CN102125972B - 结构钢高筒环锻件的辗轧成形方法 - Google Patents

结构钢高筒环锻件的辗轧成形方法 Download PDF

Info

Publication number
CN102125972B
CN102125972B CN2010105819552A CN201010581955A CN102125972B CN 102125972 B CN102125972 B CN 102125972B CN 2010105819552 A CN2010105819552 A CN 2010105819552A CN 201010581955 A CN201010581955 A CN 201010581955A CN 102125972 B CN102125972 B CN 102125972B
Authority
CN
China
Prior art keywords
rolling
die sleeve
servo
strip plate
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010105819552A
Other languages
English (en)
Other versions
CN102125972A (zh
Inventor
谢永富
王龙祥
邹彦博
崔一平
蒲思洪
陈祖祥
杜正荣
杨学明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Guizhou Anda Aviation Forging Co Ltd
Original Assignee
Guizhou Anda Aviation Forging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Anda Aviation Forging Co Ltd filed Critical Guizhou Anda Aviation Forging Co Ltd
Priority to CN2010105819552A priority Critical patent/CN102125972B/zh
Publication of CN102125972A publication Critical patent/CN102125972A/zh
Application granted granted Critical
Publication of CN102125972B publication Critical patent/CN102125972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种结构钢高筒环锻件的辗轧成形方法,为轧制成形薄壁及组织和性能优良的高筒环锻件,其技术方案为:先把经预热的随动模套和加热到变形温度的结构钢预轧坯套装进轧环机,由轧环机的主辊、芯辊、抱辊和上、下锥辊对随动模套和预轧坯进行定位;再启动轧环机,由其芯辊沿径向朝主辊方向作进给运动并与主辊一起以180kN~3800kN的轧制力在随动模套内辗轧预轧坯,使其以6mm/s~15mm/s的速度沿径向展宽,壁厚逐渐减小,其变形量达30%~50%后被辗轧成高筒环锻件,辗轧时上、下锥辊及两个抱辊不随预轧坯的径向展宽而外移。采用该方法轧制成形的结构钢高筒环锻件的壁厚最小值是25mm,高厚比的最大值是25,该锻件主要用于航空航天等领域使用的筒形壳体等回转体零部件。

Description

结构钢高筒环锻件的辗轧成形方法
技术领域
本发明涉及一种环形锻件的轧制成形方法,特别是涉及了结构钢高筒环锻件的辗轧成形方法。 
背景技术
采用结构钢制造的航空航天等领域使用的回转体零部件,如筒形壳体锻件等,由于锻件的壁厚较薄,高度较高,再加上锻件尺寸精度、性能及组织要求也较高,增加了轧制成形的难度。 
2008年10月8日公开的中国发明专利说明书CN 101279343A公开了一种不锈钢异形环锻件的辗轧成形方法,该方法把按规格下料的合金棒料经镦粗、冲孔、轧环制坯(不使用辗轧模具),再把坯料装进轧环机辗轧模具内辗轧成形,通过在轧环制坯过程中和在各工艺步骤中控制准确的变形量,轧制出了组织和性能良好的异形环锻件。采用该方法轧制壁厚较薄的结构钢高筒环锻件时,由于主辊的转动方向与预轧坯的转动方向不一致,轧制时辗轧模具的孔型与预轧坯之间产生激烈的摩擦不仅使轧制过程非常不稳定对生产造成影响,而且还容易导致预轧坯温度升高对合金的组织和性能产生影响,如出现组织变异、晶粒粗大等缺陷。 
在采用上述方法及直接使用轧环机的主辊和芯辊轧制(如上述方法中的轧环制坯)薄壁的结构钢高筒环锻件时,由于受轧环机的主辊等部件刚度的影响,加上薄壁高筒环锻件的结构刚度较差和加工余量较小,轧制过程中易导致预轧坯出现塑性失稳而产生轧扁、喇叭口等现象,造成环锻件形状和尺寸达不到设计使用或机加工要求而报废,而造成材料的浪费。而且,由于轧制时上、下锥辊及两个抱辊要随预轧坯的径向展宽而外移,增加了设备操作和控制的难度。 
辗轧过程中,预轧坯刚开始轧制时由于先向其转动方向一侧的抱辊偏移,再向另一侧的抱辊偏移,使预轧坯在轧制过程中有朝其两侧的抱辊左右摆动的现象,受抱辊扶持产生的反作用力影响,环锻件容易被轧扁而报废。而且由于轧环机的抱辊尺寸是一定的,其高度一般没有高筒环锻件的高度高,因此轧制过程中受抱辊的反作用在环锻件的外周面易出现由于抱辊的“辅轧”而形成台阶痕迹,对环锻件的形状及尺寸精度造成不良影响。
发明内容
本发明要解决的技术问题是提供一种采用随动模套来实现结构钢高筒环锻件的辗轧成形方法,采用该方法能够轧制出薄壁并具有优良组织和性能的高筒环锻件。 
为解决上述技术问题,本发明所述结构钢高筒环锻件的辗轧成形方法,其技术方案包括以下步骤: 
预热随动模套到230℃~280℃的温度,并加热结构钢预轧坯到1100℃~1200℃的变形温度; 
把所述随动模套和预轧坯装进轧环机,使随动模套套住预轧坯、预轧坯套住芯辊并且沿主辊和芯辊的中心距方向随动模套与主辊的外周面之间、随动模套的内环面与预轧坯的外周面之间、以及预轧坯的内环面与芯辊的外周面之间分别相切接触,随动模套被两个抱辊在其外周面扶持,上锥辊和下锥辊沿随动模套和预轧坯的上、下端面夹持随动模套和预轧坯; 
启动轧环机使其主辊旋转并驱动随动模套、预轧坯、芯辊和两个抱辊转动,同时由轧环机驱动上锥辊和下锥辊夹持住随动模套和预轧坯一起转动,芯辊沿径向朝主辊方向作进给运动并与主辊一起以180KN~3800KN的轧制力在随动模套内辗轧预轧坯,预轧坯以6mm/s~15mm/s的速度沿径向展宽,壁厚逐渐减小,其变形量达30%~50%后被辗轧成高筒环锻件,辗轧时上、下锥辊及两个抱辊不随预轧坯的径向展宽而外移。 
在采用上述方法辗轧不同截面形状的高筒环锻件时,所述随动模套的内环面形状是能够依高筒环锻件的外周面形状来调整的。 
并且,所述随动模套在设计时,其最小壁厚按下式计算: 
D0=L-D1-R1-R2
式中:D0为随动模套的最小壁厚; 
L为主辊与芯辊的最小中心距; 
D1为高筒环锻件的径向最小壁厚; 
R1为主辊的半径; 
R2为芯辊的半径。 
采用上述辗轧成形方法轧制成形的高筒环锻件,其壁厚最小值是25mm,高厚比的最大值是25。 
与现有技术相比,本发明的有益效果如下: 
本发明把经预热的随动模套和加热到变形温度的结构钢预轧坯套装进轧环机定位后,由其芯辊沿径向朝主辊方向作进给运动并与主辊一起在随动模套内辗轧预轧坯使其变形成形,获得了薄壁及组织和性能优良的高筒环锻件。 
辗轧过程中,由于随动模套只进行了预热处理,其在轧制过程中几乎是不会变形的。尽管轧制时主辊的转动方向与预轧坯的转动方向不一致,但由于在预轧坯和主辊之间隔了一层随动模套,并且预轧坯在随动模套内与其一起同向转动,克服了预轧坯与随动模套之间由于产生激烈的摩擦使轧制过程不稳定和易导致预轧坯温度升高的现象,从而有利于组织生产和获得优质锻件。 
辗轧过程中,由于预轧坯的外周面紧贴在随动模套的内环面上并与其一起同向、同步转动,避免了预轧坯与其转向相反的主辊刚性部件的影响,从而避免其出现塑性失稳而产生轧扁、喇叭口等现象,而且与预轧坯一起同向、同步转动的随动模套还可对预轧坯的外周面进行整圆,以防止其轧扁和出现喇叭口等现象,可实现精密轧制成形尺寸精度高的环锻件,节省原材料。 
辗轧过程中,由于预轧坯是套装在随动模套内,是由随动模套的外周面与两个抱辊的外周面直接接触,因此即使产生摆动现象也不会对随动模套内的预轧坯产生太大影响,而且也不会由于抱辊的“辅轧”使环锻件的外周面出现台阶痕迹。 
辗轧过程中,由于上、下锥辊及两个抱辊不随预轧坯的径向展宽而外移, 降低了对设备的控制和操作难度。 
以牌号为38CrA的结构钢为例: 
经检测该高筒环锻件的尺寸精度,达到了相应尺寸的3‰(千分之三)。 
经检测该高筒环锻件的室温拉伸性能,其抗拉强度为1050MPa(大于设计使用要求的1030MPa),屈服强度为935MPa~955MPa(大于设计使用要求的880MPa),断后伸长率为14%~19%(大于设计使用要求的12%),断面收缩率为61%~61.5%(大于设计使用要求的40%),冲击值为1363kJ/m2~1368kJ/m2(大于设计使用要求的590kJ/m2)。满足了设计使用要求。 
经检测该合金高筒环锻件的金相组织,达到了《航空用钢锻件》(HB5024-1989)行业标准的要求。 
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。 
图1是预轧坯的立体结构示意图。 
图2是随动模套和预轧坯的装机定位及辗轧状态示意图。 
图3是预轧坯辗轧成高筒环锻件的立体结构示意图。 
图4是采用本发明所述方法辗轧第一种异形截面高筒环锻件时沿其中心线的纵剖面结构状态图。 
图5是采用本发明所述方法辗轧第二种异形截面高筒环锻件时沿其中心线的纵剖面结构状态图。 
图6是采用本发明所述方法辗轧第三种异形截面高筒环锻件时沿其中心线的纵剖面结构状态图。 
具体实施方式
实施本发明所述的结构钢高筒环锻件的辗轧成形方法需要提供锻造加热炉、压力机、轧环机、机械手等设备。下面以我国材料牌号为38CrA的结构钢为例来详细说明该方法的具体实施方式: 
该合金的主要化学元素含量(重量百分比)为:含C量0.34%~0.42%、含Mn量0.50%~0.80%、含Si量0.17%~037%、含S量≤0.015%、含P量≤0.025%、含Cr量0.08%~1.10%、含Ni量≤0.40%、含Cu量≤0.25、余量为铁。 
该合金从棒料到生产出合格的高筒环锻件的工艺步骤如下: 
步骤1:制坯。 
把按规格下料的38CrA合金棒料经加热、镦粗、冲孔、拔长、预轧后制取预轧坯10°,其形状如图1所示。 
步骤2:装机。 
如图2所示,把随动模套4在锻造加热炉内预热到230℃~280℃后装进轧环机并平放在该机的底盘上(图中未示出),随动模套4套进轧环机的芯辊2,其外周面与轧环机的主辊1及两个抱辊3的外周面相切接触,两个抱辊3对随动模套4起扶持作用;同时把预轧坯10°在锻造加热炉内加热到1100℃~1200℃的变形温度后装进轧环机套进轧环机的芯辊2并套在随动模套4内后平放在该机的底盘上(图中未示出),随动模套4的外周面与主辊1的外周面之间、预轧坯10°的外周面与随动模套4的内环面之间、及预轧坯10°的内环面与芯辊2的外周面之间均沿芯辊2和主辊4的中心距方向相切接触;启动轧环机使其上锥辊5和下锥辊6沿随动模套4和预轧坯10°的上下端面夹持随动模套4和预轧坯10°,完成随动模套4和预轧坯10°的装机定位。装机时工件的装运主要通过机械手操作完成。 
步骤3:辗轧。 
启动轧环机使其主辊1按图2所示方向旋转,主辊1驱动随动模套4、预轧坯10°、芯辊2和两个抱辊3按图2所示的方向转动,同时由轧环机驱动上锥辊5和下锥辊6按图2所示方向转动并在随动模套4和预轧坯10°轧制过程中夹持该两个工件的上、下端面,使轧环机的两个抱辊3扶持住随动模套4的外圆周面;芯辊2沿径向朝主辊1方向作进给运动并与主辊1一起以180KN~3800KN的轧制力在随动模套4内辗轧预轧坯10°,预轧坯10°以6mm/s~15mm/s的速度沿径向展宽,其壁厚逐渐减小,上、下锥辊5和6以及两个抱辊3不随预轧 坯10°的径向展宽而外移。 
预轧坯10°在随动模套4内被辗轧产生连续局部塑性变形,当其变形量达30%~50%后被轧制成形为高筒环锻件10(如图3所示),关闭轧环机,所有转动部件停止后移开主辊1、上锥辊5和下锥辊6、两个抱辊3以及压在芯辊2顶部的轧环机悬臂,从芯辊2顶部取出随动模套4后再取出高筒环锻件10。 
高筒环锻件10终轧结束后进行正火加调质处理,即将锻件加热至860℃左右,空冷至室温,再将锻件加热至860℃左右,油冷至室温后,将锻件加热至500℃~590℃,水冷。 
在上述步骤1和步骤3中,该结构钢的终锻或终轧温度不小于850℃。 
所述变形量的计算方法为:变形量=[(预轧坯10°沿中心线的纵截面面积-高筒环锻件10沿中心线的纵截面面积)/预轧坯10°沿中心线的纵截面面积]×100%。 
在上述轧制过程中,为保证随动模套4在轧制过程中不变形和预轧坯10°能够在该模套内充分变形成形,该模套的最小壁厚按下式进行设计计算: 
D0=L-D1-R1-R2
式中:D0为随动模套4的最小壁厚; 
L为主辊1与芯辊2的最小中心距; 
D1为高筒环锻件10的径向最小壁厚; 
R1为主辊1的半径; 
R2为芯辊2的半径。 
采用上述辗轧方法轧制的该合金高筒环锻件10,其最小壁厚可达25mm,高厚(指壁厚)比最大可达25。 
经检测,采用上述方法辗轧成形的结构钢高筒环锻件10具有较高的尺寸精度和优良的内部组织及性能,完全满足了该合金锻件的设计使用要求。 
图4示出了采用上述辗轧成形方法辗轧第一种异形截面的结构钢高筒环锻件101时沿其中心线的纵剖面结构的状态,图中高筒环锻件101的外周面呈鼓包形状,对应该高筒环锻件101的异形截面形状,随动模套41的内环面和芯辊21的外周面形状作了相应的调整。 
图5示出了采用上述辗轧成形方法辗轧第二种异形截面的结构钢高筒环锻件102时沿其中心线的纵剖面结构的状态,图中在高筒环锻件102的下端面与其外周面相交处有一突起环,对应该高筒环锻件102的异形截面形状,随动模套42的内环面形状作了相应的调整,为清楚起见,对应标注了芯辊22的附图标记。 
图6示出了采用上述辗轧成形方法辗轧第三种异形截面的结构钢高筒环锻件103时沿其中心线的纵剖面结构的状态,图中在高筒环锻件103的下端面与其外周面相交处有一突起环并在其外周面的中上部也有一突起环,对应该高筒环锻件103的异形截面形状,随动模套43的内环面形状作了相应的调整,为清楚起见,并对应标注了芯辊23的附图标记。 
采用本发明提供的上述辗轧成形方法并不限于上述实施方式,对于不同截面形状的高筒环锻件,只需对应改变随动模套和芯辊的形状,按照上述方法便可辗轧出不同截面形状的高筒环锻件。 

Claims (4)

1.一种结构钢高筒环锻件的辗轧成形方法,其特征在于,包括以下步骤:
预热随动模套到230℃~280℃的温度,并加热结构钢预轧坯到1100℃~1200℃的变形温度;
把所述随动模套和预轧坯装进轧环机,使随动模套套住预轧坯、预轧坯套住芯辊,并且沿主辊和芯辊的中心距方向,随动模套与主辊的外周面之间、随动模套的内环面与预轧坯的外周面之间、以及预轧坯的内环面与芯辊的外周面之间分别相切接触,随动模套被两个抱辊在其外周面扶持,上锥辊和下锥辊沿随动模套和预轧坯的上、下端面夹持随动模套和预轧坯;
启动轧环机使其主辊旋转并驱动随动模套、预轧坯、芯辊和两个抱辊转动,同时由轧环机驱动上锥辊和下锥辊夹持住随动模套和预轧坯一起转动,芯辊沿径向朝主辊方向作进给运动并与主辊一起以180KN~3800KN的轧制力在随动模套内辗轧预轧坯,预轧坯以6mm/s~15mm/s的速度沿径向展宽,壁厚逐渐减小,其变形量达30%~50%后被辗轧成高筒环锻件,辗轧时上、下锥辊及两个抱辊不随预轧坯的径向展宽而外移。
2.根据权利要求1所述的辗轧成形方法,其特征在于:所述随动模套的内环面形状是能够依高筒环锻件的外周面形状来调整的。
3.根据权利要求1或2所述的辗轧成形方法,其特征在于:所述随动模套的最小壁厚按下式进行设计计算:
D0=L-D1-R1-R2
式中:D0为随动模套的最小壁厚;
L为主辊与芯辊的最小中心距;
D1为高筒环锻件的径向最小壁厚;
R1为主辊的半径;
R2为芯辊的半径。
4.根据权利要求1所述的辗轧成形方法,其特征在于:所述高筒环锻件的壁厚最小值是25mm,高厚比的最大值是25。 
CN2010105819552A 2010-12-10 2010-12-10 结构钢高筒环锻件的辗轧成形方法 Active CN102125972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105819552A CN102125972B (zh) 2010-12-10 2010-12-10 结构钢高筒环锻件的辗轧成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105819552A CN102125972B (zh) 2010-12-10 2010-12-10 结构钢高筒环锻件的辗轧成形方法

Publications (2)

Publication Number Publication Date
CN102125972A CN102125972A (zh) 2011-07-20
CN102125972B true CN102125972B (zh) 2012-11-07

Family

ID=44264394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105819552A Active CN102125972B (zh) 2010-12-10 2010-12-10 结构钢高筒环锻件的辗轧成形方法

Country Status (1)

Country Link
CN (1) CN102125972B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107442709A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 两种不同高温合金组合轧制为一个环形件的方法
CN107497978A (zh) * 2016-12-01 2017-12-22 贵州安大航空锻造有限责任公司 高温合金‑铝合金双金属环件轧制成形方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104607578A (zh) * 2014-12-15 2015-05-13 贵州安大航空锻造有限责任公司 不锈钢厚壁环锻件的轧制成形方法
CN105396992A (zh) * 2015-12-02 2016-03-16 贵州安大航空锻造有限责任公司 结构钢矩形环件各向同性的轧制方法
CN106734785A (zh) * 2016-12-01 2017-05-31 贵州安大航空锻造有限责任公司 不锈钢‑结构钢双金属环件轧制成形方法
CN107252864A (zh) * 2016-12-01 2017-10-17 贵州安大航空锻造有限责任公司 高温合金‑结构钢双金属环件轧制成形方法
CN107442712A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 钛合金‑铝合金双金属环件轧制成形方法
CN107442711A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 两种不同钛合金组合轧制为一个环形件的方法
CN107442715A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 高温合金‑钛合金双金属环件轧制成形方法
CN107442714A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 结构钢‑铝合金双金属环件轧制成形方法
CN107442713A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 两种不同铝合金组合轧制为一个环形件的方法
CN107442710A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 钛合金‑结构钢双金属环件轧制成形方法
CN108213292B (zh) * 2018-03-23 2023-07-25 海盐星辰工具有限公司 一种用于扳手加工的横轧装置
CN110918841B (zh) * 2019-11-29 2021-06-08 苏州乾元机械配件有限公司 用于锻造钢环锻件的立式辗环机及锻造方法
CN113305245B (zh) * 2021-05-10 2022-12-02 四川德兰航宇科技发展有限责任公司 一种航空矩形环件反u型多段线芯辊的轧制进给曲线控制及校核方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1292216A (en) * 1970-01-21 1972-10-11 Franz Donatu Timmermans A method of rolling a cylinder
CN101284296A (zh) * 2008-04-23 2008-10-15 贵州航宇科技发展有限公司 钛合金锥形环锻件的辗轧成形方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826665A (zh) * 1971-08-12 1973-04-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1292216A (en) * 1970-01-21 1972-10-11 Franz Donatu Timmermans A method of rolling a cylinder
CN101284296A (zh) * 2008-04-23 2008-10-15 贵州航宇科技发展有限公司 钛合金锥形环锻件的辗轧成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开48-26665A 1973.04.07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107442709A (zh) * 2016-12-01 2017-12-08 贵州安大航空锻造有限责任公司 两种不同高温合金组合轧制为一个环形件的方法
CN107497978A (zh) * 2016-12-01 2017-12-22 贵州安大航空锻造有限责任公司 高温合金‑铝合金双金属环件轧制成形方法

Also Published As

Publication number Publication date
CN102125972A (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
CN102125972B (zh) 结构钢高筒环锻件的辗轧成形方法
CN102085555B (zh) Tc25钛合金薄壁环件的辗轧成形方法
CN102019333B (zh) 钴基高温合金高筒环锻件的辗轧成形方法
CN102085549B (zh) 铝合金高筒环锻件的辗轧成形方法
CN102085552B (zh) 2a70铝合金薄壁环件的辗轧成形方法
CN101279343A (zh) 不锈钢异形环锻件的辗轧成形方法
CN104191166A (zh) 一种铝合金高筒薄壁环件的轧制成形方法
CN102125973B (zh) 不锈钢高筒环锻件的辗轧成形方法
CN103691855A (zh) 结构钢矩形环坯轧制成形为异形薄壁环件的方法
CN102085556B (zh) Gh4033高温合金薄壁环件的辗轧成形方法
CN100335194C (zh) 钢板滚轮热压工艺
CN102085550B (zh) 镍基高温合金高筒环锻件的辗轧成形方法
CN102085551B (zh) 铁基高温合金高筒环锻件的辗轧成形方法
CN102085548B (zh) 钛合金高筒环锻件的辗轧成形方法
CN103143658A (zh) 轴承钢复杂异形截面环形件的辗轧成形方法
CN102029340B (zh) 5CrNiMo钢薄壁环件的辗轧成形方法
CN102029338B (zh) 0Cr25Ni20不锈钢薄壁环件的辗轧成形方法
CN102029342B (zh) Tc11钛合金薄壁环件的辗轧成形方法
CN102085553B (zh) 0Cr19Ni9不锈钢薄壁环件的辗轧成形方法
CN1222377C (zh) 工字轮卷边成型工艺
CN102029339B (zh) 0Cr17Ni12Mo2不锈钢薄壁环件的辗轧成形方法
CN103100621B (zh) 结构钢复杂异形截面环形件的辗轧成形方法
CN104148550A (zh) 铁基高温合金矩形环坯轧制成形为异形薄壁环件的方法
CN103706737A (zh) 不锈钢矩形环坯轧制成形为异形薄壁环件的方法
CN102029341B (zh) 15CrMo钢薄壁环件的辗轧成形方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant