CN102116934B - Method for designing reflection-type optical integrator based on parabolic mirror array - Google Patents

Method for designing reflection-type optical integrator based on parabolic mirror array Download PDF

Info

Publication number
CN102116934B
CN102116934B CN 201110067899 CN201110067899A CN102116934B CN 102116934 B CN102116934 B CN 102116934B CN 201110067899 CN201110067899 CN 201110067899 CN 201110067899 A CN201110067899 A CN 201110067899A CN 102116934 B CN102116934 B CN 102116934B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
parabolic
integrator
center
unit
parameters
Prior art date
Application number
CN 201110067899
Other languages
Chinese (zh)
Other versions
CN102116934A (en )
Inventor
张效栋
房丰洲
程颖
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

The invention belongs to the technical field of optical device design, and relates to a method for designing a reflection-type optical integrator based on a parabolic mirror array. The method comprises the following steps of: determining an initial parameter of the integrator; performing iterative computation along an X direction starting from a parabolic unit in the centre to obtain position parameters and direction parameters of all the integrator units in the X direction; performing iterative computation along a Y direction starting from the parabolic unit in the centre to obtain the position parameters and the direction parameters of all the integrator units in the Y direction; establishing an integrator model according to the parameters of the integrator which are obtained in the previous two steps; and designing a processing path, and performing ultra-precision turning. Compared with the conventional transmission-type integrator, the reflection-type integrator designed by the invention has the advantages that the reflection-type integrator has a simple structure and high stability; and under the same incidence light energy, the illumination intensity is distributed more uniformly.

Description

基于抛物面镜阵列的反射型光学积分器的设计方法 Design Method reflection type optical integrator parabolic mirror array

技术领域 FIELD

[0001] 本发明涉及到一种用于实现杂乱光线的照明均匀化的光学器件设计,属于光学设计领域,同时属于对需要均匀光照射的各种技术领域,如太阳模拟器及投影仪照明等。 [0001] The present invention relates to an implement for clutter illumination light uniformizing optics design, belongs to the field of optical design, belongs to technical fields need uniform light irradiation, such as a solar simulator and a projector lighting .

背景技术 Background technique

[0002] 积分照明就是把杂乱无章的光经过光学系统整合成照射均匀的光,或者可实现亮度提高和均匀,可广泛应用于绿色能源、空间技术等领域。 [0002] The integrator illumination light that passes through the optical chaotic systems into uniform illumination light, or may be implemented to improve the brightness and uniformity, can be widely used in the field of green energy, space technology. 光学积分器是积分照明中最重要的光学器件。 The optical integrator is the most important integrator illumination optical device. 根据光的传播定律,光学积分器可以分为折射型(透射型)和反射型。 According to the law of propagation of light, the optical integrator may be divided into refractive (transmission) and reflection type. 折射型的光学积分器如微透镜阵列,一般折射型光学积分器用于同轴系统中,同轴系统的缺点就是光路长,导致光学系统的外形轮廓大。 Refractive optical integrator such as a microlens array, generally refraction type optical integrator for coaxial system, the disadvantage is that the system is coaxial optical path length, resulting in a large contour of the optical system. 利用微透镜阵列完成光束的均光是目前普遍采用的均光的方式,但是由于利用了透镜所以会引入透镜的一些缺点,如像差大、光损失严重等,这些缺点会影响接收面的光束的均匀性。 Microlens arrays are completed light beam light mode are now widely used, but because it utilizes some of the disadvantages of the lens will introduce a lens, such as a large aberration, and severe loss of light, these drawbacks affect the beam receiving surface uniformity. 而反射型积分器采用离轴方式,缩减了光路长度,占用空间小。 And off-axis reflection type integrator manner, the optical path length reduced, a small footprint. 更重要的是,积分器用反射镜代替了折射镜,从而减少了像差对光路的影响,同时也减少了折射材料对光辐射能量的吸收损失,增大了能量的利用率。 More importantly, the integration of a reflection mirror in place of the refractor, thereby reducing the influence of the aberration optical path, but also reduce the absorption loss of light refractive material to radiant energy, the energy efficiency is increased.

[0003] 由于反射型积分器外形结构复杂,加工不易实现,目前很少使用。 [0003] Because of the complex shape structure reflection type integrator, not easy to achieve processing, it is rarely used. 但随着超精密技术的发展和成熟,尤其采用刀具伺服的单点金刚石切削技术的发展,为复杂形状光学器件的加工提供了有力的工具,为反射型积分器的应用提供了保障,因此,鉴于反射型积分器的众多应用优点,有必要开展反射型积分器设计方面的研究。 However, with the development of ultra-precision technology and mature, especially using a development tool servo single point diamond turning technique provides a powerful tool for machining complex shapes optics, it provides a guarantee for the application of a reflection type integrator, and therefore, in view of the numerous application advantages reflection integrator, it is necessary to carry out research and design aspects of the reflection integrator.

发明内容 SUMMARY

[0004] 本发明的目的是提出一种简单可行的反射型积分器设计方法。 [0004] The object of the present invention is to propose a simple and feasible method of reflection type integrator design. 本发明采用多个抛物面组成的曲面阵列进行反射型积分器设计,实现良好的均匀照明。 The present invention employs a parabolic curved array composed of a plurality of reflection type integrator design, to achieve a good uniform illumination.

[0005] —种基于抛物面镜阵列的反射型光学积分器的设计方法,该种反射型光学积分器包括一个抛物面反射镜阵列,以抛物面反射镜阵列中心处的抛物面中心为坐标原点,以平行光入射的反方向为Z轴,建立直角坐标系,沿着Z轴的平行光经过积分器的反射后,到达接收面;积分器的结构参数包括各个抛物面单元沿着X轴和Y轴的边长、接收面的边长d和抛物面本身的参数,每个抛物面单元的位置参数包括单元中心点的坐标、分别绕X轴和Y轴的旋转角度以及绕X轴和Y轴旋转的旋转中心的坐标;其设计方法包括: [0005] - kinds of treatment reflection type optical integrator parabolic mirror array based on the kind of reflection type optical integrator comprises a parabolic mirror array, parabolic center at the center of the parabolic mirror array is a coordinate origin, the parallel light inverse Z-axis direction is incident, establish a Cartesian coordinate system, the Z-axis direction parallel light after reflection integrator, reaches the receiving surface; structural parameters integrator means comprises a respective parabola along the X and Y axes of the side length , the coordinates of edge length d of the receiving surface and the parabolic parameter itself, the position parameters of each cell unit includes a parabolic coordinates of a center point, respectively, the rotation angle about the X and Y axes and the rotation about the center of the X and Y axes of rotation ; design method comprising:

[0006] 第一步.积分器初始参数的确定: . [0006] The first step in determining the initial parameter integrator:

[0007] (I)根据接收面和反射面的距离确定抛物面的焦距f,从而得到抛物面的方程: [0007] (I) The focal length f is determined from the parabolic receiving surface and the reflecting surface, thereby obtaining a parabolic equation:

[0008] X2+Y2 = 4fZ ; [0008] X2 + Y2 = 4fZ;

[0009] (2)根据抛物面反射镜阵列中心处的抛物面单元的边长2a,可以求得抛物面中心距离接收面中心的距离D,-P = /-(/-4^. J2fl2 )/«; [0009] (2) The unit edge length at the center of the parabola of the parabolic mirror array 2a, the center distance can be determined parabolic receiving surface D Center, -P = / - (. / - 4 ^ J2fl2) / «;

[0010] 第二步.从中心处的抛物面单元出发,重复执行下面的第(I)步至第(3)步,沿X方向进行迭代计算,求取所有的积分器单元在X方向上的位置参数和方向参数:、[0011] (I)利用接收面的边界坐标41(-&,&,0),八2(-&,-&,0)和前一个抛物面单元的 [0010] The second step. From the center of the parabola unit repeats the following of (I) to the second step (step 3), the X-direction iterative calculations, all the integrator unit is obtained in the X-direction the position and orientation parameters parameters:, [0011] (I) using the boundary coordinates 41 of the receiving face (- &, &, 0), eight 2 (- & - &, 0), and a parabolic front unit

X0 + a yQ - a X1 + a yx~ ci X0 + a yQ - a X1 + a yx ~ ci

[0012]边界处的坐标 Pl (X1, Y1, Z1),P2 (x2, y2, z2),建立方程组:= , [0012] coordinates Pl (X1, Y1, Z1) at the boundary, P2 (x2, y2, z2), to establish equations: =,

yx-a Z1-D yx-a Z1-D

X0 + a y0+a X2 + a y2 + a X0 + a y0 + a X2 + a y2 + a

[0013] 求得当前抛物面单元的焦点BI (X(l,y(l,z0),并求取当前抛物面单元的旋转中心PO [0013] determined current focus BI (X (l, y (l, z0) paraboloid unit, and obtains the current rotational center unit paraboloid PO

wc =(Xj +x2)/2的坐标为(mc, nc, kc) - nc =(yl +y2)/2 wc = (Xj + x2) coordinate / 2 to (mc, nc, kc) - nc = (yl + y2) / 2

={zx +z2)/2 = {Zx + z2) / 2

[0014] (2)设当前抛物面单元未经过旋转的曲面满足标准抛物面方程(X-ai)2+(Y_a2)2 = [0014] (2) Set the current cell has not been rotated parabolic surface meets the criteria parabolic equation (X-ai) 2+ (Y_a2) 2 =

Af1(Z-B3),根据当前焦点BI (xQ, y0, z0)和未经过旋转的曲面的焦点(a1; a2, Bff1),利用坐 Af1 (Z-B3), the current focus BI (xQ, y0, z0) and non-rotating surface through the focal point (a1; a2, Bff1), the use of seat

「A = 1 + (xn - //O * cos(-Z)) + (zn - O * sin(-Z)) "A = 1 + (xn - // O * cos (-Z)) + (zn - O * sin (-Z))

»换公式:: Vcl(:b)_x _j”sn(二求得抛物面的旋转角度b »Exchange formula :: Vcl (: b) _x _j" sn (second rotation angle determined paraboloid b

IJl 十A — Kc 十IzO k^c) °) VxO mc) ^mV °) IJl ten A - Kc ten IzO k ^ c) °) VxO mc) ^ mV °)

和标准抛物面方程的参数a1; a2,a3,,旋转角度b确定了当前抛物面单元在X方向上的方位; And standard parabolic equation parameters a1; a2, a3 ,, b determined rotational angle position of the parabolic current cell in the X direction;

[0015] (3)下一个抛物面单元的旋转中心QO (xp0, yp0, zp0)是通过前一个抛物面单元的标准抛物面上的点Ql(xbcl,yb0, zb0)求得的,它们之间的关系满足下面的方程组: [0015] (3) a center of rotation paraboloid unit QO (xp0, yp0, zp0) is the point through Ql (xbcl, yb0, zb0) on a standard parabolic a parabolic front unit determined, the relationship between them satisfies the following equation:

= (mC + (X。-)*cos(b/2) + (Zbo -kc)* sin(b/2) = (MC + (X .-) * cos (b / 2) + (Zbo -kc) * sin (b / 2)

zp0 = (K + (zb0 ~kc)* cos(b / 2) - (x6。-mc)* sin(6 / 2) zp0 = (K + (zb0 ~ kc) * cos (b / 2) - (x6.-mc) * sin (6/2)

[0016] J (4。_ )2 + (Λ。_ A)2 = 4Z (zbo - a3) [0016] J (4._) 2 + (Λ._ A) 2 = 4Z (zbo - a3)

X^0 — xO — Zp0 ~ Z0 Cl — Xq d — Zq X ^ 0 - xO - Zp0 ~ Z0 Cl - Xq d - Zq

. «I =(mc+xb0)/2 . «I = (mc + xb0) / 2

[0017] 通过求解上述方程组得到下一个抛物面单元的旋转中心QO ; [0017] By solving the above equation to obtain a parabolic rotation center of the next unit of QO;

[0018] 第三步.从中心处的抛物面单元出发,重复执行下面的第I)步至第3)步,沿Y方向进行迭代计算,求取所有的积分器单元在Y方向上的位置参数和方向参数: [0018] The third step. From the center of the parabola unit repeats the following section I) to Step 3) step is iterated in the Y direction, the integrator unit obtains all the position parameters in the Y direction, and orientation parameters:

[0019] (I)利用接收面的边界坐标Al (_a,a, D),A3(a,-a, D)和前一个抛物面单元的边 [0019] The side boundary coordinates Al (I) using a receiving surface (_a, a, D), A3 (a, -a, D), and a parabolic front unit

X0 - a y0 + X0 - a y0 +

X1 - a yx + a X1 - a yx + a

界处的坐标Pl (X1, Y1, Z1), P3(xs, y3, z3),建立方程组:< —-=—- Pl boundary coordinates of (X1, Y1, Z1), P3 (xs, y3, z3), to establish equations: <- = -

yx +a Z1-D yx + a Z1-D

x{) + ay{) + a x3 +a y3 + a x {) + ay {) + a x3 + a y3 + a

[0020] 求得当前抛物面单元的焦点B2 (Xc/,y(l',Z(l'),并求取当前抛物面单元的旋转中心 [0020] The obtained current focus B2 (Xc /, y (l parabolic unit ', Z (l'), and obtains the current rotational paraboloid central unit

, I , I

mc = (X1 + X3) / 2NO 的坐标为(m/,n/,k。'): ^'=(^+^)/2 mc = (X1 + X3) coordinate / 2NO of (m /, n /, k. '): ^' = (^ + ^) / 2

K ={zx +z3)/2[0021] (2)设当前抛物面单元未经过旋转的曲面满足标准抛物面方程 K = {zx + z3) / 2 [0021] (2) Set the current through the rotational parabolic curved surface units not meet the criteria parabolic equation

[0022] (Xa/ )2+(Y_a2' )2 = 4f/ (Z_a3,),根据当前焦点B2和未经过旋转的抛物面的焦点(a/,a2',a3' +f/ ),利用坐标变化公式: [0022] (Xa /) 2+ (Y_a2 ') 2 = 4f / (Z_a3,), and B2 in accordance with the current focus of the rotation has not been the focus of the parabola (a /, a2', a3 '+ f /), using the coordinate change the formula:

[0023] ='+(' 求得抛物面的旋转角度[fi +«3 =kc + (zo _kc、* cos(-b ) - (x0 -mc y sin(-Z)) [0023] = '+ (' paraboloid determined rotational angle [fi + «3 = kc + (zo _kc, * cos (-b) - (x0 -mc y sin (-Z))

[0024] b '和标准抛物面方程的参数a/,a2' , a3/,f/,这个旋转角度b'就确定了抛物面单元的方位; [0024] b 'and the standard parameter parabolic equation a /, a2', a3 /, f /, the rotation angle b 'determines the orientation of the parabolic unit;

[0025] (3)下一个抛物面单元的旋转中心MO (xpQ',ypQ',zp0,)是通过前一个抛物面单元的标准抛物面上的点Ml (Xbc/,yb(l',Zbo,)求得的,它们之间的关系满足下面的方程组: [0025] center of rotation (3) a parabolic unit MO (xpQ ', ypQ', zp0,) is required through the point Ml (Xbc /, yb (l ', Zbo,) on a standard parabolic before a parabolic unit too, the relationship between them satisfy the following equation:

Xp0 =(mc +(xb0 ~mc)*C0S(b' /2) + (zb0 -^c )* Sin(Z) /2) Xp0 = (mc + (xb0 ~ mc) * C0S (b '/ 2) + (zb0 - ^ c) * Sin (Z) / 2)

^p0 = (kc + (zbo -k:ycos(b'/2、-(xb0 -mj*Sin(Z) /2) ^ P0 = (kc + (zbo -k: ycos (b '/ 2, - (xb0 -mj * Sin (Z) / 2)

,(Xo' ~aiY +Om ~a2f = 4fi(zb0 ~ai) , (Xo '~ aiY + Om ~ a2f = 4fi (zb0 ~ ai)

Xp0 — xO _ Zp0 — zO Q — Xq Cl — Zq Xp0 - xO _ Zp0 - zO Q - Xq Cl - Zq

. a/=Oc'+X60')/2 . A / = Oc '+ X60') / 2

[0026] 通过求解上述方程组得到下一个抛物面单元的旋转中心MO ; [0026] By solving the above equation to obtain a parabolic rotation center of the next unit of the MO;

[0027] 第五步.根据前两步求得的积分器参数,建立积分器模型; [0027] The fifth step first two integrator parameter determined, establishing an integrator model;

[0028] 第六步.根据积分器模型设计加工路径,进行超精密车削加工根据积分器模型设计加工路径。 [0028] Step 6. The machining path integrator model design, design for ultra-precision turning machining path according model integrator.

[0029] 常规的折射型的光学积分器需要会聚透镜将第二个微透镜阵列的光束进行会聚,才能实现匀光的目的。 [0029] Conventional refractive optical integrator requires a second converging lens the beam converging microlens array, in order to achieve the purpose of uniform light. 相比较折射型的光学积分器,本发明设计的反射式光学积分器就不需要会聚透镜,在接收面直接可以形成均匀照明分布,只需要一个反射镜即可实现折射型积分器的作用。 Compared to refractive optical integrator, the present invention contemplates a reflective optical integrator does not need a condensing lens, a uniform illumination distribution can be formed directly on the receiving side, only to achieve a refracting mirror type integrator.

[0030] 本发明的反射型积分器比传统的透射型积分器结构简单,而且稳定性好,在相同入射光的能量情况下,有更加优秀的光照强度的分布均匀,而且因为减少了像差和透射损失,到达接收面能量也有了大幅度的提高。 [0030] The reflection type integrator of the present invention is simpler than conventional transmission integrator structure and stability, in the case of the same incident energy with uniform light intensity distribution is more excellent, and because reducing aberrations and transmission loss, arrives at the receiving surface energy has also been greatly improved. 如果采用矩形光源而非正方形光源,但是本发明的积分器仍然能够得到非常好的匀光效果,而相同条件下的微透镜阵列积分器的接收面的照度分布却受了一定的影响,本发明的光学积分器在实现光线的均匀性上具有更大的优越性。 If the rectangular light source instead of a square, but the integrator can be obtained according to the present invention is still very good uniform light, the illuminance distribution of the surface of the microlens array received under the same conditions by the integrator has a certain influence, the present invention optical integrator more advantageous to achieve uniformity in light.

附图说明 BRIEF DESCRIPTION

[0031] 图I本发明的积分器的整体结构图。 [0031] FIG overall configuration diagram of the integrator I of the present invention.

[0032] 图2设计整体流程图。 [0032] The overall design of the flowchart of FIG.

[0033] 图3积分器中心处的抛物面单元。 [0033] 3 at the center of the parabolic element integrator FIG.

[0034] 图4积分器沿着Y方向的抛物面单元。 [0034] FIG 4 along the Y direction integrator unit paraboloid.

[0035] 图5积分器ZOX平面的视图(俯视图)。 [0035] FIG. 5 integrator ZOX plane view (top view).

[0036] 图6积分器沿着X方向的抛物面单元。 [0036] FIG. 6 along the X direction integrator unit paraboloid.

[0037] 图7积分器YOZ平面的视图(侧视图)。 [0037] FIG. 7 integrator YOZ planar view (side view). [0038] 图8中心处的积分器单元轮廓图。 [0038] FIG integrator unit 8 at the center of the profile of FIG.

[0039] 图9沿着X方向的积分器单元。 [0039] FIG. 9 in the X direction integrator unit.

[0040] 图10积分器的轮廓图。 Profile view [0040] FIG. 10 integrator.

具体实施方式 Detailed ways

[0041] 本发明设计的积分器由抛物面反射镜阵列组成,如图I所示。 [0041] The present invention is designed by the integrator parabolic mirror array, as shown I FIG. 以积分器中心处的抛物面中心为坐标原点,以平行光入射的反方向为Z轴,建立如图I所示的直角坐标系。 In the center at the center of the parabolic integrator origin of coordinates, parallel light is incident in the opposite direction of the Z axis, in a rectangular coordinate system established I in FIG. 积分器的位置参数包括各个曲面单元所在抛物面的参数、抛物面单元中心的坐标、抛物面单元沿着X轴和Y轴的边长。 Position parameter comprises respective integrator unit is located parabolic curved surface parameters, the coordinates of the center of the parabolic section, parabolic section along the X-axis and Y-axis side length. 每个抛物面单元的方向参数包括抛物面单元分别绕X轴和Y轴的旋转角度以及绕X轴和Y轴旋转的旋转中心的坐标。 Each parabolic direction parameter comprises a parabolic units each unit angle of rotation about the X-axis and Y-axis coordinates of the center of rotation and rotates about the X and Y axes.

[0042] 图I为积分器的整体结构图,沿着Z轴的平行光经过积分器的反射后,到达接收面。 [0042] Figure I is a whole configuration diagram of the integrator, the Z-axis direction parallel light after reflection integrator, reaches the receiving surface. 本发明中所提及的曲面阵列单元均为抛物面,利用平行于主光轴的光线经过抛物面反射将会聚到抛物面焦点的特点完成整个积分镜的设计。 The present invention is mentioned in a parabolic curved array unit are parallel to the main optical axis of the parabolic reflector through the use of light will converge to the focal point of the parabolic characteristics to complete the design of the integral mirror. 若要实现积分器的匀光,关键就是要精确计算每个单元的位置和角度,将抛物面阵列围绕X轴和Y轴进行特定角度的旋转实现积分器的均光的作用。 To achieve uniform light integrator, the key is to accurately calculate the position and angle of each cell, the rotation of the parabolic array achieve light integrator are performed a specific angle around the X and Y axes. 参见图2,本发明的积分器的设计主要步骤如下。 Referring to Figure 2, the main steps of the design of the present invention, the integrator is as follows.

[0043] I.位于坐标原点处的积分器单元的确定。 [0043] I. integrator positioned at the origin coordinates determination unit. 这个需要根据积分器的焦距和接收面的大小确定。 The focal length is determined according to the size of the receiving surface and the integrator.

[0044] 2.完成X轴方向上的积分器单元参数的计算,主要确定积分器单元的抛物面方程的参数,以及积分器单元在X轴方向上绕Y轴旋转的转角、旋转中心的坐标和积分器单元的边长。 [0044] 2. Complete parameter calculation unit integrator in the X-axis direction, a parabolic equation for the main parameters determining the integrator unit, and an integrator unit angle about the Y-coordinate, the center axis of rotation in the X-axis direction and integrator unit side length.

[0045] 3.依次完成Y轴方向上的积分器单元参数的计算,主要确定积分器单元的抛物面方程的参数,以及积分器单元在Y轴方向上绕X轴旋转的转角、旋转中心的坐标和积分器单元的边长。 [0045] 3. Complete sequence parameter calculation unit integrator in the Y-axis direction, the main parabolic equation to determine the parameters of the integrator unit, and an integrator unit angle about the X axis in the Y-axis direction, the coordinates of the center of rotation and an integrator unit side length.

[0046] 4.根据积分器单元的中心、积分器单元的抛物面方程、分别与X轴和Y轴的旋转角度以及旋转中心的坐标在3D软件中建立模型,完成加工模型的建立。 [0046] The central parabolic equation integrator unit, the integrator means, respectively, in the 3D software model and the rotational angle of the X and Y axes and the coordinates of the center of rotation, to complete the establishment of processing model.

[0047] 5.确定了积分器的立体模型以后,根据超精密车削技术即可加工出积分器的实物,并且可以控制表面粗糙度在几十纳米范围内。 [0047] The integrator determined the three-dimensional model of the future, according to the ultra-precision turning technology can be processed kind integrator, and may control the surface roughness in the range of tens of nanometers.

[0048] 本发明实施过程中提及的的积分器中心处曲面单元的确定方法的具体实施步骤为: [0048] In particular embodiments the method step of determining a curved surface at the center of the integrator unit embodiment of the present invention, the process is referred to:

[0049] (I)根据接收面和反射面的距离确定抛物面的焦距f,从而得到抛物面的方程:X2+Y2 = 4fZ, [0049] (I) is determined according to the distance of the receiving surface and the reflective surface of the paraboloid focal length f, to give the parabolic equation: X2 + Y2 = 4fZ,

[0050] (2)设中心处的抛物面单元的边长为2a,方形接收面的边长为d,如图3所示,分别以邻近中心处抛物面单元100的抛物面单元101和102为例说明积分器的计算方法。 [0050] The side length (2) of the parabolic element is provided at the center 2a, a side length of a square receiving surface is d, as shown in FIG. 3, respectively, adjacent to the center of the parabola parabolic unit 101 and unit 100 as an example 102 calculation integrator.

[0051 ] 本发明实施过程中提及的X方向的积分器单元的位置参数和方向参数的确定方法的具体实施步骤为: [0051] In particular embodiments the method step of determining the position and orientation parameters of the embodiment of the process of the present invention, the parameters mentioned in the integrator unit is the X direction:

[0052] (I)确定接收面的方位:根据抛物面的焦距f,接收面的边长d以及中心处抛物面单元边长2a,可以求得抛物面中心距离接收面中心的距离D,如图3, [0052] (I) determining the orientation of the receiving surface: The parabola focal length f, the receiving face edge length d, and the center of the parabolic edge length unit 2a, the center distance D can be determined from the parabolic receiving surface of the center, as shown in FIG 3,

[0053] D = f~{f~4fl2a2)la ⑴、[0054] 同时也已知了中心阵列单元的四个角处的顶点坐标。 [0053] D = f ~ {f ~ 4fl2a2) la ⑴, [0054] also known in the vertex coordinates of the four corners of the center cell array.

[0055] (2)确定未进行旋转的标准抛物面方程。 [0055] (2) determining a standard parabolic equations rotation is not performed. 图5是图4的俯视图,100面是中心处的抛物面单元,103面是未旋转的抛物面单元,101是旋转以后的抛物面单元,201面是接收面。 FIG 5 is a plan view of FIG. 4, a parabolic surface 100 at the center of the cell, the surface 103 is not rotated paraboloid unit, 101 is a parabolic element after rotation surface is a receiving surface 201. 由图4,101面绕点PO点进行旋转,使得原来满足标准表达的抛物面方程变为在原来坐标系下很难表达的曲面方程,设未进行旋转时的抛物面103方程为: PO is rotated about the point view of 4,101 by a point, so that the original standard equation satisfies Expression paraboloid surface equation becomes difficult to express in the original coordinate system, parabolic equation 103 is not performed when the rotation is provided:

[0056] (X-B1)2+ (Y~a2)2 = 4f J (Z~a3) (2) [0056] (X-B1) 2+ (Y ~ a2) 2 = 4f J (Z ~ a3) (2)

[0057] 方程中的a1; a2,a3为未旋转时的标准抛物面参数。 [0057] equation a1; a2, a3 is a paraboloid of revolution is not at the standard parameters.

[0058] (3)根据中心抛物面100 面Pl (X^yliZ1),P2 (x2, y2, Z2)以及接收面201 面Al (_a,a, D),A2(_a,-a, D)坐标可以求得旋转以后的抛物面101面的焦点位置BI (x0, yO, zO)求解方程组为: [0058] (3) The center of the parabolic surface 100 Pl (X ^ yliZ1), P2 (x2, y2, Z2) and receiving surface 201 faces Al (_a, a, D), A2 (_a, -a, D) coordinates BI 101 can obtain the focal position of the paraboloid surface after rotation (x0, yO, zO) solving the equation group:

[0059] [0059]

Figure CN102116934BD00081

[0060] (4)利用逆向思维,将焦点BI围绕PO旋转以后即得到抛物面103的焦点,而这个旋转角度即为面101绕PO的旋转的角度,这个角度就是确定抛物面阵列方位的角度。 [0060] (4) use of reverse thinking, the focus BI rotation around after PO 103 to obtain a focus parabola, and this rotation angle is the angle of rotation about the surface 101 of the PO, this angle is to determine the orientation angle of the parabolic array. 旋转中心PO的坐标为(m。,n。,k。),则有: PO coordinates of the center of rotation (m, n, k...), Then:

[0061] [0061]

Figure CN102116934BD00082

[0062] (5)建立旋转角度和抛物面方位的关系,即将101的焦点绕PO旋转b,得到103的焦点,即满足: [0062] (5) establishment of the rotation angle and orientation relationship paraboloid focus PO rotation about the upcoming B 101, 103 has the focus, i.e., satisfies:

[0063] [0063]

Figure CN102116934BD00083

[0064] 则可以求得抛物面参数a1; a2,a3,f1;同时可以得到旋转角度b。 [0064] The parabola parameters may be determined a1; a2, a3, f1; rotation angle can be obtained at the same time b.

[0065] (6)求出新的旋转中心QO (xp0, yp0, zp0),如图5所示。 [0065] (6) to obtain a new rotation center QO (xp0, yp0, zp0), as shown in FIG. Ql是标准抛物面103上的点,QO是Ql关于PO旋转b角度以后101上的点。 Ql is a point on a standard parabolic 103, QO Ql is on the point b after the rotation angle of 101 PO. 设Ql的坐标为Ql (xb0, yb0, zb(l),根据旋转关系,有: Setting coordinates of Ql Ql (xb0, yb0, zb (l), according to the rotational relationship, are:

Figure CN102116934BD00084

[0067] 点Ql在抛物面103上,故有: [0067] Ql paraboloid point 103, it has:

[0068] (XbtTa1) 2+(yb0_a2)2 = Af1(ZbtTa3) (7) [0068] (XbtTa1) 2+ (yb0_a2) 2 = Af1 (ZbtTa3) (7)

[0069] 同时,根据共线关系,有: [0069] Meanwhile, according to the collinear relationship, are:

[0070] [0070]

Figure CN102116934BD00085

[0071] 根据103面对称轴的关系,有: [0071] The axis of symmetry 103 in facing relationship, there are:

[0072] B1 = (mc+xb0) / 2 (9)[0073] 建立方程组则可以求出下一个平面的旋转中心QO的坐标,同时也得到抛物面阵列的全部的结构参数和位置参数。 [0072] B1 = (mc + xb0) / 2 (9) [0073] establish the equations can be obtained at a rotational center of QO coordinate plane, but also by all of the structural parameters and position parameters of the parabolic array.

[0074] 本发明实施过程中提及的Y方向的积分器单元的位置参数和方向参数的确定方法的具体实施步骤为: [0074] In particular embodiments the method step of determining the position and orientation parameters of the embodiment of the process of the present invention, the parameters mentioned integrator Y-direction units is:

[0075] (I)确定未进行旋转的标准抛物面方程。 [0075] (I) determining the standard parabolic equations rotation is not performed. 图7是图6的侧视图,100面是中心处的抛物面单元,104面是未旋转的抛物面单元,102是旋转以后的抛物面单元,201面是接收面。 FIG. 7 is a side view of FIG. 6, a parabolic surface section 100 at the center, a parabolic surface section 104 is not rotated, a parabolic unit 102 after the rotation surface is a receiving surface 201. 由图7,101面绕点NO进行旋转,使得原来满足标准表达的抛物面方程变为在原来坐标系下很难表达的曲面方程,设未进行旋转时的抛物面102方程为: NO rotated about the point of view of 7,101, so that the original expression meets the criteria parabolic surface equation equation becomes difficult to express in the original coordinate system, parabolic equation 102 is not performed when the rotation is provided:

[0076] (X-B1' )2+ (Y_a2' )2 = 4f j' (Z~a3' ) (10) [0076] (X-B1 ') 2+ (Y_a2') 2 = 4f j '(Z ~ a3') (10)

[0077] 方程中的a/,a2' , a3/为未旋转时的标准抛物面参数。 [0077] equation a /, a2 ', a3 / parabolic parameter when the standard is not rotating. [0078] (2)根据中心抛物面100 面Pl (X^yliZ1),P3 (x3, y3, Z3)以及接收面201 面Al (_a,a,D),A3(a,_a,D)坐标可以求得旋转以后的抛物面102面的焦点位置B2 (x。',yQ',z。' )求解方程组为: [0078] (2) The center of the parabolic surface 100 Pl (X ^ yliZ1), P3 (x3, y3, Z3) and receiving surface 201 faces Al (_a, a, D), A3 (a, _a, D) coordinates can be obtained after rotation of the focus position B2 (.. x ', yQ', z ') 102 paraboloidal surface of equations is solved:

X0 - a y0 + Cl X1 - a yx + a X0 - a y0 + Cl X1 - a yx + a

vn +a Zr, -D , 、 vn + a Zr, -D,,

[0079] ———=——— (11) yx +a Z1-D [0079] --- = --- (11) yx + a Z1-D

X0 + ay{) + a x3 +a y3 + a X0 + ay {) + a x3 + a y3 + a

[0080] (3)利用逆向思维,将焦点B2围绕NO旋转以后即得到抛物面104的焦点,而这个旋转角度即为面104绕NO的旋转的角度,这个角度就是确定抛物面阵列方位的角度。 [0080] (3) use of reverse thinking, B2 focus parabolic around the focal point 104 that is obtained after the rotation of NO, and this rotation angle is the angle of rotation about the surface 104 of NO, this angle is to determine the orientation angle of the parabolic array. 旋转中心NO的坐标为(m。,,n。',k。'),则有: NO rotation center coordinates of (.. M ,, n '., K'), then:

, I , I

mc = (X1 + X3 )/2 mc = (X1 + X3) / 2

[0081] < nc =O^1+少3)/2 (12) [0081] <nc = O ^ 1 + 3 less) / 2 (12)

K ={zx +z3)/2 K = {zx + z3) / 2

[0082] (4)建立旋转角度和抛物面方位的关系,即将102的焦点绕PO旋转b',得到104的焦点,即满足: [0082] (4) establishing the relationship between the rotational angle and orientation of the paraboloid focus PO rotation about the upcoming 102 b ', 104 has the focus, i.e., satisfies:

[0083] ί =m^ +(X; + -KVM-b') (13) [0083] ί = m ^ + (X; + -KVM-b ') (13)

[fi +«3 =K + (Z0 -kc、* COS(-Z) ) - (x0 -mc)* Sin(-Z)) [Fi + «3 = K + (Z0 -kc, * COS (-Z)) - (x0 -mc) * Sin (-Z))

[0084] 则可以求得抛物面参数a/,a2' , a3/,f/,同时可以得到旋转角度b '。 [0084] can be obtained by a parabolic parameter a /, a2 ', a3 /, f /, while the rotation angle can be obtained b'.

[0085] (5)求出新的旋转中心勵匕。 [0085] (5) to obtain a new rotation center excitation dagger. '^。 '^. '^。 '^. '),如图7所示。 '), As shown in FIG. Ml是标准抛物面104上的点,MO是Ml关于'角度以后102上的点。 Ml is a point on a standard parabolic 104, MO Ml is on the point after the 'angle of 102. 设Ml的坐标为Ml (xM',yM',zM'),根据旋转关系,有: Setting coordinates of Ml Ml (xM ', yM', zM '), according to the rotational relationship, are:

[0086] +(χ-'-O*—/2)W-Kr^(bi2) (14) [0086] + (χ -'- O * - / 2) W-Kr ^ (bi2) (14)

I zp0 = (kc + (zb0 -kc)* cosp / 2) - (xb0 -mcy sin(6 / 2) I zp0 = (kc + (zb0 -kc) * cosp / 2) - (xb0 -mcy sin (6/2)

[0087] 点Ml在抛物面104上,故有: [0087] Ml point 104 on the parabola, so it is:

[0088] (Xbc/ I1' )2+(yb(/ -a2' )2 = 4f/ (zbc/ ~a3/ ) (15) [0088] (Xbc / I1 ') 2+ (yb (/ -a2') 2 = 4f / (zbc / ~ a3 /) (15)

[0089] 同时,根据共线关系,有:[0090] = (16) [0089] Meanwhile, according to the collinear relationship, are: [0090] = (16)

Q — Xq d — Zq Q - Xq d - Zq

[0091] 根据104面对称轴的关系,有: [0091] According to said axis of 104 in facing relationship, are:

[0092] Sil' = (m/ +Xbo' )/2 (17) [0092] Sil '= (m / + Xbo') / 2 (17)

[0093] 建立方程组则可以求出下一个平面的旋转中心MO的坐标,同时也得到曲面阵列的全部的结构参数和位置参数。 [0093] The equations can be established to obtain a coordinate of the rotation center of the lower plane of the MO, but also by all of the structural parameters and position parameters of the curved array.

[0094] 本发明实施过程中提及的积分器模型确定方法的具体实施步骤为: [0094] DETAILED DESCRIPTION integrator model determining step of the method of implementation of the present invention mentioned are:

[0095] (I)确定了每个积分器阵列的抛物面方程,各自的旋转中心以及旋转角度以后,将阵列对应的抛物面沿着旋转中心旋转相应的角度,得到专利中的抛物面阵列。 [0095] (I) parabolic equation to determine each integrator array, after the respective rotation center and the rotation angle, the rotation of the respective array corresponding parabolic angle along the rotation center, the parabolic array obtained patent.

[0096] (2)首先在X方向上旋转获得X方向的抛物面阵列,然后获得Y方向得到抛物面阵列。 [0096] (2) in a first rotational direction to obtain the X-direction parabolic array X, Y direction is then obtained to give a parabolic array. 最后得到本发明的积分器阵列,如图10所示。 Finally obtained integrator array of the invention, as shown in FIG.

[0097] 将本发明的反射积分器用在太阳模拟器设计的方法如下:根据入射光口径的大小确定反射积分器整体的大小,按照积分器原理求出积分器整体轮廓图。 [0097] The reflective integrator Used in the process of the present invention, a solar simulator is designed as follows: the size of the diameter of the incident light to determine the overall size of the reflector according to the integrator, the integrator is obtained in accordance with the principles of the integrator overall profile of FIG. 在太阳模拟器中光源为短弧氙灯,需要经过聚光镜会聚到离轴抛物面上,经过离轴抛物面的准直得到平行光,再入射到反射积分器上,实现对光线的均匀化。 The light source is a short arc xenon lamp solar simulator, the need to go through a condenser lens to converge the off-axis parabolic, off-axis parabolic collimating through obtain parallel light is incident to the reflective integrator, to achieve uniform light.

[0098] 为了对比两种积分器的性能,本发明的对两种积分器的仿真采用相同能量的入射光入射,均为7. 4X4. 9mm的矩形平行光,其中每根光线的功率为lW/cm2,从两个积分器接收面的对比来看,反射型的积分器要比透射型的积分器的辐照度均匀性分布更好,其接收面的功率的最大值为2 . 866 X 102W/cm2,而相同条件下的折射型的积分器的功率的最大值仅为4. 357W/cm2。 [0098] In order to compare the performance of both the integrator, the integrator of the two simulation of the present invention employs the same incident light incident energy, are rectangular parallel light 7. 4X4. 9mm, wherein the power of each light lW / cm2, from a comparison of two integrators receiving surface view, than a reflection type integrator transmission type integrator irradiance distribution more uniform, the maximum power which the receiving surface is a 2. 866 X 102W / cm2, and the maximum value of the refractive power of the integrator under the same conditions is only 4. 357W / cm2.

[0099] 通过对比可以看到,本发明的反射型积分器比传统的透射型积分器结构简单,而且稳定性好,在相同入射光的能量情况下,有更加优秀的光照强度的分布均匀,而且因为减少了像差和透射损失,到达接收面能量也有了大幅度的提高。 [0099] can be seen by comparing the reflection type integrator of the present invention is simpler than conventional transmission integrator structure and stability, in the case of the same incident energy, there is a more uniform distribution of light intensity excellent, and because of reduced transmission loss and the aberration reaches receiving surface energy has also been greatly improved. 同时,仿真中采用矩形光源而非正方形光源,但是本发明的积分器仍然能够得到非常好的匀光效果,而相同条件下的微透镜阵列积分器的接收面的照度分布却受了一定的影响。 Meanwhile, the simulation instead of square rectangular light source, but the present invention is the integrator still possible to obtain very good uniform light, the illuminance distribution of the surface of the microlens array received under the same conditions by the integrator has a certain influence . 经过比较可以看出,本发明的光学积分器在实现光线的均匀性上具有更大的优越性。 As can be seen by comparison, the optical integrator according to the invention has a greater superior in uniformity of light achieved.

