CN102135776B - Industrial robot control method based on visual positioning - Google Patents

Industrial robot control method based on visual positioning Download PDF

Info

Publication number
CN102135776B
CN102135776B CN2011100265297A CN201110026529A CN102135776B CN 102135776 B CN102135776 B CN 102135776B CN 2011100265297 A CN2011100265297 A CN 2011100265297A CN 201110026529 A CN201110026529 A CN 201110026529A CN 102135776 B CN102135776 B CN 102135776B
Authority
CN
China
Prior art keywords
robot
tool
position
end
coordinates
Prior art date
Application number
CN2011100265297A
Other languages
Chinese (zh)
Other versions
CN102135776A (en
Inventor
于浩源
王旭
解则晓
Original Assignee
于浩源
王旭
解则晓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 于浩源, 王旭, 解则晓 filed Critical 于浩源
Priority to CN2011100265297A priority Critical patent/CN102135776B/en
Publication of CN102135776A publication Critical patent/CN102135776A/en
Application granted granted Critical
Publication of CN102135776B publication Critical patent/CN102135776B/en

Links

Abstract

The invention relates to the field of a robot, in particular to an industrial robot control method based on visual positioning. In artificial teaching process, positioning motion control process and oriented motion control process of the control method provided by the invention, the positioning of luminescence mark points or the ends of an operating tool is performed in the coordinates ow, xw, yw and zy of a visual measuring device, thus the control system has no requirement on the motion control accuracy of the robot and the relative position relation of the coordinates of the tool and the coordinates of the robot, and the control method only requires linear motion realized by the rotation of axes from the first axis to the third axis and rotary motion realized by the rotation of axes of axes from the fourth axis to the sixth axis according to the theoretical model of the robot and, thereby fundamentally avoiding the extremely strict requirements on the accuracy of a robot model and the calibrating accuracy of the coordinates of the tool in conventional off-line programming teaching and meeting the operating requirements of a complicated track with high accuracy.

Description

基于视觉定位的工业机器人控制方法技术领域[0001] 本发明涉及机器人领域,尤其是基于视觉定位的工业机器人控制方法。 Based on visual positioning control industrial robot TECHNICAL FIELD [0001] The present invention relates to the field of robotics, in particular, visual positioning control based industrial robot. 背景技术[0002] 工业机器人在各工业领域中获得了广泛应用,如机器人焊接、机器人喷漆、机器人搬运等。 [0002] Industrial robots have been widely applied in various industrial fields, such as robotic welding, painting robots, robot handling and the like. 在这些领域中工业机器人代替人工做出可重复的精确的运动,从而保证了产品质量的一致性。 In these fields of industrial robots instead of precise movements make artificial repeatable, thus ensuring the consistency of product quality. 机器人要完成特定动作必须沿特定轨迹运动,目前有两种方式规划机器人的运动轨迹,一是在线示教,二是离线编程示教。 Robot to complete a specific action must be moved along a specific trajectory, there are two ways to plan robot trajectories, one online teaching, and second, off-line programming teaching. [0003] 在线示教是通过机器人的手控操纵盒控制机器人运动,在线示教的过程包括使机器人上安装的工具,如喷枪、焊枪等的末端运动到其操作部位,并记录下在这个位置机器人的坐标;根据需要控制机器人运动到多个位置,并记录这些轨迹;然后机器人沿示教时记录的轨迹自主运动,完成特定的操作任务。 [0003] online teaching by the hand of the robot control jogbox control robot, online teaching process comprising the tool mounted on the robot, such as the end of the gun, the welding gun or the like is moved to its operating position, and recorded at this location coordinates of the robot; robot to be controlled as desired plurality of positions, and recording the tracks; then when the robot along the teaching track record shown voluntary movement, do specific tasks. 这种示教方法的优点是对机器人的模型精度要求低,使用机器人的理论模型即可;另外,不需标定机器人的工具坐标系。 The advantage of this teaching method is the low accuracy of the robot model, theoretical model of the robot can be used; in addition, no calibration tool coordinate system of the robot. 该方法的缺点是: (1)机器人的在线示教编程不但过程繁琐、效率低、占用宝贵的生产时间,而且使机器人系统成为一个相对独立的单元,难以实现与其他系统或生产过程的无缝集成;(¾示教的精度完全靠示教者的经验目测决定,精度较低,对于复杂焊缝等难以获得令人满意的示教效果;C3)示教过程中,人工控制机器人运动到一特定点,操作过程复杂,示教人员容易疲劳, 而且还处于机器人工作空间的危险环境下。 A disadvantage of this method is that: the programming pendant line (1) of the robot is not only tedious process, inefficient, taking up valuable production time, and the robot system has become a relatively independent unit, it is difficult to seamlessly with other systems or production process integrated; (¾ precision taught entirely empirically determined visually's teachings, the lower the accuracy, the effect for teaching complex is difficult to obtain a satisfactory weld the like; a C3) during the teaching, the robot is moved to a manual control specific point, complicated operation, the teacher fatigue, but also in a hazardous environment, the robot working space. 因此该方法仅适用于运动轨迹简单,即示教点数少、精度要求不高的场合,不能满足当今小批量、多品种的柔性生产的需要。 The method thus applies only to simple trajectory, i.e. less teaching points shown, where less precision, can not meet today's small quantity and variety of flexible production needs. [0004] 对复杂运动轨迹的示教通常采用离线编程方式。 [0004] The teachings of the complex trajectories usually off-line programming. 离线编程示教是基于精确的机器人模型,并建立工具坐标系,将工具末端的坐标精确地变换到机器人基准坐标系下,根据操作工件的CAD模型规划出实际操作时工具末端的连续运动轨迹。 Off-line programming teaching is based on the exact model of the robot, and the establishment of the tool coordinate system, the coordinates of the tool tip is accurately converted to the robot reference coordinate system, the CAD model operation of a workpiece plan the continuous motion trajectory tool tip of the actual operation. 该方式的实现对机器人模型的精度,以及机器人工具坐标系的确定都有很高的精度要求。 Implementing the embodiment determines the accuracy of the model of the robot, and a robot tool coordinate system has high accuracy. [0005] 机器人模型是表示机器人末端在机器人基准坐标系下的方位,通常是指机器人的理论模型,理论模型也是机器人的设计模型,即设计时所确定的杆长和各关节之间的关系。 [0005] orientation of the robot is a robot model at the end of the robot reference coordinate system, generally refers to a theoretical model of the robot design model, theoretical model of the robot is, the relationship between stem length and each joint that is determined by the design. 而机器人的实际制造和安装过程会产生误差,造成机器人的实际模型与理论模型有很大差异,以理论模型作为实际模型来使用必然造成机器人末端的位置误差。 Actual robot manufacturing and installation process will produce an error, resulting in the theoretical model and the actual model of the robot are very different to the theoretical model used as the actual model will inevitably lead to the end of the position error of the robot. 为了获得机器人的真实的模型就必须对机器人进行标定,即确定真实的关节关系和杆长。 In order to obtain the true model of the robot must be calibrated robot, that is, to determine the true relationship between the joint and the rod length. 目前,常用的标定方法是用三坐标测量机、关节臂测量机或激光跟踪仪来测量各个关节的转动情况,从而确定各关节的轴线方向和位置,以此来重建机器人模型。 At present, the commonly used method is to use calibration CMM, articulated arm measuring machine or a laser tracker to measure the rotation of each joint, thereby determining the orientation and position of each joint axis of the robot in order to rebuild the model. 通常将标记点固定在机器人的一个关节的臂上,机器人绕该关节可转动到多个位置,利用测量机或激光跟踪仪测量该标记点的位置,利用同一个标记点在不同位置下的坐标拟合圆可得圆心坐标和圆的法线方向,圆的法线方向可表示该关节的轴线方向。 The marker is typically a fixed arm of the articulated robot, the robot can be rotated to a plurality of joint position, the measuring machine or a laser tracker measured position around the marker, by using the coordinates of the same marker in different positions fitting circle and circle center coordinates can be obtained in the normal direction, the normal direction of the circle may represent the axial direction of the joint. 测量机和激光跟踪仪的误差会带来标记点的位置误差,从而造成关节轴线误差。 Error measurement and laser tracker will bring the position error marker, resulting in joint axis error. 因此,现有标定方法对机器人的标定精度没有大的提高,经过标定后的机器人的位置误差仍然会大于1毫米。 Thus, conventional calibration methods do not much improve the calibration accuracy of the robot, the robot after the calibration position error still greater than 1 mm. [0006] 机器人末端安装不同的操作工具都要将工具末端的坐标转换到机器人基准坐标系中,根据上述方法已经确定机器人模型,只需将工具坐标系转换到机器人末端坐标系中即可。 [0006] installed at the end of the robot have a different operating tools to convert the coordinates of the tool tip to the robot reference coordinate system, the above method has been determined robot model, simply converting the tool coordinate system to the robot coordinate system to the end. 目前常用的方法是三点法,该方法是手工控制机器人与空间三个点接触从而实现工具坐标系的标定。 Three methods are commonly used method, which is manually controlled robot three point contact with the space enabling the tool coordinate system calibration. 然而,在实际操作中难以使操作工具末端完全与空间固定点接触,要么没有完全接触上,存在间隙,要么两者的接触量过大,发生碰撞。 However, in practice it is difficult to complete the operation tool in contact with the end of the fixed-point space, either without the complete contact, there is a gap, or the contact between the two is too large, a collision occurs. 因此,对工具坐标系参数的求解必然存在误差。 Thus, solving the tool coordinate system error parameters must exist. [0007] 综上所述,现有机器人示教方式存在以下问题:(1)在线示教操作过程繁琐,效率和精度都比较低,仅适用于操作轨迹较简单,且精度要求不高的场合;(2)离线编程示教对机器人模型的精度和工具坐标系参数的求解精度要求很高,而目前对机器人模型的标定精度和工具坐标系参数的标定精度较低,因此,离线编程生成的路径精度不高,不能满足高精度复杂轨迹的操作需要。 [0007] In summary, the presence of the conventional robot teaching problems described below: Process (1) online teaching complicated operation, efficiency and accuracy are relatively low, only relatively simple track adapted to operate, and where less precision ; (2) off-line programming teaching of the solution accuracy and precision of the tool coordinate system of the robot model parameters demanding, the calibration accuracy is low and the current calibration accuracy of the robot and the tool coordinate system of the model parameters, thus, generated off-line programming path accuracy is not high, the operation can not meet the needs of high accuracy complex trajectories. 发明内容[0008] 本发明的目的在于提出了一种基于视觉定位的工业机器人控制方法,其安全性好,对于操作工具的运动状态更加容易监控,并做到实时处理、精度高,可拓展机器人的应用领域。 SUMMARY OF THE INVENTION [0008] The object of the present invention is to propose an industrial robot control method based on visual positioning, the safety, the operating tool for motion more easily monitored, and to do real-time processing, high precision, the robot can be expanded applications. [0009] 本发明是采用以下的技术方案实现的:一种基于视觉定位的工业机器人控制方法,该方法包括以下步骤:[0010] (1)对视觉测量装置进行建模与标定:[0011] 对视觉测量装置的每个摄像机建立针孔成像模型,模型如下: [0009] The present invention adopts the following technical solution: based on visual positioning control industrial robot, the method comprising the steps of: [0010] (1) measuring means for visual modeling and calibration: [0011] establishing pinhole imaging model for each camera vision measuring apparatus, model is as follows:

