the first wavelength range to generate a second conversion current value; wherein, at least a portion of the first photovoltaic junction and the second photovoltaic junction structure or a portion of a structure comprising a photoelectric conversion discontinuous structure.
2.根据权利要求1所述的多接面太阳能电池,其中该不连续光电转换结构包括规则排列的不连续光伏接面区块。 2. The multi-junction solar cell according to claim 1, wherein the discontinuous structure comprising a photoelectric conversion discontinuous photovoltaic junction blocks regularly arranged.
3.根据权利要求1所述的多接面太阳能电池,还包括一图形化结构层界定该些不连续光伏接面区块。 The multi-junction solar cell according to claim 1, further comprising a patterned layer defines the structure of the plurality of discrete photovoltaic junction block.
4.根据权利要求3所述的多接面太阳能电池,其中该图形化结构层包括多个条纹。 The multi-junction solar cell according to claim 3, wherein the patterned layer structure comprises a plurality of stripes.
5.根据权利要求1所述的多接面太阳能电池,其中该不连续光电转换结构为一量子点层包括多个不规则排列的量子点。 Multi-junction solar cell according to claim 1, wherein the discontinuous structure of the photoelectric conversion layer is a quantum dot comprises a plurality of quantum dots irregularly arranged.
6.根据权利要求1所述的多接面太阳能电池,其中该不连续光电转换结构为多个层叠的量子点层,各该量子点层包括多个不规则排列的量子点。 6. The multijunction solar cell as claimed in claim 1, wherein the discontinuous structure of a plurality of stacked photoelectric conversion quantum dot layer, each of the quantum dot layer comprising a plurality of quantum dots irregularly arranged.
7.根据权利要求1所述的多接面太阳能电池,其中该第一光伏接面结构具有该不连续光电转换结构。 7. The multi-junction solar cell according to claim 1, wherein the first photovoltaic junction structure having the discontinuous structure of the photoelectric conversion.
8.根据权利要求1所述的多接面太阳能电池,其中该第一电流值接近或大于该第二电流值。 8. The multijunction solar cell as claimed in claim 1, wherein the first current value is close to or greater than the second current value.
9.根据权利要求1所述的多接面太阳能电池,还包括一接合层介于该支撑体及该第一光伏接面结构之间。 The multi-junction solar cell according to claim 1, further comprising a bonding layer interposed between the support member and the first photovoltaic junction structure.
10.根据权利要求1所述的多接面太阳能电池,还包括一光子回收层介于该接合层及该第一光伏接面结构之间。 10. The multijunction solar cell as claimed in claim 1, further comprising a photon recycling the bonding layer is interposed between the first layer and the photovoltaic junction structure.
CN2010101170143A 2010-02-09 2010-02-09 Multi-junction solar cell CN102148266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101170143A CN102148266A (en) 2010-02-09 2010-02-09 Multi-junction solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101170143A CN102148266A (en) 2010-02-09 2010-02-09 Multi-junction solar cell
US12/981,780 US9559229B2 (en) 2009-12-31 2010-12-30 Multi-junction solar cell

Publications (1)

Publication Number Publication Date
CN102148266A true CN102148266A (en) 2011-08-10

Family

ID=44422397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101170143A CN102148266A (en) 2010-02-09 2010-02-09 Multi-junction solar cell

Country Status (1)

Country Link
CN (1) CN102148266A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390622A (en) * 2012-05-11 2013-11-13 冠晶光电股份有限公司 Layered solar battery structure
CN103782394A (en) * 2011-08-24 2014-05-07 株式会社村田制作所 Solar cell and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038866A (en) * 2006-03-16 2007-09-19 中国科学院半导体研究所 Method for growing wide spectrum indium arsenide/aluminium gallium arsenide quantum point material
CN101345268A (en) * 2007-07-13 2009-01-14 晶元光电股份有限公司 Semiconductor photovoltaic element with joining structure
US20090065047A1 (en) * 2007-09-07 2009-03-12 Amberwave Systems Corporation Multi-Junction Solar Cells
CN101425548A (en) * 2008-12-16 2009-05-06 长春理工大学 InAs quantum point material preparing method and application thereof in solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038866A (en) * 2006-03-16 2007-09-19 中国科学院半导体研究所 Method for growing wide spectrum indium arsenide/aluminium gallium arsenide quantum point material
CN101345268A (en) * 2007-07-13 2009-01-14 晶元光电股份有限公司 Semiconductor photovoltaic element with joining structure
US20090065047A1 (en) * 2007-09-07 2009-03-12 Amberwave Systems Corporation Multi-Junction Solar Cells
CN101425548A (en) * 2008-12-16 2009-05-06 长春理工大学 InAs quantum point material preparing method and application thereof in solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782394A (en) * 2011-08-24 2014-05-07 株式会社村田制作所 Solar cell and method for manufacturing same
CN103782394B (en) * 2011-08-24 2016-05-04 株式会社村田制作所 The method of manufacturing a solar cell and a solar cell
US9496434B2 (en) 2011-08-24 2016-11-15 Murata Manufacturing Co., Ltd. Solar cell and method for producing solar cell
CN103390622A (en) * 2012-05-11 2013-11-13 冠晶光电股份有限公司 Layered solar battery structure

Similar Documents

Publication Publication Date Title
US7893348B2 (en) Nanowires in thin-film silicon solar cells
US5853497A (en) High efficiency multi-junction solar cells
CN101221993B (en) Nanowall solar cells and optoelectronics devices
JP4824293B2 (en) Photonic crystal light emitting device
CN101165925B (en) Solar cell structure with localized doping of cap layer
US7119271B2 (en) Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US9293615B2 (en) Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
EP2168167B1 (en) Nanowire-based solar cell structure
AU2007234548B8 (en) Amorphous-crystalline tandem nanostructured solar cells
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
AU2009319768B2 (en) Solar cell with a backside via to contact the emitter layer
US8242353B2 (en) Nanowire multijunction solar cell
US20030070707A1 (en) Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
JP5248782B2 (en) Solar cell having quantum dot material grown epitaxially
JP5230222B2 (en) Solar cells
US8791359B2 (en) High efficiency photovoltaic cells
US20120305860A1 (en) Light conversion efficiency enhanced solar cell fabricated with downshifting nanomaterial
US8735202B2 (en) High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters
US20080190479A1 (en) Optoelectronical semiconductor device
KR101290629B1 (en) Optoelectronic device and the manufacturing method thereof
JP2010512664A (en) Zinc oxide multijunction photovoltaic cells and optoelectronic devices
EP3444848A1 (en) Metamorphic solar cell having improved current generation
US8101856B2 (en) Quantum well GaP/Si tandem photovoltaic cells
JP2010118666A (en) Alternative substrate of inversion altered multi-junction solar battery
JP2009177172A (en) High concentration terrestrial solar cell arrangement with iii-v compound semiconductor cell

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication