CN102064884B - Long-distance distributed optical fiber positioning interference structure based on wavelength division multiplexing (WDM) - Google Patents

Long-distance distributed optical fiber positioning interference structure based on wavelength division multiplexing (WDM) Download PDF

Info

Publication number
CN102064884B
CN102064884B CN 201010558506 CN201010558506A CN102064884B CN 102064884 B CN102064884 B CN 102064884B CN 201010558506 CN201010558506 CN 201010558506 CN 201010558506 A CN201010558506 A CN 201010558506A CN 102064884 B CN102064884 B CN 102064884B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
structure
distance
distributed
multiplexing
optical
Prior art date
Application number
CN 201010558506
Other languages
Chinese (zh)
Other versions
CN102064884A (en )
Inventor
贾波
肖倩
许海燕
张毅
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明提出了一种可用于长距离监测的分布式光纤定位结构与方法,具体涉及一种基于波分复用的分布式光纤定位干涉技术,其在同一根感应光纤中注入两个不同波长的光,光传输到光纤端口,经一波分复用器件将两种波长成份分开,分别沿各自的独立光纤路径到达各自的反射终端,两个光波分别形成不同的干涉。 The present invention provides a distributed optical fiber positioning structure and method which can be used to monitor the long distance, in particular to a distributed optical fiber interferometric positioning WDM technology based, which is injected with two different wavelengths in a fiber induced light, the light transmission to the optical fiber ports, a wavelength division multiplexer via the separation of the two wavelength components, respectively, reflecting the respective terminals reach the individual fibers along respective paths, the two optical waves are formed of different interference. 通过比较两个干涉获得的相位信号的频谱特性,获得扰动位置信息。 Interference spectral characteristics of the phase signal obtained by comparing the two, the position information obtaining disturbance. 本发明结构简单,后端对信号处理无特殊要求,利用比较频谱特性获得位置信息不仅消除了扰动信号幅度变化对检测的影响,且可利用多个频率点获得的位置值进行平均,获得高的定位精度。 Simple structure of the present invention, no special requirements on the rear end signal processing, using the comparison spectral characteristics obtaining position information not only eliminates the effect of the disturbance on the detection of changes in signal amplitude, and may utilize a plurality of frequency points obtained position values ​​are averaged to obtain a high positioning accuracy.

Description

基于波分复用的长距离分布式光纤定位干涉系统 Distributed optical fiber interferometric positioning system for long distance WDM-based

技术领域 FIELD

[0001] 本发明属于光纤传感技术领域,具体涉及一种长距离分布式光纤定位干涉结构。 [0001] The present invention belongs to the field of fiber optic sensing technology, particularly, to a long-distance optical fiber positioning distributed interference structure.

[0002] 背景技术 [0002] BACKGROUND OF THE INVENTION

[0003] 维护基础设施的安全是社会稳定、经济快速发展的一个基本要求。 [0003] maintain the security infrastructure of social stability, a basic requirement for rapid economic development. 当前,我国对于油气管道、电网、通信网等基础设施的长距离监测主要是依据设施自身的一些生产参数(如压力突降、中间站油罐液位的不正常变化)和人工巡视、路人的报告等手段。 At present, our monitoring infrastructure for long-distance oil and gas pipelines, power grids, telecommunications networks and other major facilities is based on some of their production parameters (such as pressure dips, abnormal change in the intermediate station tank liquid level) and manual inspection, passers-by reports and other means. 这些手段技术含量低,普遍存在效率低、实时性差、反应时间长、抗干扰能力差等缺陷,常常是监测设施遭受破坏后才能报警,实用性受自然和人为双重因素的制约。 These means low-tech, low prevalence of efficiency, poor real-time, long reaction time, defects and poor anti-interference ability, often monitoring facilities after suffering damage to the police, utility subject to natural and man-double factors. 这种“亡羊补牢式”的事后检测技术,只能减少而不能避免损失。 This "too late" type of post-detection technology, can only reduce but not avoid losses. 对长距离管线的监测,特别是受电磁干扰的影响,依靠电的方式进行传感监测难以实施。 Monitoring of long-distance lines, especially by the effects of electromagnetic interference, relying for electrically sensing monitor difficult to implement. 因此,光纤传感技术将成为进行电力、通信和油气管道等行业的安全监测和预防人为破坏的主要技术手段。 Thus, optical fiber sensing technology will become the main technical means of power, communications, and security industries such as oil and gas pipeline monitoring and prevention of vandalism.

[0004] 在先技术之一,是基于全光纤白光干涉系统的监测技术,在这种系统中,干涉信号在某些相关频率点会有缺失,从这些缺失的频率点来判断这些扰动发生的位置。 One prior art [0004], white light interferometry is based on an all-fiber system monitoring technology, in such a system, the interference signal will be missing some of the relevant frequencies, these frequencies to determine the deletion of these disturbances occur position. 但是如果扰动源未激发出所需的频率范围,就无法获得频率缺失点,这种判断方法就会失效。 However, if the source of the disturbance is not the desired excitation frequency range, the frequency of deletion point can not be obtained, such a determination method will fail. 图1为利用频率缺失点来进行定位监测的一种全光纤白光干涉系统结构。 1 is performed using a frequency missing points for positioning monitoring system of all-fiber structure of white light interferometry. 系统由宽带光源8、光纤分路器1、光纤延迟线5、光纤分路器2、单芯光纤6、反馈装置3、探测器9、10、信号处理单元16构成,该系统利用白光进行干涉。 8 by a broadband light source system, an optical splitter, an optical fiber delay line 5, two fiber optic splitters, single optical fibers 6, feedback means 3, 9, 10 detector, the signal processing unit 16 is configured, the system utilizes white light interferometry . 光路中存在一段单芯光纤6,利用反馈装置3的作用,使从光纤6传输的光经反馈装置3作用后重新进入光纤6传输,获得的干涉信号从I的端口lb、Ic输出,进入探测器9、10。17是由分路器1、2和延迟线5构成的干涉单元。 Section of single fiber is present in the optical path 6, by a feedback device acts 3, the interference signal to re-enter 6 transmission fiber from the 3 by light via a feedback device 6 transmitting optical fiber, is obtained from the I port lb, Ic output entry probe 9,10.17 interference means is constituted by the splitter 2 and the delay line 5.