Figure CN102135776BD00051

[0012] ρ V = JNyW0 0yr5 +r,V0 JN/6 +^9 vO JNyty+t八 1 _ rI r9 K[0013] 其中,ri〜r9是摄像机坐标系到世界坐标系的旋转矢量,tx,ty,tz是平移量,f是焦距,Utl,Vtl是计算机图像中心位置,(u, ν)是计算机图像像素,(xw,yw,Zw)是三维世界坐标系中的坐标,利用同一个平面网格靶标同时对每个摄像机进行标定,求出各个模型中的未知参数,并确定由各摄像机测量空间点构成的视觉测量装置坐标系owxwywzw,视觉测量装置所测的空间点的三维坐标均在该坐标系中;[0014] (2)发光标记点的识别与三维坐标的确定:[0015] 各摄像机分别拍摄发光标记点,识别发光标记点在各幅图像中的位置,并分别匹配,将各个单目视觉模型联立求解可得到每个发光标记点在视觉测量装置坐标系owxwywzw 中的三维坐标;[0016] (3)操作工具末端三维坐标的确定:[0017] 在发光标记点平面内建立二维坐标 [0012] ρ V = JNyW0 0yr5 + r, V0 JN / 6 + ^ 9 vO JNyty + t eight 1 _ rI r9 K [0013] wherein, ri~r9 a camera coordinate system to the world coordinate system of the rotating vector, tx, ty, tz is the shift amount, f is the focal length, Utl, Vtl computer image center position, (u, ν) is a computer image pixels, (xw, yw, Zw) is a three-dimensional coordinates in the world coordinate system, using the same plane three-dimensional coordinate grid targets simultaneously for each camera calibration, to obtain the unknown parameters in each model, and determining the spatial coordinates measuring apparatus visual point owxwywzw, each camera vision measurement means measuring the space dots are measured at the coordinate system; [0014] (2) identifying the three-dimensional coordinates of the luminescent marker is determined: [0015] each camera shot luminescent marker, position recognition luminescent markers in the respective images of, respectively, match, each monocular vision model solved simultaneously to obtain three-dimensional coordinates of each marker in the emission vision measurement apparatus coordinate system owxwywzw; determining [0016] (3) three-dimensional coordinates of the end of an operating tool: [0017] in the luminescent marker plane the establishment of two-dimensional coordinates 系OtXtYt,即以过第三发光标记点、第四发光标记点的连线为&轴,过第一发光标记点、第二发光标记点的连线为\轴,然后将操作工具的末端放在锥孔内,使操作工具绕该锥孔转动,至少旋转到四个位置,这样操作工具末端的位置不变,而发光标记点的位置发生了变化,在每个位置下根据各发光标记点的三维坐标可确定Ot的坐标,根据至少四个位置下的Ot的坐标拟合得到球心坐标Os,该球心坐标即为操作工具末端在视觉测量装置坐标系owxwywzw下的三维坐标;5[0018] (4)人工示教过程:[0019] 将操作工具从机器人末端取下,用人手手持灵活运动,走出实际工作时需要的运动轨迹,如焊缝的轨迹,在该过程中用视觉测量装置实时记录操作工具上每个发光标记点的运动轨迹,该运动轨迹是在视觉测量装置坐标系owxwywzw下的三维离散点;由发光标记点的运动轨迹按照 Based OtXtYt, i.e. luminescent marker through the third, the fourth connection point is a luminescent label & axis, through the first luminescent marker, a second connection point as luminescent labels \ axis, then the end of the discharge operation tool cone bore, the operator rotates the tool about the tapered bore, to rotate at least four positions, the position of the tool tip so that the operation of the same, and luminescent marker position has changed, in accordance with each position of each light emitting marker may determine three-dimensional coordinates of the coordinates Ot fitting sphere center coordinates obtained from the coordinate Os Ot at least four locations, the coordinates of the center of the sphere is the operation of the 3D coordinates of the tool tip in a visual coordinate measuring apparatus of owxwywzw; 5 [ 0018] (4) artificial teaching procedure: when required [0019] the operation of the tool is removed from the end of the robot, hand-held flexible by hand motion, work out the actual trajectory, such as trajectory weld, visual measurement using the procedure each trajectory luminescent marker on the real time recording apparatus operating tool, which is a three-dimensional trajectory of discrete points in a visual coordinate measuring apparatus of owxwywzw; luminescent label in accordance with a trajectory point 3)中的方法可确定操作工具末端的运动轨迹和姿态;[0020] (5)机器人学习过程:[0021] 人工示教结束后,再将操作工具固定在机器人的末端,通过控制机器人运动使操作工具再次走出人工示教时走出的轨迹,该过程中,通过视觉测量装置观测发光标记点的位置,并输入到机器人控制器中,机器人控制器根据发光点的位置可计算出操作工具末端的位置和操作工具的姿态,以操作工具末端的当前位置与人工示教过程操作工具末端的位置的差、以及操作工具的当前姿态与操作工具人工示教过程的姿态的差作为机器人控制的反馈信息,通过定位运动控制和定方向运动控制的过程交替使操作工具的末端沿人工示教时机器人末端的轨迹运动,同时在每个末端位置下使操作工具的姿态与人工示教过程时的姿态相同。 Method 3) can be determined trajectory and attitude of the end tool operation; [0020] (5) the robot learning process: [0021] After the artificial teaching, tool holder and then the operation at the end of the robot by controlling the robot so that out of the operating tool out again when the artificial trajectory of teaching, the process by means of visual observation luminescent marker position measurement, and input to the robot controller, the robot controller can calculate the position of the tool tip according to the operation of the light emitting point the posture and the operating tool, the difference between the posture of the difference between the position of the current position of the operating tool tip and artificial teaching during operation of the tool tip, and the current posture and the operation tool artificial teach processes operating tool as the feedback information of the robot control the same posture when passing through alternating control the positioning movement direction setting process and control operation of the tool tip end of the robot when the trajectory along artificial teaching, while the operation tool at each terminal position and posture of the teaching process artificial . [0022] 本发明中,所述的定位运动控制过程中,将操作工具末端的当前位置定义为当前点,使操作工具末端从当前点出发向目标点靠近,当前点和目标点的坐标都是在视觉测量装置坐标系owXwywzw下,根据机器人的理想模型,利用其第一至第三轴可建立沿三个方向做直线运动的模型,即通过第一至第三轴的转动实现沿三个方向的直线运动:控制带有操作工具的机器人的第一至三轴使机器人沿Z方向运动,并实时计算操作工具末端的位置,求出末端当前位置与目标位置之间的差,当操作工具末端离目标点最近时,记下这时Z坐标; 然后控制机器人的第一至三轴的转动使机器人沿X向运动,并记录判断操作工具末端到目标点的距离,记录距离最小时的X坐标,接下来使机器人沿Y向运动,记录沿Y向运动后工具末端离目标点最近时的Y坐标。 [0022] In the present invention, the positioning control process in motion, the current position of the tool tip is defined for the current operating point, the operating end of the tool from the current point closer to the target point, the coordinates of the current point and the target point are in visual measurement device coordinate system owXwywzw, according to the ideal model of the robot with which the first to third axis linear motion in three directions can be established model, i.e., to achieve the three directions by the rotation of the first to third shaft linear motion: operating a robot with a first tool to make a three-axis robot in the Z direction, and the tool tip position is calculated in real time operation, the difference between the current position and the target position of the end is determined, when the operating tool tip recently, when a note from the target time point Z-coordinate; and then to control the rotation of the first three-axis robot of the robot moving along the X direction, and determines the recording operation of the tool tip distance to the target point, recording the minimum X-coordinate distance , then the robot motion along the Y direction, the recording to the tool tip in the Y-Y coordinates after movement from the closest target point. 