Claims (1)

  1. 1. 一种基于抛物面镜阵列的反射型光学积分器的设计方法,该种反射型光学积分器包括一个抛物面反射镜阵列,以抛物面反射镜阵列中心处的抛物面中心为坐标原点,以平行光入射的反方向为Z轴,建立直角坐标系,沿着Z轴的平行光经过积分器的反射后,到达接收面;积分器的结构參数包括各个抛物面単元沿着X轴和Y轴的边长、接收面的边长d和抛物面本身的參数,每个抛物面单元的位置參数包括单元中心点的坐标、分别绕X轴和Y轴的旋转角度以及绕X轴和Y轴旋转的旋转中心的坐标;其设计方法包括: 第一歩.积分器初始參数的确定: (1)根据接收面和反射面的距离确定抛物面的焦距f,从而得到抛物面的方程: X2+Y2=4fZ ; (2)根据抛物面反射镜阵列中心处的抛物面単元的边长2a,可以求得抛物面中心距离接收面中心的距离D, = / 第二步.从中心处的抛物面单 1. A design method of a reflection type optical integrator parabolic mirror array based on the kind of reflection type optical integrator comprises a parabolic mirror array to the center of a paraboloid of the parabolic mirror at the center of the array as the coordinate origin, parallel light is incident to in the opposite direction as the Z axis, establish a Cartesian coordinate system, the Z-axis direction parallel light after reflection integrator, reaches the receiving surface; structural parameters include respective integrator radiolabeling parabolic element along the X and Y axes of the side length receiving surface of the parabolic edge length d and the parameter itself, the position parameters of each cell unit includes a parabolic coordinates of a center point, respectively, the rotation angle about the X-axis and Y-axis and the center of rotation around the X and Y axes of rotation coordinates; design method comprising: determining a first ho integrator initial parameters: (1) determine the focal length f of the parabolic receiving surface according to the distance and the reflecting surface, thereby obtaining a parabolic equation:. X2 + Y2 = 4fZ; ( 2) the center of the parabola of the parabolic mirror array radiolabeling membered side length 2a, the center can be determined from the received parabola face center distance D, = / second step from the center of the parabolic single 出发,重复执行下面的第(I)步至第(3)步,沿X方向进行迭代计算,求取所有的积分器単元在X方向上的位置參数和方向參数: (1)利用接收面的边界坐标Al (_a,a,D),A2 (_a,_a,D)和前一个抛物面单元的边界ズ0 +a y0 -a X1 + av, - a处的坐标Pl Cx1, Y1, Z1), P2 (x2, y2, Z2),建立方程组:< A-= —~—» >'i ~a Z1-D X0 + a y0 + a X7 + a + a 求得当前抛物面单元的焦点BUxtl, y0, Ztl),并求取当前抛物面单元的旋转中心PO的坐mc = (x, +X-,)/2标为、mc,nc,kc ハ< nc ニ(j、+ y2) / 2 K =(ろ+ζι)/2 (2)设当前抛物面単元未经过旋转的曲面满足标准抛物面方程(X-B1)2+ (Y-a2) 2=4f i (Z-a3),根据当前焦点BI (x0, y0, Z0)和未经过旋转的曲面的焦点^肩,利用坐标变换公式得抛物面的旋转角度b和标准抛物面方程的參数a1; a2,a3,,旋转角度b确定了当前抛物面单元在X方向上的方位; (3)下一个抛物面单元的旋转中心QO ( Starting repeated execution of the following (I) to the second step (step 3), the X-direction iterative calculation, obtaining the position and orientation parameters for all parameters integrator radiolabeling element in the X direction: (1) using the received Al surface boundary coordinates (_a, a, D), A2 (_a, _a, D), and a parabolic front border unit DANGER 0 + a y0 -a X1 + av, - at Pl Cx1 a coordinate, Y1, Z1 ), P2 (x2, y2, Z2), to establish equations: <A- = - ~ - »> 'i ~ a Z1-D X0 + a y0 + a X7 + a + a determined current focus paraboloid unit BUxtl , y0, Ztl), and obtains the current rotational paraboloid center PO units sit mc = (x, + X -,) / 2 is marked, mc, nc, kc Haas <nc ni (j, + y2) / 2 K = (ro + ζι) / 2 (2) set the current parabolic radiolabeling element does not meet the criteria parabolic equation (X-B1) 2+ (Y-a2) 2 = 4f i (Z-a3) through a surface of revolution, in accordance with the current focus parameters a1 BI (x0, y0, Z0), and the surface has not been the focus of rotation of the shoulder ^, obtained using the coordinate transformation formula paraboloid rotation angle b and the standard parabolic equations; a2, a3 ,, b determines the current angle of rotation paraboloid orientation of the unit in the X direction; rotation center (3) a parabolic unit of QO ( xpCI,ypCI,zpCI)是通过前一个抛物面单元的标准抛物面上的点Ql (xb0, yM,zb0)求得的,它们之间的关系满足下面的方程组: ^p0 =(”】c + O60 ~mc)*cos(Z)/2) + (zb0-kc)*sm(b/2) -po = (kc + (zb0-kc)*cos(b/2) — (x60 -mc)*sin(b/2) < (½) ~aif +(タiO -ai)2 =4Zl (-M - a3) — -^O _ ^pO — zO a-X0 d -zQ 、 a1=(mc +xb0)/2通过求解上述方程组得到下一个抛物面単元的旋转中心QO ; 第三步.从中心处的抛物面单元出发,重复执行下面的第I)步至第3)步,沿Y方向进行迭代计算,求取所有的积分器単元在Y方向上的位置參数和方向參数: (1)利用接收面的边界坐标Al (-a, a, D),A3 (a, -a, D)和前ー个抛物面单元的边界处的坐标Pl Cx1, y1; Z1), P3 (x3, y3, Z3),建立方程组 xpCI, ypCI, zpCI) by point Ql (xb0, yM, zb0) on a standard parabolic a parabolic front unit determined, the relationship between them satisfy the following equation: ^ p0 = ( "c + O60] ~ mc) * cos (Z) / 2) + (zb0-kc) * sm (b / 2) -po = (kc + (zb0-kc) * cos (b / 2) - (x60 -mc) * sin (b / 2) <(½) ~ aif + (ta iO -ai) 2 = 4Zl (-M - a3) - - ^ O _ ^ pO - zO a-X0 d -zQ, a1 = (mc + xb0) / 2 by solving the above equations to obtain the next parabolic radiolabeling membered rotation center QO;. step departing from the parabolic center of the cell, is repeatedly executed following the first I) step to step 3), iterative calculation in the Y direction, obtaining positional and orientation parameters for all radiolabeling integrator element in the Y direction: (1) using the boundary coordinate Al receiving surface (-a, a, D), A3 (a, -a, D) and the formerー paraboloid Pl Cx1 cells at the boundary coordinate, y1; Z1), P3 (x3, y3, Z3), to establish equations
    Figure CN102116934BC00031
    求得当前抛物面单元的焦点B2 (Xci',Ytl' , Z0'),并求取当前抛物面单元的旋转中心NO的坐标为 Obtain the current focus paraboloid unit B2 (Xci ', Ytl', Z0 '), and obtains the current coordinate of the rotation center of the parabolic element is NO
    Figure CN102116934BC00032
    (2)设当前抛物面単元未经过旋转的曲面满足标准抛物面方程(X-a1,)2+(Y-a2,)2=4f/ (Z_aノ),根据当前焦点B2和未经过旋转的抛物面的焦点(a/,a;,a3' +f/),利用坐标变化公式: (2) Set the current parabolic radiolabeling membered surface meets the criteria parabolic equation (X-a1,) 2+ not been rotated (Y-a2,) 2 = 4f / (Z_a Techno), according to the current focus with and without rotation paraboloid and B2 focus (a /, a;, a3 '+ f /), using the coordinate transformation formula:
    Figure CN102116934BC00033
    求得抛物面的旋转角度b,和标准抛物面方程的參数&1',&2',&3'ば/,这个旋转角度b'就确定了抛物面単元的方位; (3)下一个抛物面单元的旋转中心MO (Xpc/ , yp(/ , zp0')是通过前一个抛物面单元的标准抛物面上的点Ml (XM',ybc/,z:)求得的,它们之间的关系满足下面的方程组: Rotation angle determined paraboloid, b, and the parameters of the standard parabolic equations & 1 '& 2' & 3 'ba /, the rotation angle b' determines the orientation of the parabolic radiolabeling elements; (3) a parabolic unit rotational center MO (Xpc /, yp (/, zp0 ') by a standard point on a parabolic front paraboloid unit Ml (XM', ybc /, z :) determined, the relationship between them satisfy the following equation:
    Figure CN102116934BC00034
    通过求解上述方程组得到下一个抛物面単元的旋转中心MO ; 第四步.根据前两步求得的积分器參数,建立积分器模型; 第五步.根据积分器模型设计加工路径,进行超精密车削加工。 Fifth step The machining path integrator model design, super; obtained by solving the above equations next parabolic radiolabeling the MO element rotational center; Step IV of the first two parameters of the integrator is determined, the integrator model established precision turning.
CN 201110067899 2011-03-21 2011-03-21 Method for designing reflection-type optical integrator based on parabolic mirror array CN102116934B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110067899 CN102116934B (en) 2011-03-21 2011-03-21 Method for designing reflection-type optical integrator based on parabolic mirror array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110067899 CN102116934B (en) 2011-03-21 2011-03-21 Method for designing reflection-type optical integrator based on parabolic mirror array

Publications (2)

Publication Number Publication Date
CN102116934A true CN102116934A (en) 2011-07-06
CN102116934B true CN102116934B (en) 2012-09-19

Family

ID=44215778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110067899 CN102116934B (en) 2011-03-21 2011-03-21 Method for designing reflection-type optical integrator based on parabolic mirror array

Country Status (1)

Country Link
CN (1) CN102116934B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898264B (en) * 2015-06-30 2017-08-25 日芯光伏科技有限公司 One kind of large-diameter non-imaging rotationally symmetric free-form surface mirror and its design method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185018B1 (en) 1998-01-06 2001-02-06 Sony Corporation Holographic stereogram printing system
CN1547679A (en) 2001-01-24 2004-11-17 汤姆森许可贸易公司 Image projection or display system
CN1549047A (en) 2003-05-15 2004-11-24 乐金电子(沈阳)有限公司 Integrator and projector using the same principle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185018B1 (en) 1998-01-06 2001-02-06 Sony Corporation Holographic stereogram printing system
CN1547679A (en) 2001-01-24 2004-11-17 汤姆森许可贸易公司 Image projection or display system
CN1549047A (en) 2003-05-15 2004-11-24 乐金电子(沈阳)有限公司 Integrator and projector using the same principle

Also Published As

Publication number Publication date Type
CN102116934A (en) 2011-07-06 application

Similar Documents

Publication Publication Date Title
Wang et al. Design of compact freeform lens for application specific light-emitting diode packaging
US6639733B2 (en) High efficiency non-imaging optics
Moiseev et al. Design of high-efficient freeform LED lens for illumination of elongated rectangular regions
US20080165437A1 (en) Non-imaging facet based optics
Jiang et al. Optical modeling for a two-stage parabolic trough concentrating photovoltaic/thermal system using spectral beam splitting technology
Ries et al. Tailoring freeform lenses for illumination
Miñano et al. RX: a nonimaging concentrator
Luo et al. Design of compact and smooth free-form optical system with uniform illuminance for LED source
CN103071930A (en) System and method for preparing micro-pore array through femtosecond laser direct writing
Doskolovich et al. Designing a mirror to form a line-shaped directivity diagram
US20100307586A1 (en) Reflective free-form kohler concentrator
WO2011079856A1 (en) Photovoltaic concentrator with optical stepped lens and optical stepped lens
Rabl et al. Reflector design for illumination with extended sources: the basic solutions
Benıtez et al. Concentrator optics for the next-generation photovoltaics
Feng et al. Designing double freeform optical surfaces for controlling both irradiance and wavefront
CN101251650A (en) LED three-dimensional optical system design method and optical system with given luminous intensity distribution
Alvarez et al. TIR-R concentrator: a new compact high-gain SMS design
CN201568890U (en) Lens of LED light source with free curve surface
CN101482652A (en) Light distribution lens design method aiming at point light source
Fournier et al. Designing freeform reflectors for extended sources
Ries et al. Performance limitations of rotationally symmetric nonimaging devices
CN102062938A (en) Light converging device, design method thereof and light-converging photovoltaic power generation device
He et al. Numerical simulation of solar radiation transmission process for the solar tower power plant: from the heliostat field to the pressurized volumetric receiver
US5237170A (en) Method and apparatus for non-imaging concentration and projection of electromagnetic radiation
CN101576649A (en) Device for transmitting luminous energy by utilizing paraboloidal mirror

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model