[0005] 在先技术之二,解决了在先技术一中存在的扰动源激发频率范围问题。 [0005] bis prior art, to solve the problem of the disturbance source excitation frequency range present in a prior art. 如图2所示,该技术在单芯光纤6的末端加一个调制模块15。 As shown in FIG. 2, this technique at the end of a single fiber 6 plus modulation module 15. 调制模块15的作用是将外界振动信号调制到不同的载波频段上,具体实现方式是通过分路器4加两段有一定长度差异的光纤13和14,这两段光纤的长度差为/产生的时延为τ2.;在两路光纤上通过相位调制器18.、19加载不同频率的载波信号;两光纤光路的尾端加反馈装置11、12。 Effect modulation module 15 is outside the vibration signal modulated onto a different carrier frequency bands, there is a specific implementation of a certain difference in length by 4 arctangent splitter 13 and the optical fiber 14, the fiber length difference of these two / generation delay τ2 .; loaded on to two optical fibers by the phase modulator 18, 19 of the carrier signals of different frequencies; the trailing end of the fiber optic path plus two feedback means 11, 12. 这样,通过相位生成载波复用一套光纤干涉系统,得到同一振动对应不同光路位置的两路相位信号,比较两路相位信号的频谱特性,消去振动信息对位置信息的干扰,可获得准确的振动位置信息。 Thus, the phase generated carrier multiplexing an optical fiber interferometer system, to obtain two signals of the same phase of vibration positions corresponding to different optical paths, the spectral characteristics of two phase comparison signals, the interference canceling the vibration information of the position information, an accurate vibration can be obtained location information.

[0006] 通过比较两者频谱上的幅度,消除了扰动信号幅度、频率成分变化对定位的影响。 [0006] By comparing both of the amplitude spectrum, the amplitude of the signal disturbance is eliminated, the influence of changes in the positioning of the frequency component.

每个频率点都可以求得:的值,从而得到外界振动信号在传感光纤上的位置信息。 At each frequency point can be determined: the value to obtain the position information of the external vibration signals in the sensing fiber. 由于计算所用的频率点没有特殊要求,因而可以解决在先技术一中存在频率限制的问题。 Since the frequency points used in the calculation are no special requirements, it is possible to solve the problems of the prior art frequency limit of a. 又由于利用了频谱上若干个点求得4的平均值,消除信号测量的引入的误差所造成的差异性,也大大提闻定位的精确性。 Also, because the use of several points on the spectrum obtained by the average of 4, to eliminate the error introduced by the difference signal caused by the measurement, but also greatly improve the positioning accuracy smell.

[0007] 但在先技术二中,由于需要使用了相位生成载波调制技术,信号的解调变得相对复杂,特别是通常扰动引起的干涉信号带宽很宽,要精确地还原干涉相位,不仅要求带通滤波器的带宽很宽,且对平坦度和相移特性都有很高的要求,信号处理的难度和复杂程度较大。 [0007] However, the prior art II, since the required phase generated carrier modulation technique, the demodulated signal becomes relatively complex, in particular interference signal bandwidth is wide disturbances generally, to accurately restore the interferometric phase, requires not only bandpass filter bandwidth is very wide, and the flatness of the phase shift characteristic and very high demand, the difficulty and complexity of signal processing is large. 发明内容 SUMMARY

[0008] 本发明的目的在于提出一种环境适用性强、结构简单的可用于长距离分布式监测的基于波分复用的分布式光纤定位干涉结构。 [0008] The object of the present invention is to provide an environment applicability, simple structure used for long distance optical fiber distributed distributed monitoring interferometric positioning based on wavelength division multiplexing structures.

[0009] 本发明提出的基于波分复用的分布式光纤定位干涉结构,使用波分复用技术,使得同一扰动,获得两种不同的干涉信号,可以利用比较两路相位信号的频谱特性的方法,确定扰动发生的位置。 [0009] The present invention provides distributed optical fiber interferometric positioning based on the structure of a wavelength division multiplexed, wavelength division multiplexing techniques, so that the same disturbance obtain two different interference signals, the comparison may utilize spectral characteristics of two phase signals method of determining the position of occurrence of the disturbance. 具体如图3所示。 Specifically as shown in Figure 3. 包括:光纤干涉组件20、感应光纤6、第一波分复用器21、第一光纤22、第二光纤23、第一反馈装置11、第二反馈装置12 ;两个不同波长的光λ pλ 2从同一根感应光纤6中注入,这两个注入光沿这根被复用的感应光纤6传输到光纤的端口,被第一波分复用器件21分开,分别沿各自的独立路径第一光纤22、第二光纤23到达各自的反射终端——第一反馈装置11、第二反馈装置12 ;这两个独立光纤路径第一光纤22、第二光纤23之间长度差为厶,产生的时延为τ 3。 Comprising: a fiber optic interferometer assembly 20, the optical fiber sensor 6, a first wavelength division multiplexer 21, a first fiber 22, second fiber 23, a first feedback means 11, 12 of the second feedback means; two different wavelengths of light λ pλ 2 with an inductive injected from the optical fiber 6, the optical transmission along the two injection root multiplexed optical fiber 6 to the induction port of the optical fiber, being separated by a first wavelength division multiplexer 21, respectively, along respective first path independently optical fiber 22, second fiber 23 reach the respective reflection terminal - a first feedback means 11, the second feedback means 12; the two separate optical path of the first optical fiber 22, the difference between the second length of optical fiber 23 Si, generated delay of τ 3.