经过上几步可使操作工具末端较接近目标点。 After the end of the tool allows the operator steps closer to the target point. [0023] 所述的定方向运动控制过程中,以Yt的方向表示操作工具的方向即姿态,从当前点出发,先绕机器人的第四轴旋转,当Yt与目标点的矢量方向夹角最小时记下第四轴的角度;再绕第五轴旋转,当Yt与目标点的矢量方向夹角最小时记下第五轴的角度;最后绕第六轴旋转,当Yt与目标点的矢量方向夹角最小时记下第六轴的角度,这时Yt的方向接近目标点的方向。 [0023] Control of the motion in a given direction during operation of the tool in the direction represented by Yt posture direction i.e., from the current point to about the fourth axis of rotation of the robot, when the vector direction of the target point angle Yt most h note the angle of the fourth shaft; rewind fifth shaft rotation, when the vector direction of the target point Yt angle note the minimum angle of the fifth shaft; and finally about a sixth axis, when the target point vector Yt note the minimum angle between the direction of the sixth shaft angle, then the direction of the Yt direction close to the target point. [0024] 定位运动控制过程每进行一步会使操作工具末端接近目标点,同样定方向运动控制过程每进行一步也会使操作工具的姿态接近人工示教的姿态,因此定位运动控制和定方向运动控制的过程交替进行使机器人的位置和姿态都接近人工示教的位置和姿态。 [0024] positioning controls for each step of the process will end the operation tool close to the target point, given the same direction for each step of the process control operation tool posture also makes teaching artificial proximity gesture, and thus control the positioning movement direction given alternating process control position and attitude of the robot are close artificial taught position and attitude. 当操作工具末端的位置和操作工具的方向与人工示教时的偏差在允许范围内时记录下机器人六个轴的当前角度,这样机器人就完成了一个位置的学习,以同样方法机器人可进行其他位置的学习。 When the deviation direction and the operation position of an operating tool and the tool tip of the artificial teachings angle within an allowable range of the current record six axes of the robot, the robot so that a position learning is completed, the robot may be carried out in the same manner other learning location. 将人工示教时的连续轨迹离散成若干个位置,机器人只要完成对这些位置的学习就可以走出与人工示教时相同的轨迹;机器人完成学习后的运动是重复学习时记录的位置,运动过程中不再需要视觉测量装置对其进行监控。 The continuous trajectory manual teaching discretized into a plurality of positions, the robot simply complete the learning of these locations can be out of the same when the artificial taught trajectory; moving the robot completion is recorded when the repetition position, movement measuring means need no longer be monitored visually. [0025] 本发明的有益效果是:第一,本发明所述的控制系统结构简单,操作方便,效率和精度都很高;第二,本发明所述控制方法的人工示教过程、定位运动控制过程和定方向运动控制过程中,对发光标记点或操作工具末端的定位都是在视觉测量装置坐标系owxwywzw之下的,因此对机器人的运动控制精度没有要求,对工具坐标系与机器人坐标系的相对位置关系没有要求,只要按照机器人的理论模型通过第一轴至第三轴转动实现直线运动,第四轴至第六轴转动实现旋转运动即可,从根本上避免了常规的离线编程示教时对机器人模型的精度和工具坐标系标定精度的极其严格的要求;第三,机器人模型相对简单,完全以机器人设计时的理论模型做控制模型,而不需要对机器人的精度进行特别调试;第四,视觉测量装置可以多台机器人共用,通过定位运动控制 [0025] Advantageous effects of the present invention are: first, a simple structure of the control system of the present invention, convenient operation, precision and efficiency are high; the second, the present invention is a control method of doing teaching process, positioning movement process control and process control in a given direction, positioned on the luminescent markers or the operation of the tool tip is below the vision measuring apparatus coordinate system owxwywzw therefore the motion of the robot control accuracy is not required, the tool coordinate system and the robot coordinate pair the relative positional relationship does not require line of the rotation axis of the first linear motion to the third shaft simply by theoretical model of the robot in accordance with the fourth shaft to the sixth shaft is rotated to effect rotation motion, to avoid the conventional off-line programming fundamentally calibration accuracy is extremely strict requirements when teaching the robot model accuracy and tool coordinate system; third, the robot model is relatively simple, entirely theoretical model of the robot designed to make the control model, without the need for accuracy of the robot special debugging ; fourth, the visual measuring device may be a common multiple robots, controlled by the positioning motion 程和定方向运动控制过程形成稳定的运动路径后,只要机器人具有较好的重复性,以及操作工具固定可靠,没有位置变化就可以沿该路径反复运动完成同一个任务,因此可以实现多台机器人共用双目视觉测量装置,节省成本;第五,该方法对工件定位和摆放位置具有很强的适应性,只要工件放在机器人的工作范围内即可,克服了离线编程示教需要精确确定初始点的缺点;第六,该方法以视觉测量体系为基础,在最高层次上对机器人进行闭环控制,大大降低了对机器人模型、工具坐标系参数等中间环节的精度要求,可拓展机器人的应用领域;第七,该方法安全性高,对于工具的异常状态更加容易监控,并做到实时处理,减少因为控制或者配合故障导致的经济损失。 After the process and given direction to control the process of forming a stable movement path, as long as the robot has good repeatability, and the operating tool is fixed reliably, without change of position can be repeated movement to complete the same task along the path, it is possible to achieve multiple robots sharing bis monocular vision measuring apparatus, cost savings; fifth, the method of highly adaptable workpiece positioning and placement, as long as the workpiece on the working range of the robot can overcome the off-line programming teaching points need to accurately determine the initial the disadvantage; sixth, the visual measuring method based on a system, the robot closed loop control at the highest level, greatly reduces the accuracy requirements on the middle part of the robot model, the tool coordinate system parameters and the like, can expand the application field of the robot; seventh, the safe method for the abnormal state of the tool easier to monitor, and do real-time processing, reduce or control because with economic losses caused by the failure. 综上所述,本发明操作过程简单,效率和精度高,能够满足高精度复杂轨迹的操作要求。 In summary, the process of this invention is simple, efficient and high precision, high accuracy to meet the operational requirements of the complex trajectories. 附图说明[0026] 图1是基于视觉定位的工业机器人控制系统的结构示意图;[0027] 图2是实施例1中发光标记点的分布示意图;[0028] 图3是操作工具末端三维坐标确定的结构示意图;[0029] 图4是实施例1中操作工具末端在标记点三维坐标系OtXtYJt下的坐标;[0030] 图5是实施例1中定位运动控制过程操作工具末端的运动轨迹;[0031] 图6是实施例1中定向运动过程操作工具的运动轨迹;[0032] 图7是实施例2中发光标记点的分布示意图;[0033] 图8是实施例3中发光标记点的分布示意图。 