[0010] 图3中,光纤干涉组件20和感应光纤6、第一波分复用器21、第一光纤22、第一反馈装置11共同形成光波λ i的干涉光路;光纤干涉组件20和感应光纤6、第一波分复用器21、第二光纤23、第二反馈装置12共同形成光波λ 2的干涉光路。 In [0010] FIG 3, an optical fiber interferometer sensor assembly 20 and the optical fiber 6, a first wavelength division multiplexer 21, the first optical fiber 22, a first feedback means 11 together form an interference optical path of the optical wave λ i; fiber interferometer sensor assembly 20 and optical fiber 6, a first wavelength division multiplexer 21, a second optical fiber 23, a second feedback means 12 together form the optical path of the light wave interferometer λ 2. 光从光纤干涉组件20输入,干涉信号亦从光纤干涉组件20输出。 Interference component from the input optical fiber 20, the interference signal is also output from the fiber optic interferometer assembly 20.

[0011] 光波X1的干涉信号中携带有扰动点7距离反馈装置11长度信息,光波λ2的干涉信号中携带有扰动点7距离反馈装置12长度信息,这两个长度差(即为第一光纤22和第二光纤23的长度差)的存在,使得扰动点7的位置可以通过比较两个光波干涉获得的相位信号的频谱特性,获得准确的振动位置信息。 Interference signals [0011] X1 in the optical wave disturbance point 7 carrying means 11 length information from the feedback, the interference signal light λ2 carries bumpy point 7 from feedback means 12 length information, the length difference between the two (i.e. a first optical fiber the difference in length 22 and the second optical fiber 23) is present, such that the position of the disturbance point 7 may interfere with the spectral characteristics of the phase signal obtained by comparing the two optical waves, to obtain accurate position information of the vibration.

[0012] 图4是实现这一干涉结构的一种具体方式。 [0012] FIG. 4 is a particular way of achieving this interference structure.

[0013] 光纤干涉组件20由第一光纤分路器24、第二光纤分路器25、第二波分复用器26、第三波分复用器27、光纤延迟线5、第三光纤分路器28构成。 [0013] assembly 20 by a first fiber optic interferometric optical splitter 24, a second optical splitter 25, a second wavelength division multiplexer 26, a third WDM 27, fiber delay line 5, a third optical fiber splitter 28 constituted. 其中,第一光纤分路器24是 Wherein the first fiber optic splitter 24 is

一 Ν*Μ光纤分路器(Ν、Μ为整数),24al、24a2、…24aN是第一光纤分路器24的N个同向端口,24b1、24b2属另一组同向端口。 Ν * Μ a fiber optic splitter (Ν, Μ is an integer), 24al, 24a2, ... 24aN by N ports in the same direction, 24b1,24b2 genus another set of first optical splitter 24 to the same port. 第二光纤分路器25是一P*Q光纤分路器(P、Q为整数),25al、25a2、…25aP是第二光纤分路器25的P个同向端口,25bl、25b2属另一组同向端口。 The second optical splitter 25 is an optical splitter P * Q (P, Q is an integer), 25al, 25a2, ... 25aP second optical splitter 25 to a port P of the same, 25bl, 25b2 other genera a group of the same port. 第二波分复用器26为一波分复用器,26b、26c是其独立波长端口,26a是复用波长端口。 A second wavelength division multiplexer is a wavelength division multiplexer 26, 26b, 26c which is wavelength independent port, 26a is a wavelength multiplexing port. 第三波分复用器27是另一波分复用器,27b,27c是其独立波长端口,27a是复用波长端口。 The third wavelength division multiplexer is another wavelength division multiplexer 27, 27b, 27c which is wavelength independent port, 27a is a wavelength multiplexing port. 第三光纤分路器28是一工作波长包括λ 1、λ2的光纤分路器,28bl、28b2是其同向端口,28a是另一方向端口。 A third optical fiber splitter 28 comprises an operating wavelength λ 1, λ2 optical fiber splitter, 28bl, 28b2 which is the same port, 28a is a port other direction. 波长λ i的第一光从光纤分路器24的24al输入,光从端口24bl、24b2输出;波长λ 2的光从第二光纤分路器25的25al输入,光从端口25b1、25b2输出。 First optical wavelength λ i of light, 24b2 output from the input fiber 24al splitter 24 from the port 24bl; light wavelength [lambda] 2 from the second input fiber 25al splitter 25, the light output from the port 25b1,25b2. 从端口24bl、25bl输出的波长分别为λ ^ λ 2的光从第二经波分复用器26的端口26b、26c输入,两波长汇合的光从端口26a输出,复用端口26a与28bl间的路径;从端口24b2、25b2输出的波长分别为\ \ 2的光从经第三波分复用器27的端口27b、27c输入,两波长汇合的光从端口27a输出,复用端口26a与28b2间的路径。 From the port 24bl, 25bl output wavelength λ ^ respectively λ 2 of light from the second wavelength division multiplexer via the port 26b 26, 26c inputs, merging the two-wavelength light output from the port 26a, 26a and between the ports multiplexed 28bl path; 24b2,25b2 wavelength output from the port, respectively \ \ 2 of light from the third wavelength division multiplexer via the port 27b 27, 27c inputs, merging the two-wavelength light output from the port 27a, 26a and the multiplexing port path between 28b2. 从端口28bl、28b2输入的光,经28a输出,注入到感应光纤6中。 From the port 28bl, 28b2 of the light input, via output 28a, is injected into the sensing fiber 6. 在该干涉结构中,波长λ i的光产生的干涉信号从第一光纤分路器24的端口24al、24a2、…24aN输出,波长λ2的光产生的干涉信号从第二光纤分路器25的端口25al、25a2、…25aP输出。 In this structure, the interference, the interference signal light wavelength λ i is generated from the first port 24al optical splitter 24, 24a2, ... 24aN output, the interference signal light wavelength λ2 generated from the second optical splitter 25 port 25al, 25a2, ... 25aP output. 从入1和λ 2产生的干涉信号中分别解调出相应的相位信号,即可根据通过比较这两个相位信号的频谱特性确定扰动的位置。 The interference signal generated from the 1 and λ 2, respectively, the corresponding demodulated phase signal, can be determined according to the spectral characteristics of the disturbance by comparing the two phase position signals. 具体工作原理及解算过程如下。 Specific works and solver process is as follows.