BRIEF DESCRIPTION [0026] FIG. 1 is a schematic view of an industrial robot control system based on visual positioning structure; [0027] FIG. 2 is a schematic view of the distribution of luminescent marker 1 according to embodiments; [0028] FIG. 3 is a three-dimensional coordinate determining operation tool tip structural diagram; [0029] FIG. 4 is a graph of an operating tool tip embodiment in the three-dimensional labeling point coordinate system OtXtYJt embodiment; [0030] FIG. 5 is a trajectory of the operating tool end of a positioning movement of the control process of embodiment; [ 0031] FIG. 6 is a trajectory in Example 1 directional movement during operation of the tool embodiment; [0032] FIG. 7 is a schematic view of the distribution of two light emitting marker according to embodiments; [0033] FIG. 8 is distributed in Example 3 luminescent markers embodiment schematic diagram. 具体实施方式[0034] 下面结合附图对本发明做进一步说明。 DETAILED DESCRIPTION [0034] DRAWINGS The present invention is further described. [0035] 实施例1[0036] 图1至图6为实施例1所述的基于视觉定位的工业机器人控制系统及其控制方法。 [0035] Example 1 [0036] embodiment of Figures 1 to 6 of Example 1, the industrial robot vision-based positioning control system and control method. 所述的工业机器人控制系统如图1所示,该系统包括机器人1、机器人控制器2和视觉测量装置,所述的视觉测量装置为双目视觉测量装置3,机器人1采用六轴机器人,末端设有操作工具5,机器人1通过机器人控制器2与双目视觉测量装置3连接,机器人控制器2 以双目视觉测量装置3的定位信息作为反馈信息。 The industrial robot control system shown in Figure 1, the system includes a robot controller 2 and a vision measuring apparatus for a robot, the measuring device is a vision binocular vision measurement apparatus 3, a robot with six axes of the robot 1, the end 5 is provided with an operating tool, the robot 1 is connected by the robot controller 2 and the binocular vision measuring device 3, location information to the robot controller 2 binocular vision measuring device 3 as the feedback information. 发光标记点4固定在机器人的操作工具5上,双目视觉测量装置3对发光标记点4进行实时测量,通过对发光标记点的测量就可以确定机器人末端操作工具的运动轨迹。 Luminescent marker 4 is fixed on the operating tool of the robot 5, binocular vision measurement apparatus 3 4 luminescent markers real-time measurement, by measuring luminescent markers can determine the trajectory of the robot end effector of the tool. 双目视觉测量装置3将测得的操作工具5末端的位置输入机器人控制器2内,机器人控制器2根据机器人理论模型进行逆解,传送给机器人1, 并控制机器人1运动。 Binocular vision measuring device 3 position of the 5 'end of the measured input operation tool 2 robot controller, the robot controller 2 performs the inverse solution The theoretical model of the robot, the robot 1 transmits and controls the robot 1 is moved. 所述操作工具上固定有平板,平板上设有四个发光标记点4,即第一发光标记点4A、第二发光标记点4B、第三发光标记点4C和第四发光标记点4D,其中第一发光标记点4A、第二发光标记点4B之间的连线与第三发光标记点4C、第四发光标记点4D之间的连线相垂直并交于一点即0点,且第一发光标记点4A、第二发光标记点4B与0点之间的距离不同。 The operation plate is fixed on the tool 4 is provided with four light emitting marker, i.e., a first luminescent marker on the plate 4A, 4B the second luminescent markers, luminescent markers third and fourth light emitting marker 4C 4D, wherein the first luminescent marker. 4A, and the third connecting points between the light emitting second luminescent marker 4B 4C, a fourth luminescent label connecting point between the perpendicular and intersect at one point 4D i.e. 0:00, and the first luminescent marker 4A, 4B and the second luminescent marker the distance between the zero point different. 双目视觉测量装置3由两个摄像机组成,两摄像机之间相距l_2m,且两摄像机之间的夹角为15-25°。 Binocular vision measuring device 3 composed of two cameras, l_2m distance between two cameras, and the angle between the two cameras is 15-25 °. [0037] 利用上述系统实现实现工业机器人运动控制的方法如下所述:[0038] (1)对双目视觉测量装置进行建模与标定:[0039] 利用这两个摄像机测量空间点的三维坐标必须首先对其进行标定,对每个摄像机建立针孔成像模型,模型如下: U βΆ +rIuO β/2 +^0 风r3 +r9M0 fNjx+tzu0[0040] ρ V = 0yr5 +r,V0 fl^yh +^9 V0 JNyty +^V0 1 _ ri r9 K[0041] 其中,Γι〜r9是摄像机坐标系到世界坐标系的旋转矢量,tx,ty,tz是平移量,f是焦距,U0, V0是计算机图像中心位置,以上这些参数是未知参数,需要通过标定来确定。 [0037] The method to achieve the realization of the industrial robot motion control system using the following: [0038] (1) measurement of binocular vision modeling and calibration means: [0039] three-dimensional coordinate measuring spatial points two cameras it must first be calibrated imaging model established for each pinhole camera model is as follows: U βΆ + rIuO β / 2 + ^ 0 wind r3 + r9M0 fNjx + tzu0 [0040] ρ V = 0yr5 + r, V0 fl ^ yh + ^ 9 V0 JNyty + ^ V0 1 _ ri r9 K [0041] wherein, Γι~r9 camera coordinate system is a rotating vector to a world coordinate system, tx, ty, tz is the shift amount, f is the focal length, U0, V0 the computer image is the central position, these parameters are unknown parameters, need to be determined by calibration. (U, V)是计算机图像像素,(xw,yw,zw)是三维世界坐标系中的坐标,利用同一个平面网格靶标同时对两个摄像机进行标定,求出各自模型中的未知参数,并确定双目视觉测量装置坐标系OwXwYwZw ;[0042] (2)发光标记点的识别与三维坐标的确定:[0043] 发光标记点的分布如图2所示,交点0点到这四个发光标记点即4A、4B、4C、4D的距离都是已知的,在两个摄像机中同时拍摄这四个标记点,由于4A点、4B点到0点的距离不同,据此可以识别一个标记点在两幅图像中的位置,实现匹配,将两个单目视觉模型联立求解可得每个发光标记点在双目视觉测量装置坐标系owxwywzw中的三维坐标;[0044] (3)操作工具末端三维坐标的确定:[0045] 根据四个发光标记点的坐标可以确定操作工具末端的三维坐标,如图2,在发光标记点平面内建立二维坐标系OtXtYt,即以过第三发光标记点4C、第 (U, V) is a computer image pixels, (xw, yw, zw) is the three-dimensional coordinates in the world coordinate system, a plane using the same target at the same time two grid cameras are calibrated to determine the unknown parameters of the respective model, and determining binocular vision measuring apparatus coordinate system OwXwYwZw; [0042] (2) identifying the three-dimensional coordinates of the luminescent marker is determined: [0043] distribution of luminescent markers is shown in Figure 2 to 0:00 intersection four light emitting that marker 4A, 4B, from 4C, 4D are known, in which two cameras simultaneously shoot four markers, since the points 4A, 4B points different distances to zero point, whereby a tag can be identified in two point position in the image, to achieve matching, the two monocular vision model solving the simultaneous availability of three-dimensional coordinates of each marker in the emission binocular vision measurement apparatus coordinate system in owxwywzw; [0044] (3) operation determining the three-dimensional coordinates of the tool tip: [0045] may be determined based on the coordinates of the four light emitting marker three-dimensional coordinates of the end of the operation tool, as shown in FIG 2, a two-dimensional coordinate system is established within the luminescent marker OtXtYt plane, i.e. through the third light emitting marker 4C, the first 发光标记点4D点的连线为&轴,过第一发光标记点4A、第二发光标记点4B的连线为Yt轴,然后将操作工具的末端放在锥孔内,使操作工具绕该锥孔旋转,这样操作工具末端的位置不变,发光标记点至少旋转到四个位置,如图3,在每个位置下根据四个发光标记点的三维坐标可确定Ot的坐标,根据四个位置下的Ot的坐标拟合球得到球心坐标Os,该球心坐标即为操作工具末端在下的坐标;[0046] (4)人工示教过程:[0047] 示教过程是人工示教,在操作工具上固定发光标记点,操作工具可以从机器人末端取下来,用人手手持灵活运动,走出实际工作时需要的运动轨迹,如图1所示,焊接时焊枪末端沿被操作工件6的焊缝7运动的轨迹;在人工示教的过程中用双目视觉测量装置实时记录操作工具上每个发光标记点的运动轨迹,该运动轨迹是在视觉坐标系下的三维离散点,该 Connection luminescent marker & 4D points is the shaft, through the first luminescent marker. 4A, 4B connecting the second luminescent marker is Yt axis, then the end of the tapered bore of the operating tool on the working tool about the cone rotational position of the tool tip so that the operation does not change, at least to the point of the rotary luminescent label four positions, as shown in FIG 3 may be determined at each of the coordinates Ot of the three-dimensional position coordinates of the four points of the luminescent label, according to four coordinates Ot fitting position under the ball sphere center coordinates obtained Os, the center of the sphere is the coordinate of the lower end of the tool coordinate operation; [0046] (4) artificial teach procedure: [0047] a manual teaching procedure teachings required when operating in the tool holder luminescent markers, the operating tool can be taken down from the end of the robot, hand-held flexible by hand motion, work out the actual trajectory, shown in Figure 1, the end of the welding torch along a welding workpiece 6 is operated 7 seam motion trajectory; binocular luminescent markers each trajectory on the real time recording operating tool by means of artificial vision measurement teaching process, which is a three-dimensional trajectory discrete points in the visual coordinate system, the 运动轨迹可以在同种规格不同精度的个体机器人上使用,也可以在不同类型甚至结构完全不同的机器人上使用;[0048] 如图4,在第一发光标记点4A位置处,根据球心坐标Os到坐标平面OtXtYt的距离, 将位置4A处的发光标记点的二维坐标系拓展为三维坐标系OtXtYJt,则球心坐标Os到坐标平面OtXtYt的距离为该三维坐标系的τΎ坐标,Os在标记点)(ΤΥΤ坐标平面的投影点的坐8标即为工具末端在标记点的X和Y坐标,这样可以确定操作工具末端在标记点三维坐标系OtXTYTZt下的坐标,从而可以由发光标记点的轨迹确定工具末端的运动轨迹;[0049] 通过CAD软件或CAM软件对人工示教过程中生成的示教轨迹进行光顺处理,然后输入到机器人控制器2中,供机器人学习过程中的运动控制使用;[0050] (5)机器人学习过程:[0051] 人工示教结束后,将操作工具5固定在机器人1的末端,通过控 Trajectory of the robot can be used on the same subject in different accuracy specifications, may be used on different types or even a completely different structure of the robot; 4A at a position [0048] FIG. 4, the first light emitting marker, according to the sphere center coordinates Os OtXtYt distance coordinate plane, the two-dimensional coordinate system of the luminescent marker 4A is extended to a position at a three dimensional coordinate system OtXtYJt, Os from the sphere center coordinates to the coordinate plane for τΎ OtXtYt coordinate three-dimensional coordinates, the Os marker) (ΤΥΤ coordinate plane projected point is the coordinates of 8 standard X and Y coordinates of the tool tip in the marker, so that the coordinates of the operating tool can be determined at the end of the three-dimensional coordinate system OtXTYTZt marker, so that the luminescent marker can be determining a locus of the tool tip trajectory; [0049] fairing for teaching artificial generated during a teaching trajectory by CAD software or CAM software, and then input to the robot controller 2, the learning process for the robot movement in using control; [0050] (5) the robot learning process: [0051] after the artificial teaching, tool 5 is fixed to the operating end of the robot 1 by controlling 制机器人1运动使操作工具5再次走出人工示教时走出的轨迹,该过程中,通过双目视觉测量装置3观测发光标记点的位置,并输入机器人控制器2中,机器人控制器2实时计算发光标记点4的轨迹, 以发光标记点4的当前位置与人工示教时发光标记点4的位置差,通过定位运动控制和定方向运动控制使操作工具5的末端沿人工示教时机器人末端的轨迹运动,同时还可以保证操作工具5的姿态与人工示教时的姿态相同;本发明使用的机器人为六轴机器人,六轴机器人的第一至三轴主要用来完成定位置运动,第四至六轴主要完成定方向运动,利用第一至三轴所建立的理想机器人模型可将三个轴的转动转化为直线运动;利用第四至六轴所建立的理想机器人模型可实现操作工具的旋转。 Operating the robot system 1 so that the movement out of the tool 5 out teaching artificial track again, this process, by the position measuring means 3 binocular vision observation point luminescent label, and enter the robot controller 2, the robot controller 2 calculates in real time robot end light emitting marker locus 4, the current position of the luminescent marker 4 at the position of the point 4 is a difference between artificial teaching emission, by positioning the motion control and the predetermined direction movement control so that the operating end of the tool 5 along artificial teachings the trajectory, but also ensures that the operating tool posture when the posture and 5 teach the same artificial; robot of the present invention is a six-axis robot, six-axis robot to a first triaxial mainly used to complete a given position, the first four to six complete set main axis direction, over the three-axis robot model using the first to be established three rotation axes converted into a linear motion; over the six axis robot model using the fourth established operating tool can be achieved rotation. 下面具体介绍定位运动控制过程和定方向运动控制过程。 The following detailed description given positioning controls and process motion direction control process. [0052] 在定位运动控制过程中,如图5所示的曲线为人工示教形成的操作工具末端的运动轨迹,操作工具的当前位置定义为当前点,使操作工具从当前点出发向目标点E靠近,当前点和目标点的坐标都是在双目视觉测量装置坐标系owxwywzw下,运动控制过程中,控制机器人1的第一至三轴转动使机器人沿Z方向运动,并实时计算操作工具末端的位置,求出末端当前位置与目标位置之间的差,如图5,Z值由小到大变化时该差值变小,当该差值最小时末端离目标点最近,记下这时Z坐标;然后控制机器人的第一至三轴转动使机器人沿X向运动,并记录判断操作工具末端到目标点的距离,记录距离最小时的X坐标,接下来使机器人的第一至三轴转动使机器人沿Y向运动,经过前面沿Z向和X向的运动,沿Y向运动后操作工具末端即可接近目标点。 The current position of the operating tool is defined trajectory formed artificial teachings [0052] In the positioning control process in motion, the curve shown in Figure 5 the end of the current operating point of the tool, the tool allows the operator starting from the current point to the target point E close to the coordinates of the current point and the target point is measured under a binocular vision apparatus coordinate system owxwywzw, motion control process, the three-axis control robot 1 to the first rotation movement of the robot so that the Z direction, and calculates in real time the operating tool the position of the end, obtain the difference between the end of the current position and the target position, as shown in FIG 5, when the value of Z changes from small to large the difference becomes smaller, when the difference from the target end point of the most recent hour, note that Z coordinates; and controlling the robot to the first three-axis rotational motion of the robot in the X direction, and the recording operation is determined from the tool tip to the target point, recording the minimum X coordinate distance of the robot next three first the robot is rotated in the Y-axis direction movement, after the previous movement along the Z-direction and X direction, Y direction to the rear end of the operating tool moving closer to the target point. [0053] 在定方向运动控制过程中,如图6所示,绕机器人的第四至六轴转动可改变操作工具5的方向即姿态。 [0053] in a predetermined direction control process, as shown in Figure 6, about a fourth of the robot can be changed to six rotational direction of the operating shaft 5, i.e. the tool posture. 以Yt的方向表示操作工具的方向,从当前点出发,先绕第四轴旋转, 当Yt与目标点E的矢量方向夹角最小时记下第四轴的角度;再绕第五轴旋转,当Yt与目标点E的矢量方向夹角最小时记下第五轴的角度;最后绕第六轴旋转,当Yt与目标点E的矢量方向夹角最小时记下第六轴的角度,这时Yt的方向与目标点E的方向非常接近。 Represents a direction of the operating tool Yt direction, starting from the current point, to about a fourth axis of rotation, when the angle of the target point vector direction Yt E note of the minimum angle of the fourth shaft; rewind fifth axis, when the angle between the vector direction of the target point Yt E note of the minimum angle of the fifth shaft; and finally about a sixth axis when the vector direction of the target point E Yt minimum angle note sixth shaft at an angle, which the direction of the target point E when Yt is very close. [0054] 定位运动控制过程每进行一步会使操作工具末端接近目标点,同样定方向运动控制过程每进行一步也会使操作工具的姿态接近人工示教时的姿态。 [0054] positioning controls each process step performed when the gesture operation tool tip will approach the target point, given the same direction for each step of the process control operation tool posture also makes teaching artificial close. 定位运动控制和定方向运动控制的过程交替进行使机器人的位置和姿态都接近人工示教的位置和姿态。 Process predetermined direction and positioning controls alternating motion control of the robot position and posture are close Artificial taught position and attitude. [0055] 人工示教过程、定位运动控制过程和定方向运动控制过程中,对发光标记点4或操作工具5末端的定位都是在双目视觉测量装置坐标系owXwywzw之下的。 [0055] doing the teaching process, positioning and motion control is given direction control process, a luminescent label point 4 or 5 the end of the operation tool is positioned below the binocular vision of the measuring device coordinate system owXwywzw. 运动过程中从当前点到目标点的逼近算法也是在双目视觉测量装置坐标系下,因此对机器人的运动控制精度没有要求,对工具坐标系与机器人坐标系的定位关系没有要求,只要按照机器人的理论模型使第一至三轴实现直线运动,第四至六轴实现旋转运动即可,从根本上避免了常规的离线编程示教时标定机器人模型和工具坐标系的极其严格的要求,同时机器人模型相对简单,完全以机器人设计时的理论模型做控制模型,不需要对机器人的精度进行特别调试。 During the movement from the current point to the target point in the approximation algorithm is binocular measurement device coordinate system, and therefore the motion of the robot control accuracy is not required, the positional relationship of the tool coordinate system and the robot coordinate system is not required, as long as a robot in accordance with to the theoretical model of the first three-axis linear motion, rotational motion of the fourth to six axes can be achieved, avoiding the extremely strict requirements calibrated robot model and the tool coordinate system when a conventional off-line programming teaching fundamental, while robot model is relatively simple, entirely theoretical model of the robot designed to make the control model, does not require special debugging accuracy of the robot. [0056] 视觉测量装置可以由多台机器人共用,通过定位运动控制过程和定方向运动控制过程形成稳定的运动路径后,只要机器人具有较好的重复性,以及操作工具固定可靠,没有位置变化就可以沿该路径反复运动完成同一个任务,因此可以实现多台机器人共用双目视觉测量装置,节省成本。 After [0056] The vision measurement device may be shared by a plurality of robot motion control process and the predetermined direction during formation of a stable movement path by the positioning motor control, as long as the robot has good repeatability, and reliable operation of the tool holder, there is no change to the position repetitive motion can accomplish the same task along the path, it is possible to realize many common robot binocular vision measuring apparatus, saving the cost. [0057] 本发明所采用的六轴机器人可以由七轴机器人或并联机器人代替。 [0057] The six-axis robot used in the present invention may be replaced by a seven-axis robot or robots parallel. 本实施例中, 所述的双目视觉测量装置也可以由单目视觉测量装置或三目视觉测量装置等代替。 In this embodiment, the binocular vision measurement means may be replaced by monocular vision apparatus trinocular vision measurement apparatus or the like. 当采用单目视觉测量装置时,各发光标记点之间的距离有严格的规定;而采用双目视觉测量装置、 三目视觉测量装置或更多目视觉测量装置时,对各发光标记点之间的距离没有要求,并且采用的视觉测量装置的目数越多,可以从更多角度对发光标记点进行观察,机器人允许变化的范围增大。 When monocular vision measuring apparatus, the distance between the luminescent marker is strictly regulated; binocular vision when the measuring apparatus, three or more monocular vision monocular vision measuring apparatus measuring means for each light emitting point of the marker the distance between is not required, and the more the number of vision measurement apparatus employed, can be observed from the light-emitting marker more angles, the allowable variation range of the robot is increased. [0058] 实施例2[0059] 如图7所示,与实施例1不同的是,所述的操作工具上固定有五个发光标记点,分别是第一标记点4A、第二标记点4B、第三标记点4C、第四标记点4D和第五标记点4E。 [0058] Example 2 [0059] 7, different from Embodiment 1 is fixed to the five light emitting markers on the operating tool, respectively a first marker. 4A, 4B of the second marker The third marker 4C, 4D and fourth marker fifth marker 4E. 其中第一标记点4A、第二标记点4B的连线与第三标记点4C、第四标记点4D的连线相垂直,且相交于一点,第五标记点4E位于该交点上。 Wherein the first marker. 4A, the second connecting point and the third marker marker 4B, 4C, 4D fourth marker connecting perpendicular, and intersecting at a point, a fifth marker located on the intersection point of 4E. 分布的标记点越多,单个发光标记点对动作精确性的影响越小。 The more markers distribution, the less influence the operation of a single luminescent marking point accuracy. [0060] 其它同实施例1。 [0060] Other in Example 1. [0061] 实施例3[0062] 如图8所示,与实施例1不同的是,所述的操作工具上固定有六个发光标记点,分别是第一标记点4A、第二标记点4B、第三标记点4C、第四标记点4D、第五标记点4E和第六标记点4F。 [0061] Example 3 [0062] As shown in Example 81 is different from, six fixed point on the luminescent marker operating tool, respectively a first marker. 4A, 4B of the second marker The third marker 4C, the fourth marker 4D, 4E fifth and sixth markers markers 4F. 其中第一标记点4A、第二标记点4B的连线与第三标记点4C、第四标记点4D的连线相垂直,且相交于一点,第五标记点4E位于该交点上,第六标记点4F位于第二标记点4B的正下方。 Wherein the first marker. 4A, 4B of the second marker and the third marker connecting 4C, 4D fourth marker connecting perpendicular, and intersecting at a point, the fifth point markers located on the intersection 4E, sixth 4F marker located directly below the second marker 4B. [0063] 操作工具上也可以设置更多的发光标记点,发光标记点均沿第一标记点4A与第二标记点4B的连线、以及第三标记点4C、第四标记点4D的连线设置。 [0063] The operation tool may also be provided on more luminescent markers, luminescent markers are located along a first marker and the second marker connections 4A and 4B, and the third marker 4C, 4D, and even fourth marker line settings. [0064] 其它同实施例1。 [0064] Other in Example 1.