[0014] 如图5所示在监控光纤的扰动点7处施加一个振动信号ί(ί),光在反馈装置R处返回。 [0014] FIG. 5 shows the disturbance in the monitoring points of optical fibers 7 is applied at a vibration signal ί (ί), R of the light feedback means return. 由于任何一个复杂的振动都可以分解为不同频率的简谐振动的叠加,所以考虑单一频率为®的振动信号。 Since the vibration of any complexity can be decomposed into a superposition of harmonic vibration at different frequencies, it is considered a single frequency of the vibration signal ®. 假设在时刻t,由于光弹效应,单一振动角频率为®的振动信号引起 Suppose at time t, since the vibration signal ® photoelastic effect caused by a single angular frequency of vibration of

的传输光波相位变化为φ{λ,ω,ί),则: The lightwave transmission phase change φ {λ, ω, ί), then:

[0015] [0015]

Figure CN102064884BD00051

[0016] 在时刻t+τ (Τ为光路中延迟线的长度),单一角频率为ω的振动信号引起的传输光波相位变化为: [0016] At time t + τ (Τ optical path length delay line), single angle frequency ω lightwave transmission phase change due to the vibration signal:

[0017] [0017]

Figure CN102064884BD00052

[0018] 在一路传感光纤上,设扰动点7离反馈终装置R的距离力\ ,光往返扰动点7的时间力' 则: [0018] The sensing fiber on the way, the feedback provided from the disturbance point 7 from the final means of the force R \, 7 time point the force disturbance light roundtrip 'is:

[0019] [0019]

Figure CN102064884BD00053

(3) (3)

[0020] 上式中,Weir是光纤纤芯等效折射率,c是真空中的光速。 [0020] In the above formula, Weir is the equivalent refractive index of the fiber core, c is the speed of light in vacuum. a = Ineff / e ,为常数。 a = Ineff / e, is a constant.

[0021] 由频率为®的扰动引起的干涉光的相位差为: [0021] The phase difference by the frequency of the interference light due to disturbance ®:

[0022] [0022]

Figure CN102064884BD00054

[0023]对于所有频率的扰动,总的相位差4汉1,0二1八釣味0 ,对应外界振动信号的大小。 [0023] For all the disturbance frequencies, the total phase difference Han 0 4 1 two eight fishing flavor 0, corresponding to the size of the external vibration signal.

[0024] 设该光路为波长λ i的光的路径,即反馈装置R为反馈装置11,设扰动点7与反馈装置11的距离即为4 ,干涉光组件20中光纤延迟线产生的时延为η ,即;T = IT1 ,则有:.、 QyT^ ft) I1.Γι + Ti v [0024] provided that the optical path of the light path for the wavelength λ i, i.e., R is a feedback means feedback device 11, from the point 7 and the feedback means 11 that is provided disturbances 4, the delay fiber delay interference light assembly 20 produced is η, i.e.; T = IT1, there are:, QyT ^ ft) I1.Γι + Ti v.

[0025] [0025]

Figure CN102064884BD00055

[0026] 对于波长为λ 2的路径,反馈装置R为反馈装置12,因为光纤路径22和光纤路径23的延时差为T3 = OeffI3 ic,光往返扰动点7的时间为+2 Ts ,则有: [0026] The path to the wavelength λ 2, and R is a feedback means feedback device 12, because the optical fiber 22 and the optical fiber path 23 is a path delay difference T3 = OeffI3 ic, disturbance light roundtrip time point is 7 +2 Ts, the Have:

Figure CN102064884BD00061

[0028] 对于所有频率的扰动,光波λ ρ λ 2对应的总的相位差分别为: [0028] For all the disturbance frequencies, the total phase difference corresponding to the optical wave λ ρ λ 2, respectively:

Figure CN102064884BD00062

[0031] 这两个相位差分别由光纤分路器24、光纤分路器25输出的干涉光中解调出来。 [0031] 24 these two phase differences, the interference of the light output fiber splitter 25 is demodulated by the optical splitter.

[0032]在 A^1 (ί) 的频谱上,对于每一个频率@,都有与其相对应的幅值 [0032] in the spectrum A ^ 1 (ί), and @ for each frequency, amplitude corresponding thereto has

Figure CN102064884BD00063

在厶识(巧的频谱上,对于每一个频率@ Knowledge in the spectrum Si (Coincidentally, for each frequency!

,都有与其相对应的幅值 , Has its corresponding amplitudes

Figure CN102064884BD00064

,可得: ,Available:

Figure CN102064884BD00065

[0034] 由光弹效应可知,光纤受到外界应力作用时(假设不产生微弯),ω频率分量引起的相位变化为: [0034] As is apparent from the photoelastic effect, the optical fiber subjected to external stress (assuming no microbending), a phase change is caused by the frequency component ω:

Figure CN102064884BD00066

(9) (9)

[0036] 其中p.、Pi为光弹系数,Al ( ω)为外界应力■频率的应力分量产生的应变,因此有: [0036] wherein p, Pi is the stress photoelastic coefficient, Al (ω) is the frequency of the external stress components generated ■ strain, therefore:

Figure CN102064884BD00067
Figure CN102064884BD00071

[0040] (11)式的左边通过实际测试获得,因此,对于每一个频率ώ?,通过比较两者频谱上的幅度,都可以求得< 的值,从而得到外界振动信号在传感光纤上的位置信息。 [0040] The left side of (11) is obtained by actual test, therefore, for each frequency ώ ?, both by comparing the amplitude spectrum can be obtained by <value to obtain the vibration signal in the external sensing fiber the location information. 可利用频 Available frequency

谱上若干个点求得的平均值,消除检测信号不稳定所造成的差异性,也会大大提高定位的精确性。 The spectrum obtained from the average of several points, to eliminate differences caused by instability detection signal, will greatly improve the positioning accuracy.

[0041] 图6是又一种干涉结构实现方式。 [0041] FIG. 6 is an interference structure and implementation.

[0042] 光纤干涉组件20由第四光纤分路器29、第三光纤分路器28以及光纤延迟线5构成。 [0042] 20 fiber optic interferometer assembly 29 by the fourth optical splitter, a third optical splitter 28 and an optical fiber delay line 5. 第四光纤分路器29是一1?拓光纤分路器0?、3为整数),29&1、29&2、…29aR是第四光纤分路器29的R个同向端口,29b 1、29b2属另一组同向端口。 A fourth fiber optic splitter 29 is a 1? 0 develops optical splitter?, 3 is an integer), 29 & 1,29 & 2, ... 29aR fourth optical splitter R 29 is a port in the same direction, 29b 1,29b2 genus another group of the same port. 该方式中,光纤干涉组件中20中所有的器件都被复用。 In this manner, the fiber optic interferometer assembly 20 all devices are multiplexed. 端口29bl经光纤延迟线5与端口28bl相连,端口29b2与端口28b2相连,从端口28bl、28b2输入的光,经端口28a输出,注入到感应光纤6中。 29bl port 5 through the optical fiber delay line connected to the port 28bl, 29b2 port connected to port 28B2, from the port 28bl, 28b2 of the light input, the output port 28a, is injected into the sensing fiber 6.

[0043] 含有入工和λ 2两种波长成分的光从端口29al输入,该注入光可以是由一个光源产生,也可以由波长分别为入1和λ 2的两个光源经波分复用器合波后生成。 [0043] comprising the two kinds of light industrial and λ 2 wavelength components from the input port 29al, which may be produced by injecting a light source, the wavelengths of the two light sources may be wavelength division multiplexed to 1 and λ 2 after generates multiplexed. 两种波长产生的干涉皆从端口29al、29a2、…29aR输出。 Interference two wavelengths are generated from the port 29al, 29a2, ... 29aR output. 使用波分复用器即可把含有两个波长的干涉信号分离开,即分别获得X1的干涉信号和λ 2的干涉信号。 WDM can use the interference signal comprising two wavelengths separated, i.e. interference signals respectively and λ X1 interference signal 2. 从入1和λ 2产生的干涉信号中解调出相位信号,即可根据这两个相位信号确定扰动的位置。 The interference signal generated from the 1 and λ 2 demodulating the phase signal, the phase of the two signals can be determined according to the position of the disturbance.

[0044] 本发明在干涉结构中使用波分复用技术,使得同一扰动,获得两种不同的干涉信号,可以利用比较两路相位信号的频谱特性的方法获得扰动的位置。 [0044] The present invention uses wavelength division multiplexing technology in the interfering structure, so that the same disturbance obtain two different interference signals, using the comparison spectral characteristics of two phase position signals obtained by the method of perturbation. 这种形式,结构简单,后端信号处理无需特殊手段,这是该结构的一大优势。 In this form, the structure is simple, the back-end signal processing without special tools, which is a big advantage of the structure.

[0045] 该发明可通过比较两个干涉获得的相位信号的频谱特性,获得扰动位置信息。 [0045] The spectral characteristics of the invention can be obtained by comparing the phase of two signals obtained by the interference, the disturbance to obtain position information. 这种方法不仅可消除了扰动信号幅度、频率成分变化对定位的影响,还可利用多个频率点获得的位置值进行平均,消除信号处理中误差的影响,获得高的定位精度,因而该结构与方法具有潜在定位精确度高的优势。 This approach not only eliminates the perturbation signal amplitude, frequency components affect the change of position, but also by using a plurality of frequency points obtained position values ​​are averaged to eliminate the influence of the error in signal processing, to obtain a high positioning precision, and therefore the structure and high accuracy positioning method has potential advantages. 同时,因其扰动位置的获取不依赖于扰动源激发某个特殊频率点,适用性更强,应用前途更加广泛。 At the same time, because of their position to obtain the disturbance is not dependent on a particular source of disturbance excitation frequencies, the applicability of stronger, more extensive application prospects.

[0046] 该发明用做感应、定位的光纤不用闭合,无需构成环路,便于沿监测对象长距离铺设,环境适用性强。 [0046] The invention is used as a sensor, positioning the fiber not closed, without loop configuration, to facilitate the laying of a long distance along the object, environmental suitability.

[0047] 基于发明的分布式光纤管线监控系统可广泛应用于通信干线、电力传输线、天然气管道、石油管道、边境线的安全监测领域的长距离监测;也能应用于大型建筑物例如水坝、隧道、矿井等的安全监测。 [0047] The distributed optical fiber line monitoring system based on the invention can be widely applied to communication lines, power transmission lines, gas pipelines, oil pipelines, long-distance monitoring of the border areas of security monitoring; can also be used in large buildings such as dams, tunnels , mines and other security monitoring. 附图说明 BRIEF DESCRIPTION

[0048] 图1为利用频率缺失点来进行定位监测的一种全光纤白光干涉系统结构。 [0048] FIG. 1 is a point deletion is performed using a frequency for positioning monitoring system of all-fiber structure of white light interferometry. 系统由宽带光源8、光纤分路器1、光纤延迟线5、光纤分路器2、单芯光纤6、反馈装置3、探测器9、 8 by a broadband light source system, an optical splitter, an optical fiber delay line 5, two fiber optic splitters, single optical fibers 6, the feedback device 3, a detector 9,

10、信号处理单元16构成,该系统利用白光进行干涉。 10, the signal processing unit 16 is configured, the system uses white light interference. 光路中存在一段单芯光纤6,利用反馈装置3的作用,使从光纤6传输的光经反馈装置3作用后重新进入光纤6传输,获得的干涉信号从I的端口lb、Ic输出,进入探测器9、10。17是由分路器1、2和延迟线5构成的干涉单元。 Section of single fiber is present in the optical path 6, by a feedback device acts 3, the interference signal to re-enter 6 transmission fiber from the 3 by light via a feedback device 6 transmitting optical fiber, is obtained from the I port lb, Ic output entry probe 9,10.17 interference means is constituted by the splitter 2 and the delay line 5.

[0049] 图2是一种基于相位生成载波复用技术的光纤定位监测系统结构。 [0049] FIG. 2 is a phase generated carrier multiplexing fiber location monitoring system architecture based. 15为调制模块调制模块15,4是分路器,13、14为光纤,两段光纤的长度差为I产生的时延为τ 2.,18.、19为相位调制器,11、12为反馈装置。 Modulation module 15 to 15,4 modulation module is a splitter, the optical fiber 13 and 14, the difference in length of the two optical fiber delay is generated I τ 2., 18., 19 is a phase modulator, 11 and 12 feedback means.