Claims (3)

1. 一种基于视觉定位的工业机器人控制方法,其特征在于该方法包括以下步骤:(1)对视觉测量装置进行建模与标定:对视觉测量装置的每个摄像机建立针孔成像模型,模型如下: An industrial robot control method based on visual localization, characterized in that the method comprises the steps of: (1) visual modeling and calibration of the measuring device: establishing pinhole imaging model for each camera vision measuring apparatus, Model as follows:
Figure CN102135776BC00021
其中,T1〜r9是摄像机坐标系到世界坐标系的旋转矢量,tx,ty,tz是平移量,f是焦距, uQ,ν。 Wherein, T1~r9 a camera coordinate system to the world coordinate system of the rotating vector, tx, ty, tz is the shift amount, f is the focal length, uQ, ν. 是计算机图像中心位置,(u, ν)是计算机图像像素,(xw,yw,zw)是三维世界坐标系中的坐标,利用同一个平面网格靶标同时对各个摄像机进行标定,求出各个模型中的位置参数, 并确定由各摄像机测量空间点构成的视觉测量装置坐标系owxwywzw ;(2)发光标记点的识别与三维坐标的确定:各摄像机分别拍摄发光标记点,识别发光标记点在各幅图像中的位置,并分别匹配,将各个单目视觉模型联立求解可得到每个发光标记点在视觉测量装置坐标系owxwywzw中的三维坐标;(3)操作工具末端三维坐标的确定:在发光标记点平面内建立二维坐标系OtXtYt,即以过第三发光标记点GC)、第四发光标记点(4D)的连线为&轴,过第一发光标记点(4A)、第二发光标记点(4B)的连线为Yt轴, 然后将操作工具的末端放在锥孔内,使操作工具末端的位置固定,操作工具绕该锥孔旋转, 至少旋 Is a computer image center position, (u, ν) is a computer image pixels, (xw, yw, zw) is the three-dimensional coordinates in the world coordinate system, using the same target grid plane while each camera calibration, each model is obtained the position parameter measuring means and a visual determination by the camera coordinate system owxwywzw dots of the measurement space; (2) identifying and determining three-dimensional coordinates of the luminescent marker: each camera shot luminescent markers, luminescent markers identified in the images in positions, respectively, and match the respective monocular vision model solved simultaneously to obtain three-dimensional coordinates of each marker in the emission measuring device coordinate system, the visual owxwywzw; determining (3) the end of the three-dimensional coordinates of an operating tool: in establish the two-dimensional coordinate system OtXtYt luminescent markers plane, i.e. to the third luminescent marker through the GC), a fourth luminescent marker (4D) is & shaft connection, through the first luminescent marker (. 4A), a second luminescent marker (4B) for the connection Yt axis, then the end of the operation tool on the cone bore, the position of the tool tip of the fixing operation, the operation tool rotating about the tapered bore, at least spin 到四个位置,在每个位置下根据各发光标记点的三维坐标可确定Ot的坐标,根据至少四个位置下的Ot的坐标拟合得到球心坐标0S,该球心坐标即为操作工具末端在视觉测量装置坐标系owxwywzw下的三维坐标;(4)人工示教过程:将操作工具从机器人末端取下,用人手手持灵活运动,走出实际工作时需要的运动轨迹,在该过程中用视觉测量装置实时记录操作上每个发光标记点的运动轨迹,该运动轨迹是在视觉测量装置坐标系owxwywzw下的三维离散点,由发光标记点的轨迹确定操作工具末端的运动轨迹以及操作工具的姿态;(5)机器人学习过程:人工示教结束后,再将操作工具(¾固定在机器人(1)的末端,通过控制机器人(1)运动使操作工具(¾再次走出人工示教时走出的轨迹,该过程中,通过视觉测量装置观测发光标记点⑷的位置,并输入机器人控制器⑵中, To four positions, at each position may be determined based on the coordinates of the three-dimensional coordinates Ot luminescent marker to obtain the coordinates of the sphere center coordinates 0S Ot fitting at least four locations, the coordinates of the center of the sphere is the operation tool end of the three-dimensional coordinates measuring apparatus in a visual coordinate system owxwywzw; and (4) artificial teaching procedure: the required when the operating tool is removed from the end of the robot, hand-held flexible by hand motion, work out the actual trajectory, using the procedure in each trajectory luminescent marker on the real time recording operating vision measuring apparatus, which is a three-dimensional trajectory discrete points in a visual coordinate measuring apparatus owxwywzw determine the trajectory of the tool tip by the operation of the light emitting marker locus and an operation tool posture; (5) the robot learning process: after artificial teachings out again when the operating tool (¾ fixed to the end of the robot (1) by controlling the robot (1) so that movement of the operation tool (¾ out again teachings artificial track, this process, by the position measuring means visual observation of the luminescent marker ⑷, and enter the robot controller ⑵, 器人控制器⑵根据发光标记点的位置实时计算操作工具(5)末端的位置以及操作工具(5)的姿态,以操作工具(5)末端的当前位置与人工示教过程操作工具(¾末端的位置的差、以及操作工具(5)的当前姿态与人工示教过程操作工具(5)的姿态的差作为机器人控制的反馈信息,通过定位运动控制和定方向运动控制的过程交替使操作工具(5)的末端沿人工示教时机器人末端的轨迹运动,同时在每个末端位置下使操作工具(5)的姿态与人工示教过程时的姿态相同。 ⑵ person is calculated in real time controller according to the position of the operation tool luminescent marker (5) and a position of an operating tool (5) end of the gesture, to operate the tool (5) end of the current position of the operating tool during the teaching artificial (¾ end difference posture difference of position, and operating means (5) of the current attitude and artificial teaching during operation of the tool (5) as the feedback information of the robot control, the process is controlled by positioning controls and given direction alternately bringing the operation tool (5) the tip end of the trajectory of the robot along the teaching artificial, while the working tool (5) at each end position and posture of the posture when doing the same teaching process.
2.根据权利要求1所述的基于视觉定位的工业机器人控制方法,其特征在于:所述的定位运动控制过程中,将操作工具末端的当前位置定义为当前点,使操作工具末端从当前点出发向目标点靠近,当前点和目标点的坐标都是在视觉测量装置坐标系owxwywzw下,控制带有操作工具(5)的机器人(1)的第一至三轴转动使机器人沿Z方向运动,并实时计算操作工具末端的位置,求出末端当前位置与目标位置之间的差,当工具末端离目标点最近时, 记下这时Z坐标;然后控制机器人的第一至三轴转动使机器人沿X向运动,并记录判断操作工具末端到目标点的距离,记录距离最小时的X坐标,接下来使机器人的第一至三轴转动机器人沿Y向运动,沿Y向运动后操作工具末端最接近目标点。 The control industrial robot vision-based positioning method according to claim 1, wherein: said motion positioning control process, the current position of the tool tip is defined for the current operating point, the operating end of the tool from the current point starting near the target point, the coordinates of the current point and the target point is in the measuring device coordinate system, the visual owxwywzw, a robot with an operating tool (5) (1) to the first three-axis rotational motion in the Z direction so that the robot and real-time computation of the position of the operating end of the tool obtains a difference between the current position and the target position of the end, when the tool tip recently, note the time from the target point Z-coordinate; and controlling the robot to a first rotation causes the triaxial robot motion along the X direction, and the recording operation is determined from the tip of the tool to the target point, recording the minimum X coordinate distance, followed by the first rotation axis robot to robot motion along the Y direction, the Y-direction movement of the operating tool the end closest to the target point.
3.根据权利要求1所述的基于视觉定位的工业机器人控制方法,其特征在于:所述的定方向运动控制过程中,以Yt的方向表示操作工具的方向即姿态,从当前点出发,先绕机器人的第四轴旋转,当Yt与目标点的矢量方向夹角最小时记下第四轴的角度;再绕第五轴旋转,当Yt与目标点的矢量方向夹角最小时记下第五轴的角度;最后绕第六轴旋转,当Yt与目标点的矢量方向夹角最小时记下第六轴的角度,这时Yt的方向接近目标点的方向。 3. Industrial robot control method based on visual localization, characterized according to claim 1: the predetermined direction of movement of the control process, Yt direction indicates the direction of the operating tool posture i.e., starting from the current point, the first about a fourth axis of the robot, when the vector direction of the target point Yt angle note the minimum angle of the fourth shaft; rewind fifth shaft rotation, when the angle Yt vector direction of the target point is minimum in mind Dir axis angle; and finally about a sixth axis when the vector direction of the target point angle Yt minimum note sixth shaft at an angle, then the direction Yt direction close to the target point.
CN2011100265297A 2011-01-25 2011-01-25 Industrial robot control method based on visual positioning CN102135776B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100265297A CN102135776B (en) 2011-01-25 2011-01-25 Industrial robot control method based on visual positioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100265297A CN102135776B (en) 2011-01-25 2011-01-25 Industrial robot control method based on visual positioning

Publications (2)

Publication Number Publication Date
CN102135776A CN102135776A (en) 2011-07-27
CN102135776B true CN102135776B (en) 2012-06-13

Family

ID=44295580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100265297A CN102135776B (en) 2011-01-25 2011-01-25 Industrial robot control method based on visual positioning

Country Status (1)

Country Link
CN (1) CN102135776B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041180A1 (en) * 2012-09-17 2014-03-20 Areva Wind Gmbh Lifter and method for handling a rotor blade, rotor blade for a wind generator and method for marking a rotor blade, system comprising a lifter and a rotor blade
CN104942789A (en) * 2015-06-12 2015-09-30 邓莉莉 Four-shaft transfer robot

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608969B (en) * 2012-03-02 2014-04-23 北京理工大学 Cascade robot hand and eye registration control method based on infrared optical alignment
CN102764929B (en) * 2012-07-23 2014-09-24 清华大学 Elliptical orbit directional tangential line constant-speed welding robot device
CN102806560B (en) * 2012-08-24 2014-08-06 电子科技大学 Method capable of automatically eliminating motion accumulated error of robot
CN102841559B (en) * 2012-09-26 2015-09-02 苏州工业园区职业技术学院 Dispensing four-axis robot low speed servo control system
CN102962549B (en) * 2012-11-26 2014-04-02 清华大学 Robot control method for welding along any curve trace in vertical plane
CN103077640A (en) * 2013-01-09 2013-05-01 北京石油化工学院 Three-dimensional (3D) auxiliary demonstration system for welding of robot
CN103495807B (en) * 2013-09-27 2015-08-19 重庆大学 Multi-robot fiber laser cutting system
CN104515502A (en) * 2013-09-28 2015-04-15 沈阳新松机器人自动化股份有限公司 Robot hand-eye stereo vision measurement method
CN103759635B (en) * 2013-12-25 2016-10-26 合肥工业大学 Independent of the robot-Precision measuring robot scanning detection method
CN105333819A (en) * 2014-08-15 2016-02-17 苏州北硕检测技术有限公司 Robot workpiece assembly and form and location tolerance detection system and method based on face laser sensor
CN104438095A (en) * 2014-12-12 2015-03-25 杭州郝姆斯食品有限公司 Automatic sorting and shipping equipment and sorting and shipping method
CN106610666A (en) * 2015-10-22 2017-05-03 沈阳新松机器人自动化股份有限公司 Assistant robot based on binocular vision, and control method of assistant robot
CN106643479A (en) * 2015-10-30 2017-05-10 柯昆(昆山)自动化有限公司 Robot TCP precision detection system based on machine vision
CN105547172B (en) * 2016-01-06 2018-05-01 上海大学 Illumination systems and methods based on needle Measurement industrial robot repeatability
CN105499865A (en) * 2016-01-22 2016-04-20 广西大学 Planar welding manipulator with function of automatic track seeking
CN105598970B (en) * 2016-02-01 2017-11-14 北京航空航天大学 Closed loop robot system and control method
CN105834557B (en) * 2016-05-27 2018-10-16 廊坊智通机器人系统有限公司 Weld seam straight tracking method offline
CN106247932B (en) * 2016-07-25 2019-03-12 天津大学 A kind of online error-compensating apparatus of robot based on camera chain and method
CN106228563B (en) * 2016-07-29 2019-02-26 杭州鹰睿科技有限公司 Automatic setup system based on 3D vision
CN106468572B (en) * 2016-08-30 2018-10-16 凌云光技术集团有限责任公司 Multi-joint robot dynamic performance evaluation system
CN106546168A (en) * 2016-09-29 2017-03-29 上海航天精密机械研究所 Precise single-axis laser scan robot calibration method on basis of ball fitting and system
CN106541419B (en) * 2016-10-13 2019-01-25 同济大学 A kind of measurement method of robot trajectory's error
CN106780494A (en) * 2017-02-10 2017-05-31 云南电网有限责任公司电力科学研究院 Electrical-testing ground wire hanging robot visual positioning method
CN106844729A (en) * 2017-02-10 2017-06-13 云南电网有限责任公司电力科学研究院 Database for vision localization system of electricity testing and grounding wire installation robot
CN106846418A (en) * 2017-02-10 2017-06-13 云南电网有限责任公司电力科学研究院 Electricity-verification-and-ground-wire-hanging-robot visual positioning system
CN107727026A (en) * 2017-10-18 2018-02-23 北方工业大学 Double-robot cooperative work-orientated workpiece coordinate system calibration method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559356A (en) 2004-03-11 2005-01-05 上海交通大学 Method for connecting space object positioned by visible marking points
CN101015915A (en) 2007-03-08 2007-08-15 上海交通大学 Magnetic density detecting robot with self-locate function and telescope joint
CN101226640A (en) 2007-12-21 2008-07-23 西北工业大学 Method for capturing movement based on multiple binocular stereovision
CN101261118A (en) 2008-04-17 2008-09-10 天津大学 Rapid automatized three-dimensional appearance on-line measurement method and system based on robot
WO2010003289A1 (en) 2008-07-11 2010-01-14 中国科学院沈阳自动化研究所 Apparatus and method for robots tracking appointed path with high precision
CN101949687A (en) 2010-09-19 2011-01-19 天津大学 Detection method of automobile door based on vision measurement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1559356A (en) 2004-03-11 2005-01-05 上海交通大学 Method for connecting space object positioned by visible marking points
CN1256072C (en) 2004-03-11 2006-05-17 上海交通大学 Method for connecting space object positioned by visible marking points
CN101015915A (en) 2007-03-08 2007-08-15 上海交通大学 Magnetic density detecting robot with self-locate function and telescope joint
CN101226640A (en) 2007-12-21 2008-07-23 西北工业大学 Method for capturing movement based on multiple binocular stereovision
CN101261118A (en) 2008-04-17 2008-09-10 天津大学 Rapid automatized three-dimensional appearance on-line measurement method and system based on robot
WO2010003289A1 (en) 2008-07-11 2010-01-14 中国科学院沈阳自动化研究所 Apparatus and method for robots tracking appointed path with high precision
CN101949687A (en) 2010-09-19 2011-01-19 天津大学 Detection method of automobile door based on vision measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041180A1 (en) * 2012-09-17 2014-03-20 Areva Wind Gmbh Lifter and method for handling a rotor blade, rotor blade for a wind generator and method for marking a rotor blade, system comprising a lifter and a rotor blade
EP2708487B1 (en) * 2012-09-17 2016-01-20 Areva Wind GmbH Lifter and method for handling a rotor blade and system comprising a lifter and a rotor blade
CN104942789A (en) * 2015-06-12 2015-09-30 邓莉莉 Four-shaft transfer robot
CN104942789B (en) * 2015-06-12 2017-04-19 邓莉莉 One kind of four-axis handling robot

Also Published As

Publication number Publication date
CN102135776A (en) 2011-07-27

Similar Documents

Publication Publication Date Title
Corke et al. A new partitioned approach to image-based visual servo control
Kofman et al. Teleoperation of a robot manipulator using a vision-based human-robot interface
EP1607194B1 (en) Robot system comprising a plurality of robots provided with means for calibrating their relative position
US6044308A (en) Method and device for robot tool frame calibration
US7532949B2 (en) Measuring system
JP4191080B2 (en) Measuring device
US20110071675A1 (en) Visual perception system and method for a humanoid robot
US20050273202A1 (en) Method and device for improving the positioning accuracy of a manipulator
EP1711317B1 (en) Machine vision controlled robot tool system
US8706300B2 (en) Method of controlling a robotic tool
Sharma et al. Motion perceptibility and its application to active vision-based servo control
CN101456182A (en) Intelligent robot welding device using large-scale workpiece
JP2013186088A (en) Information processing device and information processing method
EP2350750B1 (en) A method and an apparatus for calibration of an industrial robot system
JP2013184279A (en) Information processing apparatus, and information processing method
KR20040106251A (en) Method of controlling the welding of a three-dimensional construction
KR20010081275A (en) method and system for teaching welding robot
US7813830B2 (en) Method and an apparatus for performing a program controlled process on a component
EP2783812A2 (en) Robot device and method for manufacturing an object
JP2004508954A (en) Positioning devices and systems
JP2005074600A (en) Robot and robot moving method
US20080027580A1 (en) Robot programming method and apparatus with both vision and force
DK2285537T3 (en) Device and method for computer-assisted generation of a manipulatorbane
US8504188B2 (en) Device and method for the computer-assisted generation of a manipulator path
US9197810B2 (en) Systems and methods for tracking location of movable target object

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01