[0050] 图3是本发明提出的基于波分复用的分布式光纤定位干涉结构。 [0050] FIG. 3 is proposed by the present invention is a distributed optical fiber interferometric positioning based on wavelength division multiplexing structures. 20是光纤干涉组件,6为感应光纤,21为第一波分复用器,22、23分别为第一、第二光纤,11、12分别为第一、第二反馈装置。 Component 20 is an optical fiber interferometer, the optical fiber sensor 6, a first wavelength division multiplexer 21, 22 and 23 respectively, a first, a second optical fiber, 11 and 12 respectively, a first, a second feedback means. 光从光纤干涉组件20输入,干涉信号亦从光纤干涉组件20输出。 Interference component from the input optical fiber 20, the interference signal is also output from the fiber optic interferometer assembly 20.

[0051] 图4是本发明的干涉结构的一种具体实现方式。 [0051] FIG. 4 is a specific implementation of the interference structure of the present invention. 24是一Ν*Μ光纤分路器(Ν、Μ为整数),24al、24a2、…24aN是光纤分路器24的N个同向端口,24bK24b2属另一组同向端口。 24 is an Ν * Μ optical splitter (Ν, Μ is an integer), 24al, 24a2, ... 24aN by N ports in the same direction, 24bK24b2 genus another group of optical splitter 24 to the same port. 25是一P*Q光纤分路器(P、Q为整数),25al、25a2、…24aP是光纤分路器25的P个同向端口,25bl、25b2属另一组同向端口。 25 is a fiber optic splitter P * Q (P, Q is an integer), 25al, 25a2, ... 24aP is an optical fiber with a splitter to a port P, 25bl, 25b2 belongs to another group with the port 25. 26是一波分复用器,26b、26c是其独立波长端口,26a是复用波长端口。 26 is a wavelength division multiplexer, 26b, 26c which is wavelength independent port, 26a is a wavelength multiplexing port. 27是又一波分复用器,27b、27c是其独立波长端口,27a是复用波长端口。 27 is another wavelength division multiplexer, 27b, 27c which is wavelength independent port, 27a is a wavelength multiplexing port. 28是一工作波长包括λ2的光纤分路器,28bl、28b2是其同向端口,28a是另一方向端口。 28 is an operating wavelength λ2 comprising a fiber splitter, 28bl, 28b2 which is the same port, 28a is a port other direction.

[0052] 图5是在监控线路上存在有一个扰动点7的示意图。 [0052] FIG. 5 is present on the line to monitor a schematic point 7 perturbations.

[0053] 图6是本发明的干涉结构的又一种具体实现方式。 [0053] FIG. 6 is a further specific implementation of the interference structure of the present invention. 29是一R*S光纤分路器(R、S为整数),29al、29a2、…29aR是光纤分路器29的R个同向端口,29bl、29b2属另一组同向端口。 29 is a fiber optic splitter R * S (R, S is an integer), 29al, 29a2, ... 29aR is a fiber optic splitter with R to a port, 29bl, 29b2 belongs to another group with the port 29.

具体实施方式 detailed description

[0054] 下面通过实施例进一步描述本发明。 [0054] The present invention is further described below by way of examples. 采用图4所示的干涉结构。 Using the interference structure shown in FIG. 光源为电子集团总公司44研究所生产的中心波长分别为1300nm ( λ ^和和1550nm ( λ 2)的超福射发光管(SLD)。光纤耦合器、波分复用器为武汉邮电研究院生产。光纤分路器24采用工作波长1300nm的3*3均分稱合器,光纤分路器25米用工作波长1550nm的3*3均分稱合器,光纤分路器28采用2*2均分的双窗口光纤耦合器,波分复用器21、26、27为1300nm、1550nm的波分复用器。1300nm的光从端口24al输入,形成的干涉信号从端口24a2和24a3取出;1550nm的光从端口25al输入,形成的干涉信号从端口25a2和25a3取出。采用44所生产的型号为GT322C500的InGaAs光电探测器将光干涉信号转为电信号。通过National Instruments公司数据采集卡PC1-6122将电信号信号采集进计算机进行信号处理。监控线路铺设于需要监控管线的附近,光纤干涉模块需置于隔音设备中以屏蔽外界干扰。结果表明,能方便地获得准确的扰动 The light source 44 for the Institute of Electronics Corporation production center wavelengths (λ ^ and and 1550nm (λ 2) is a 1300nm Four ultra exit arc tube (SLD). Optical fiber coupler is a wavelength division multiplexer WRI production. splitter optical fiber 24 using an operating wavelength of 1300nm, said average 3 * 3 coupler, a fiber splitter 25 m with an operating wavelength of 1550nm, said average 3 * 3 coupler, a fiber splitter 28 a 2 * 2 the double-window average fiber coupler, a wavelength division multiplexer 21,26,27 to 1300nm, 1550nm wavelength division multiplexer interference signal .1300nm light from the input port 24al, 24a2 is formed and removed from the port 24a3; 1550nm the optical interference signal is removed from the port 25al formed from the input ports 25a2 and 25a3. using 44 model produced GT322C500 InGaAs photodetectors of the optical interference signal into an electrical signal by a National Instruments data acquisition card PC1-6122 collecting the electrical signal into the computer to perform signal processing. supervisory circuitry required to monitor the vicinity of laying the pipeline, the module for an optical fiber interferometer device is placed to shield noise from outside interference. the results show, you can easily obtain accurate disturbance 位置。 position.

Claims (1)

  1. 1.基于波分复用的长距离分布式光纤定位干涉系统,其特征在于该干涉系统包括:光纤干涉组件、感应光纤、第一波分复用器、第一光纤、第二光纤、第一反馈装置、第二反馈装置;两个不同波长的光λ P λ 2从同一根感应光纤中注入,这两个注入光沿这根被复用的感应光纤传输到光纤的端口,被第一波分复用器分开,分别沿各自的独立路径第一光纤、第二光纤到达各自的反射终端一第一反馈装置、第二反馈装置;这两个独立光纤路径第一光纤、第二光纤之间长度差为厶,产生的时延为^;其中,光纤干涉组件和感应光纤、波分复用器、第一光纤、第一反馈装置形成光波λ,的干涉光路;光纤干涉组件和感应光纤、波分复用器、第二光纤、第二反馈装置形成光波λ 2的干涉光路;光从光纤干涉组件输入,干涉信号亦从光纤干涉组件输出;其中: 所述光纤干涉 1. interferometric positioning system for long distance optical fiber distributed WDM-based, characterized in that the interferometer system comprises: an interference component fiber, the optical fiber sensor, a first wavelength division multiplexer, a first optical fiber, a second optical fiber, a first feedback means, a second feedback means; [lambda] light of two different wavelengths are injected from the P λ 2 with a sensing optical fiber, light injected along both root induction multiplexed fiber optic transmission to a port of the optical fiber, is the first wave division multiplexer separate, independent paths, respectively, along respective first optical fiber, a second optical fiber reaches a first terminal of each of the reflected feedback means, a second feedback means; two separate optical path of the first optical fiber, between the second optical fiber Si length difference, for generating delay ^; wherein the optical fiber interferometer sensor assembly and the optical fiber, wavelength division multiplexer, a first optical fiber, means forming a first feedback light wave [lambda], the optical interferometer; optical fiber interferometer sensor assembly and, wavelength division multiplexer, a second optical fiber, feedback means forming a second optical wave λ 2 of the interferometer; optical interference component from the input fiber, the interference signal is also output from the fiber optic interferometer assembly; wherein: said fiber interferometer 件由第一光纤分路器、第二光纤分路器、第二波分复用器、第三波分复用器、光纤延迟线、第三光纤分路器构成;其中,第一光纤分路器是一Ν*2光纤分路器,N为整数,24al、24a2、…24aN是第一光纤分路器的N个同向端口,24bI>24b2是第一光纤分路器的另一组同向端口;第二光纤分路器是一P*2光纤分路器,P为整数,25al、25a2、…25aP是第二光纤分路器的P个同向端口,25bl、25b2第二光纤分路器的另一组同向端口;第二波分复用器为一波分复用器,26b,26c是其独立波长端口,26a是复用波长端口;第三波分复用器是另一波分复用器,27b,27c是其独立波长端口,27a是复用波长端口;第三光纤分路器是一工作波长包括λ 2的光纤分路器,28bl、28b2是其同向端口,28a是另一方向端口;波长λ ι的光从第一光纤分路器的端口24al输入,从端口24bl、24b2输出;波长λ2的光从第二光纤分路 A first optical member by a splitter, the second optical splitter, the second wavelength division multiplexer, a third wavelength division multiplexer, an optical fiber delay line, the third optical splitter configuration; wherein a first fiber drop path is a fiber optic splitter Ν * 2, N being an integer, 24al, 24a2, ... 24aN is the N first optical splitter to the same port, 24bI> 24b2 is another group of the first optical splitter to the same port; a second optical splitter is a fiber optic splitter P * 2, P is an integer, 25al, 25a2, ... 25aP P is a port in the same direction, 25bl, 25b2 of the second optical fiber of the second splitter another group of the same splitter to a port; a second wavelength division multiplexer is a wavelength division multiplexer, 26b, 26c which is wavelength independent port, 26a is a wavelength multiplexing port; a third wavelength division multiplexer another WDM, 27b, 27c which is wavelength independent port, 27a is a wavelength multiplexing port; a third optical splitter is a fiber operating wavelength λ comprising a splitter 2, 28bl, 28b2 which is the same direction port, 28a is a port in the other direction; λ ι wavelength light from a first optical input port 24al splitter, from the port 24bl, 24b2 outputs; wavelength λ2 from the second optical branch fiber 的端口25al输入,从端口25bl、25b2输出;从端口24bl、25bl输出的波长分别为λ P λ 2的光从第二经波分复用器的端口26b、26c输入,两波长汇合的光从端口26a输出,复用端口26a与28bl间的路径;从端口24b2、25b2输出的波长分别为λ2的光从第三波分复用器的端口27b、27c输入,两波长汇合的光从端口27a输出,复用端口27a与28b2间的路径;从端口28bl、28b2输入的光,经端口28a输出,注入到感应光纤中;在该干涉系统中,波长λ I的光产生的干涉信号从第一光纤分路器的端口24al、24a2、…24aN输出,波长λ 2的光产生的干涉信号从第二光纤分路器的端口25al、25a2、…25aP输出;或者,所述光纤干涉组件由第四光纤分路器、第三光纤分路器以及光纤延迟线构成;第四光纤分路器是一R*2光纤分路器,R为整数,29al、29a2、…29aR是第四光纤分路器的R个同向端口,29bl、29b2第四光纤分路 25al input port, from the port 25bl, 25b2 output; from the port 24bl, 25BL output wavelength λ P λ light respectively from the second port 26b via the wavelength division multiplexer, 26c of the input 2, the two-wavelength light from confluent output port 26a, multiplexing paths between the ports 26a and 28bl; 24b2,25b2 wavelength of the output port from the port 27b, respectively, from the light of the third wavelength division multiplexer, 27c λ2 input of the two-wavelength light from the confluent ports 27a output multiplexing paths between the ports 27a and 28B2; slave port 28bl, 28b2 of the light input, the output port 28a, is injected into the sensing fiber; interference in the system, the interference signal light generated from the first I wavelength λ optical splitter ports 24al, 24a2, ... 24aN output wavelength λ 2 generated by the interference of the signal light, 25a2, ... 25aP from the output port 25al of the second optical splitter; or the interference component by a fourth optical fiber fiber splitter, a third optical splitter and an optical fiber delay line configuration; and a fourth optical splitter is a fiber optic splitter R * 2, R is an integer, 29al, 29a2, ... 29aR fourth optical splitter R a shunt to the same port, 29bl, 29b2 fourth optical fiber 器的另一组同向端口;该方式中,光纤干涉组件中所有的器件都被复用;端口29bl经光纤延迟线与端口28bl相连,端口29b2与端口28b2相连,从端口28bl、28b2输入的光,经端口28a输出,注入到感应光纤中; 含有入1和λ 2两种波长成分的光从端口29al输入,两种波长产生的干涉信号都从端口29al、29a2、…29aR 输出。 Another set of ports is in the same direction; in this embodiment, all optical fiber interferometer assembly devices are multiplexed; 29bl is connected to the port through the optical fiber delay line port 28bl, 29b2 port connected to port 28B2, from the port 28bl, 28b2 input light, through the output port 28a, is injected into the sensing fiber; 1 and 2 comprising the two wavelengths λ light component from the input port 29al, interference signals are generated from the two wavelengths port 29al, 29a2, ... 29aR output.
CN 201010558506 2010-11-25 2010-11-25 Long-distance distributed optical fiber positioning interference structure based on wavelength division multiplexing (WDM) CN102064884B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010558506 CN102064884B (en) 2010-11-25 2010-11-25 Long-distance distributed optical fiber positioning interference structure based on wavelength division multiplexing (WDM)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010558506 CN102064884B (en) 2010-11-25 2010-11-25 Long-distance distributed optical fiber positioning interference structure based on wavelength division multiplexing (WDM)

Publications (2)

Publication Number Publication Date
CN102064884A true CN102064884A (en) 2011-05-18
CN102064884B true CN102064884B (en) 2013-06-12

Family

ID=44000006

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010558506 CN102064884B (en) 2010-11-25 2010-11-25 Long-distance distributed optical fiber positioning interference structure based on wavelength division multiplexing (WDM)

Country Status (1)

Country Link
CN (1) CN102064884B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496231B (en) * 2011-11-25 2014-01-15 北京航天易联科技发展有限公司 Long-distance trunk line safety fiber wavelength division multiplexing type warning system
CN102635399A (en) * 2012-04-25 2012-08-15 复旦大学 Mine emergency rescue communication method and system based on optical fiber sensing
CN103487067B (en) * 2013-10-12 2016-05-11 复旦大学 WDM technology using subtractive interference path scattering, the reflected light interference method and system
CN103499356B (en) * 2013-10-12 2017-07-07 复旦大学 The method of subtractive interference signal transmission path fiber interferometer system and structure
CN103560824A (en) * 2013-10-30 2014-02-05 北京航天易联科技发展有限公司 Optical cable fault nondestructive testing device and method based on optical fiber interference principle
CN103743421B (en) * 2013-12-31 2016-05-18 上海华魏光纤传感技术有限公司 Multi-core optical fiber sensing a method
US9810557B2 (en) 2014-02-10 2017-11-07 University Of Central Florida Research Foundation, Inc. Multicore optical fiber apparatus, methods, and applications
CN105488935B (en) * 2015-12-25 2018-01-16 天津大学 A positioning system and a positioning method based on the perturbation of an asymmetric two Mach-Zehnder interferometer distributed fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555118A (en) 1993-06-04 1996-09-10 Ciena Corporation Method for removing and inserting optical carriers in a WDM optical communication system
CN101080884A (en) 2004-12-17 2007-11-28 英国电讯有限公司 Assessing a network
CN101277151A (en) 2008-05-16 2008-10-01 北京邮电大学 Optical fiber sensing system structure based on wavelength division multiplexing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555118A (en) 1993-06-04 1996-09-10 Ciena Corporation Method for removing and inserting optical carriers in a WDM optical communication system
CN101080884A (en) 2004-12-17 2007-11-28 英国电讯有限公司 Assessing a network
CN101277151A (en) 2008-05-16 2008-10-01 北京邮电大学 Optical fiber sensing system structure based on wavelength division multiplexing

Also Published As

Publication number Publication date Type
CN102064884A (en) 2011-05-18 application

Similar Documents

Publication Publication Date Title
Culshaw et al. Fiber-optic sensing: A historical perspective
Russell et al. Real-time location of multiple time-varying strain disturbances, acting over a 40-km fiber section, using a novel dual-Sagnac interferometer
Sun et al. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer
JP2004101472A (en) Distortion temperature measurement system using optical fiber
CN101051869A (en) Safety monitor system of optical cable communication line
CN101800598A (en) New balance detection bias control method for MZ external modulator
CN1862239A (en) Distributed optical fiber vibration sensing method and apparatus thereof
Bernini et al. Distributed sensing at centimeter-scale spatial resolution by BOFDA: Measurements and signal processing
CN102680136A (en) Distributed stimulated Brillouin temperature strain sensing system based on double-sideband modulation
CN101242224A (en) An optical fiber pipe monitoring system
US6049506A (en) Optical fiber Sagnac interferometer which identifies harmonically related nulls in the detected spectrum
CN102322880A (en) Polarization sensitive distributive optical frequency domain reflection disturbance sensor and demodulation method
Li et al. Few-mode fiber based optical sensors
CN101608946A (en) Fiber laser hydrophone signal demodulating system
CN1837674A (en) Apparatus and method for monitoring pipeline leakage based on distributed optical fiber acoustic sensing technology
Liehr et al. Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers
CN102546007A (en) Device and method for realizing frequency measurement of multifrequency microwave signals by using Brillouin scattering
CN101216149A (en) Optical fiber distributed type monitoring method for long-distance conduit wiring safe monitoring and its device
CN101465052A (en) Safety monitoring system and method for circumference
Hong et al. Location of a wideband perturbation using a fiber Fox–Smith interferometer
US20100134787A1 (en) Measurement method of chromatic dispersion of optical beam waveguide using interference fringe measurement system
CN101555990A (en) Safety monitoring system of long-distance pipeline
CN102538846A (en) Phase-sensitive optical time domain reflectometer type optical fiber distributed disturbing sensor of double-arm pulse optical interference
CN102281107A (en) A fiber optic apparatus and method for measuring dispersion
CN103591895A (en) Optical fiber length measuring system and measuring method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted