CN102044632A - Zinc oxide film method and structure for CIGS cell - Google Patents

Zinc oxide film method and structure for CIGS cell Download PDF

Info

Publication number
CN102044632A
CN102044632A CN2010105039601A CN201010503960A CN102044632A CN 102044632 A CN102044632 A CN 102044632A CN 2010105039601 A CN2010105039601 A CN 2010105039601A CN 201010503960 A CN201010503960 A CN 201010503960A CN 102044632 A CN102044632 A CN 102044632A
Authority
CN
China
Prior art keywords
method according
species
zinc oxide
material
layer
Prior art date
Application number
CN2010105039601A
Other languages
Chinese (zh)
Other versions
CN102044632B (en
Inventor
D·维廷 罗伯特
Original Assignee
思阳公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/577,132 priority Critical
Priority to US12/577,132 priority patent/US8168463B2/en
Application filed by 思阳公司 filed Critical 思阳公司
Publication of CN102044632A publication Critical patent/CN102044632A/en
Application granted granted Critical
Publication of CN102044632B publication Critical patent/CN102044632B/en

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/541CuInSe2 material PV cells

Abstract

The present invention provides a zinc oxide film method and structure for a CIGS cell. A method for fabricating a thin film photovoltaic device includes providing a substrate comprising an absorber layer and an overlying window layer. The substrate is loaded into a chamber and subjected to a vacuum environment. The vacuum environment is at a pressure ranging from 0.1 Torr to about 0.02 Torr. In a specific embodiment, a mixture of reactant species derived from diethylzinc species, water species and a carrier gas is introduced into the chamber. The method further introduces a diborane species using a selected flow rate into the mixture of reactant species. A zinc oxide film is formed overlying the window layer to define a transparent conductive oxide using the selected flow rate to provide a resistivity of about 2.5 milliohm-cm and less and an average grain size of about 3000 to 5000 Angstroms.

Description

用于CIGS电池的氧化锌膜方法和结构 Zinc oxide film CIGS method and structure for a battery

技术领域 FIELD

[0001 ] 本发明总体涉及光电材料及制造方法。 [0001] The present invention relates generally to photovoltaic materials and manufacturing method. 更具体地,本发明提供了一种用于薄膜光电池的方法和结构。 More particularly, the present invention provides a method and structure for a thin film photovoltaic cell. 仅通过实例的方式,本发明的方法和结构提供了利用包含铜铟二硫化物物质的吸收材料的薄膜光电池。 By way of example only, methods and structures of the present invention provide a thin film photovoltaic cell absorber materials comprising using copper indium disulfide material.

背景技术 Background technique

[0002] 从一开始,人类已致力于发现开发能源的方式。 [0002] From the beginning, mankind has been committed to the development of energy found in the way. 能源来源于如石油化学、水力发电、原子核、风、生物质、太阳的形式,以及更原始的形式如木材和煤来源。 Such as energy derived from petrochemicals, hydroelectric, nuclear, wind, biomass, in the form of the sun, and more primitive forms such as wood and coal sources. 在过去的世纪中, 现代文明已依赖石油化学能量作为重要的能源。 In the past century, modern civilization has relied upon petrochemical energy as an important energy source. 石油化学能源包括气体和油。 Petrochemical energy includes gas and oil. 气体包括较轻形式如丁烷和丙烷,通常用于加热住宅(取暖)和用作用于烹调的燃料。 Gas comprising lighter forms such as butane and propane, commonly used to heat homes (heating), and used as fuel for cooking. 气体还包括汽油、柴油、和喷气燃料,通常用于运输目的。 Gas further including gasoline, diesel, and jet fuel, commonly used for transportation purposes. 在一些地方,较重形式的石油化学品也可以用于加热住宅。 In some places, the heavier forms of petrochemicals can also be used to heat homes. 不幸的是,石油化学燃料的供应是有限的,并且基于行星地球上可获的量基本上是固定的。 Unfortunately, the supply of petrochemical fuel is limited, based on the amount available on the planet Earth is substantially fixed. 另外,随着更多的人以增长的量利用石油产品,它将快速成为一种稀缺资源,其随时间将最终变得耗竭。 In addition, as more people take advantage of growing amounts of petroleum products, it will quickly become a scarce resource, which will eventually become depleted over time.

[0003] 最近,已期望环境清洁和可再生的能源。 [0003] More recently, environmentally clean and renewable energy has expectations. 清洁能源的实例是水力发电能。 Examples of clean energy is hydroelectric energy. 水力发电能来源于由水坝如内华达州的Hoover Dam产生的水流驱动的发电机。 Hydroelectric energy is driven by water from dams such as the Hoover Dam in Nevada produced by the generator. 产生的电能用于为加利福尼亚洛杉矶的大部分城市供电。 The electrical energy generated is used to power most of the city of Los Angeles, California. 清洁和可再生的能源还包括风、波浪、生物质等。 Clean and renewable sources of energy also include wind, waves, biomass, and the like. 也就是说,风车将风能转化为更有用形式的能源如电能。 That is, windmills convert wind energy into more useful forms of energy such as electricity. 清洁能源还有的其他类型包括太阳能。 Still other types of clean energy include solar energy. 太阳能的具体细节可以在整个本发明背景中并更具体地在下文中找到。 Specific details of solar energy can be found and, more particularly below in the entire context of the present invention.

[0004] 太阳能技术通常将来自太阳的电磁辐射转化为其他有用的能量形式。 [0004] Solar energy technology generally electromagnetic radiation from the sun is converted to other useful forms of energy. 这些其他能量形式包括热能和电能。 These other forms of energy include thermal energy and electrical energy. 对于电能应用,通常使用太阳能电池。 For electrical power applications, solar cells are usually used. 虽然太阳能是环境清洁的并在每一点上已经是成功的,但是在其变为在全世界广泛使用之前仍然有许多限制有待解决。 Although solar energy is environmentally clean and has been successful on every point, but before it becomes widely used throughout the world there are still many restrictions to be resolved. 作为实例,一种类型的太阳能电池利用来源于半导体材料锭的结晶材料。 As an example, one type of solar cell uses crystalline materials derived from semiconductor material ingots. 这些结晶材料可以用于制造包括将电磁辐射转化为电能的光伏器件和光电二极管器件的光电器件。 These crystalline materials can be used for manufacturing a photovoltaic device comprising a photovoltaic device and the photodiode device of electromagnetic radiation into electrical energy. 然而,结晶材料通常是昂贵的并难以大规模制备。 However, crystalline materials are often costly and difficult to prepare a large scale. 另外,由这样的结晶材料制成的器件通常具有低能量转化效率。 Additionally, devices made from such crystalline materials often have low energy conversion efficiencies. 其他类型的太阳能电池使用“薄膜”技术以形成感光材料的薄膜用于将电磁辐射转化为电能。 Other types of solar cells use "thin film" technology to form a film of photosensitive material to electromagnetic radiation into electric energy. 类似的限制存在于制造太阳能电池时薄膜技术的使用中。 Similar limitations exist in the production of solar cells using thin-film technology. 也就是说,效率通常较差。 In other words, efficiency is typically poor. 另外,膜可靠性通常较差并且在常规环境应用中不能用于较长的时期。 Further, the film often poor reliability and can not be used in conventional environmental applications longer period. 通常,薄膜难以彼此机械地整合。 Generally, thin films are difficult to mechanically integrate with each other. 这些常规技术的这些和其他限制可以在整个本发明说明书并更具体地在下文中找到。 These and other limitations of these conventional technologies can be found, and more specifically in the following description throughout the present invention.

[0005] 根据上述,可以看出期望用于制造光电材料的改进的技术和得到的器件。 [0005] According to the above, it can be seen desirable for manufacturing photovoltaic materials and improved techniques to obtain devices.

发明内容 SUMMARY

[0006] 根据本发明的实施方式,提供了一种用于形成光电池的方法和结构。 [0006] According to an embodiment of the present invention, there is provided a method and structure for forming a photovoltaic cell. 更具体地,本发明提供了一种用于形成薄膜串联光电池的方法和结构。 More particularly, the present invention provides a method and structure for forming thin film tandem photovoltaic cell. 仅通过实例的方式,根据本发明的实施方式已经利用薄膜半导体材料实施。 By way of example only, according to an embodiment of the present invention have been implemented using thin film semiconductor material. 但是应当认识到根据本发明的实施方式可以具有更广泛范围的适用性。 It will be appreciated that according to an embodiment of the present invention may have a broader range of applicability.

[0007] 在一个具体实施方式中,提供了一种用于制造薄膜光电池器件的方法。 [0007] In one embodiment, there is provided a method of manufacturing a thin film photovoltaic cell device is provided. 该方法包括提供基板。 The method includes providing a substrate. 该基板包括吸收层和形成在吸收层上的覆盖(叠置)窗口层。 The substrate comprises covering the absorbent layer and the absorbent layer is formed on (laminated) window layer. 该方法包括将基板装载到室中并使基板经受真空环境。 The method comprises loading a substrate into the chamber and the substrate was subjected to a vacuum environment. 在一个具体实施方式中,真空环境具有从0. 1托到约0. 02托范围内的压力。 In one specific embodiment, having a vacuum environment from 0.1 Torr to about 0.02 Torr pressure. 将来源于二乙基锌物质和水物质的反应物物质的混合物和载气引入到室中。 Derived from diethylzinc species and water species and a mixture of reactant species in the carrier gas is introduced into the chamber. 该方法包括利用选择的流速将乙硼烷物质引入到反应物物质的混合物中。 The method includes selecting the flow rate of diborane substances introduced into the mixture of reactant species. 利用选择的流形成覆盖在窗口层之上的氧化锌(锌氧化物)膜以限定透明导电氧化物以提供约2. 5毫欧-cm和更小的电阻率和约3000到5000埃的平均粒度。 Using the selected stream forming a zinc oxide layer overlying the window (zinc oxide) to define a transparent conductive oxide film to provide an average particle size of about 2.5 milliohm and less -cm resistivity of about 3000 to 5000 Angstroms .

[0008] 在一个可替换的实施方式中,提供了一种用于形成薄膜光电器件的方法。 [0008] In an alternative embodiment, a method is provided for forming a thin film photovoltaic device. 该方法包括提供包括表面区的基板。 The method includes providing a substrate comprising a surface region. 该方法形成覆盖在表面区之上的第一电极层、以及形成覆盖在第一电极层之上的包含铜物质、铟物质、和硒化物物质的吸收材料。 The method forms a first electrode layer overlying the surface region, and forming the absorbent material comprising a copper species, an indium species, and a selenide species overlying the first electrode layer. 形成包含镉硒化物(硒化镉)物质的窗口层覆盖在吸收材料之上。 Formed comprising cadmium selenide (CdSe) window layer material overlying the absorbent material. 在一个具体实施方式中,该方法利用一种或多种前体气体形成覆盖在窗口层之上的氧化锌层,该氧化锌层特征在于从约第一值到约第二值的范围的粒度。 In one specific embodiment, the method utilizes the one or more precursor gases formed overlying the window layer, a zinc oxide layer, a zinc oxide layer characterized in that the particle size range from about from about a first value to a second value . 在一个具体实施方式中,一种或多种前体气体包括锌物质和氧物质以及载气。 In a specific embodiment, the one or more precursor gases include a zinc species and an oxygen species and a carrier gas. 在一个具体实施方式中,载气包括至少氮物质。 In a specific embodiment, the carrier gas comprises at least nitrogen species. 该方法在大于约200摄氏度的温度下进行至少形成氧化锌层的全部或一部分,同时保持包含锌物质和氧物质的气体混合物的选择的流速。 The process is conducted at a temperature greater than about 200 degrees Celsius to form at least a portion or all of the zinc oxide layer while maintaining the flow rate of the gas containing zinc and oxygen species substance mixture selected.

[0009] 通过根据本发明的实施方式,可以获得许多益处。 [0009] By the embodiment according to the present invention, many benefits can be obtained. 例如,可以利用对常规设备没有实质改变的技术制造薄膜串联光电池。 For example, using a thin film tandem photovoltaic cell manufacturing techniques without substantial changes to the conventional apparatus. 另外,本发明的薄膜光电池与常规的光电池相比具有提高的转换效率,并提供了一种将阳光转换为电能的节约成本的方式。 Further, the thin film photovoltaic cell of the present invention as compared to a conventional photovoltaic cell has an improved conversion efficiency, and provides a method to convert sunlight into electricity cost-effective way. 取决于实施方式, 可以获得一个或多个这些益处。 Depending upon the embodiment, these may obtain one or more benefits. 通过整个本发明说明书以及特别是下面的内容更详细地描述了这些和其他益处。 By throughout the present specification and in particular the following description of these and other benefits in more detail.

附图说明 BRIEF DESCRIPTION

[0010] 图1为示出了根据本发明一个实施方式的制造薄膜光电器件的方法的简化工艺流程图。 [0010] FIG. 1 is a simplified process flow diagram illustrating a method for manufacturing a thin film photovoltaic device according to an embodiment of the present invention.

[0011] 图2-6为示出了根据本发明实施方式的制造薄膜光电器件的方法的简化图。 [0011] FIG. 2-6 is a simplified diagram illustrating a method of manufacturing a thin film photovoltaic device according to an embodiment of the present invention. 具体实施方式 Detailed ways

[0012] 根据本发明的实施方式,提供了用于形成光电池的方法和结构。 [0012] According to an embodiment of the present invention, there is provided a method and structure for forming a photovoltaic cell. 更具体地,根据本发明的实施方式提供了用于形成薄膜光电池的方法和结构。 More particularly, a method and structure for forming a thin film photovoltaic cell according to an embodiment of the present invention. 仅仅通过实例的方式,根据本发明的实施方式已经利用薄膜半导体材料实施。 Merely by way of example, according to an embodiment of the present invention have been implemented using thin film semiconductor material. 但是应当认识到,根据本发明的实施方式可以具有更广泛范围的适用性。 It will be appreciated that, according to an embodiment of the present invention may have a broader range of applicability.

[0013] 图1为示出了根据本发明一个实施方式的形成光电池的方法的简化工艺流程图。 [0013] FIG. 1 is a simplified process flow diagram illustrating a method for forming a photovoltaic cell according to one embodiment of the present invention. 如所示的,该方法起始于开始步骤(步骤102)。 As shown, the method begins with start step (step 102). 提供了透明的基板。 Providing a transparent substrate. 在一个具体实施方式中,透明基板可以使用玻璃基板如钠钙玻璃。 In a specific embodiment, the transparent substrate may be a glass substrate such as soda lime glass. 也可以使用其他透明基板材料。 A transparent substrate may also be used other materials. 这些其他透明基板材料可以包括熔融石英(石英玻璃)、石英等。 These other transparent substrate material can include fused silica (quartz glass), quartz or the like. 形成第一电极层覆盖在透明基板的第一表面区之上(步骤106)。 Forming a first electrode layer overlying the surface region of the first transparent substrate (step 106). 在一个具体实施方式中,可以利用钼材料提供第一电极层。 In one specific embodiment, the first electrode layer may be provided using a molybdenum material. 根据应用,也可以使用其他电极材料如透明导电氧化物材料、其他金属材料。 Depending on the application, other electrode materials may be used as a transparent conductive oxide material, other metal materials. 该方法包括形成覆盖在第一电极层之上的吸收层(步骤108)、以及形成覆盖在吸收层之上的窗口层(步骤110)。 The method includes forming a first electrode layer overlying the absorber layer (Step 108), and forming the absorbent layer overlying the window layer (step 110). 在一个具体实施方式中,吸收层包含CIGS材料或CIS材料,窗口层包含镉硫化物材料。 In a specific embodiment, the absorber layer comprises a CIGS material or a CIS material and the window layer comprises a cadmium sulfide material. 在一个具体实施方式中,该方法包括将具有形成在基板上的吸收层和窗口层的基板(包括透明基板)装载到室中(步骤112)。 In one specific embodiment, the method includes a substrate having the absorbent layer and the window layer is formed on a substrate (a transparent substrate) is loaded into the chamber (step 112). 该方法使基板经受真空环境(步骤114)并引入来源于含锌的物质和水物质的反应物物质的混合物和载气(步骤116)。 The method the substrate is subjected to a vacuum environment (Step 114) and introducing a substance derived from a substance containing zinc and water to a mixture of reactant species and a carrier gas (step 116). 在一个具体实施方式中,含锌的物质可以由二乙基锌提供。 In one specific embodiment, the zinc-containing substance may be provided by diethylzinc. 在一个具体实施方式中,该方法利用选择的流速将乙硼烷物质引入反应物物质的混合物中。 In one specific embodiment, the method utilizes a selected flow rate diborane species introduced into the mixture of reactant species. 在一个具体实施方式中,形成包含氧化锌材料的透明导电氧化物材料(步骤118)覆盖在窗口层之上。 In a specific embodiment, the transparent conductive oxide material is formed (step 118) comprising a zinc oxide material overlying the window layer. 该方法进行其他步骤(步骤120) 以完成光电池。 This additional method step (step 120) to complete the photovoltaic cell. 该方法终止于结束(END)步骤(步骤122)。 The method terminates at the end (the END) (step 122). 当然,可以存在其他改变、更改、和替换。 Of course, there can be other variations, modifications, and substitutions.

[0014] 其中,所述二乙基锌物质可以为二乙基锌蒸气,所述水物质可以为水蒸气。 [0014] wherein the diethylzinc species is diethylzinc vapor can, the substance may be water vapor. 其中, 所述载气包括氮气或氩气。 Wherein said carrier gas comprises nitrogen or argon.

[0015] 上面的步骤顺序提供了一种根据本发明实施方式的形成光电器件的方法。 [0015] The above sequence of steps provides a method of forming a photovoltaic device according to an embodiment of the present invention. 如所示的,在一个具体实施方式中,该方法包括形成包含氧化锌材料的透明导电氧化物层的步骤。 As shown, in one embodiment, the method includes the step of forming a transparent conductive oxide layer comprises a zinc oxide material. 氧化物材料优选特征在于大于约99%的透光率和约2. 5毫欧-cm和更小的电阻率。 It characterized in that the oxide material is preferably greater than about 99% transmittance of about 2.5 milliohms -cm resistivity and smaller. 取决于实施方式,可以加入一个或多个步骤,可以去除一个或多个步骤,以及可以以不同的顺序进行一个或多个步骤而不偏离本文的权利要求的范围。 Depending upon the embodiment, one or more steps may be added, one or more steps may be removed, and one or more steps may be performed in a different order without departing from the scope of the claims herein. 本领域技术人员应当认识到其他改变、更改、和替换。 Those skilled in the art would recognize other variations, modifications, and substitutions.

[0016] 图2-6为示出了根据本发明实施方式的形成薄膜光电器件的方法的简图。 [0016] FIG. 2-6 is a schematic view illustrating a method of forming a thin film photovoltaic device according to an embodiment of the present invention. 这些图仅是实例,不应当不适当地限制本文的权利要求。 These diagrams are merely examples and should not unduly limit the claims herein. 本领域技术人员会认识到其他改变、更改、和替换。 Those skilled in the art will recognize other variations, modifications, and substitutions. 如图2中所示,提供了包括表面区204的透明基板构件202。 As shown in FIG. 2, a transparent substrate member 202 includes a surface region 204. 在某一个实施方式中,基板构件可以为玻璃材料如钠钙玻璃。 In one embodiment, the substrate member may be a glass material such as soda-lime glass. 钠钙玻璃为用于透明基板构件的节约成本的选择。 Soda lime glass is a cost for the selected transparent substrate member. 也可以使用其他合适的透明基板如石英、熔融石英、太阳能玻璃(solar glass) 0每个透明基板可以包括沉积在表面区上的阻挡层。 May also be used other suitable transparent substrate such as quartz, fused silica, solar glass (solar glass) 0 Each of the transparent substrate may comprise deposited on the surface region of the barrier layer. 在一个具体实施方式中,阻挡层可以防止钠离子从玻璃材料扩散到光电材料区中。 In a specific embodiment, the barrier layer may prevent diffusion of sodium ions from the glass material into photovoltaic material area. 阻挡层可以为利用以下技术沉积的介电材料如硅氧化物(氧化硅),如溅射工艺、化学气相沉积工艺、包括等离子体增强工艺等。 The barrier layer may be a technique using a dielectric material such as deposited silicon oxide (silica), such as a sputtering process, a chemical vapor deposition process, including plasma enhanced processes. 也可以使用其他阻挡材料。 Other barrier materials may also be used. 取决于实施方式,这些阻挡材料包括氧化铝、氮化钛、氮化硅、氧化钽、氧化,告。 Depending upon the embodiment, these barrier materials include aluminum oxide, titanium nitride, silicon nitride, tantalum oxide, sue.

[0017] 参照图3,该方法包括形成覆盖在透明基板构件的表面区之上的第一电极层302, 该透明基板构件可以具有形成在其上的阻挡层。 [0017] Referring to Figure 3, the method comprising a first electrode layer overlying the surface region of the transparent substrate member 302 is formed, the transparent substrate member may have a barrier layer formed thereon. 可以利用透明导电氧化物(TCO)如氧化铟锡(通常称为ΙΤ0)、掺杂氟的锡氧化物等提供第一电极层。 You can use a transparent conductive oxide (TCO) such as indium tin oxide (commonly referred ΙΤ0), fluorine-doped tin oxide layer providing a first electrode. 在一些实施方式中,可以利用金属材料提供第一电极层。 In some embodiments, the first electrode layer may be provided using a metal material. 在一个具体实施方式中,金属材料可以为钼材料。 In one specific embodiment, the metallic material may be a molybdenum material. 可以利用沉积技术如溅射、电镀、物理气相沉积(包括蒸发、升华)、化学气相沉积(包括等离子体增强工艺),接着进行图案化工艺来形成钼材料。 Deposition techniques may be utilized, such as sputtering, plating, physical vapor deposition (including evaporation, sublimation), chemical vapor deposition (including plasma enhanced processes), followed by a patterning process to form a molybdenum material. 钼材料对基于CIG或CIGS的薄膜光电池提供了优于其他电极材料的一些优势。 Molybdenum material film CIG or CIGS based photovoltaic cell provides several advantages over other electrode material. 例如,钼材料提供了对于CIGS膜来说低的接触电阻和在随后的工艺步骤中的稳定性。 For example, molybdenum material provides a low contact resistance for CIGS film and stability for the subsequent process steps. 在一个具体实施方式中,通过沉积第一钼层覆盖在透明基板构件之上来形成钼材料。 In a specific embodiment, by depositing a first molybdenum layer overlying the transparent substrate member onto a molybdenum material. 在一个具体实施方式中,第一钼层具有第一厚度和抗拉特性。 In a specific embodiment, the first molybdenum layer having a first thickness and tensile properties. 形成具有压缩特征和第二厚度的第二钼层覆盖在第一钼层之上。 Forming a second molybdenum layer having a compression characteristics and a second thickness overlying the first molybdenum layer. 在一个具体实施方式中,如所示的,可以进一步图案化包含钼材料的第一电极层。 In a specific embodiment, as shown, it may further comprise a first patterned electrode layer of molybdenum material. 钼材料的沉积和图案化的进一步的细节可以至少在共同转让的于2008年9月30日提交的美国临时申请号61/101,646 (代理人档案号:026335-003800US)和于2008年9月30日提交的美国临时申请号61/101,650 (代理人档案号:026335-003900US)中找到,将其通过引用的方式并入本文中。 Further details of the deposition and patterning of molybdenum material may be at least in the US Provisional Application No. 30 September 2008, filed 61 / 101,646 commonly assigned (Attorney Docket Number: 026335-003800US) and in September 2008 US provisional application No. filed May 30, 61 / 101,650 (Attorney Docket number: 026335-003900US) found, which was incorporated by reference herein. 当然,可以存在其他改变、更改、和替换。 Of course, there can be other variations, modifications, and substitutions.

[0018] 如图4所示,该方法包括形成覆盖在第一电极层的表面区之上的吸收层402。 [0018] As shown in FIG 4, the method includes forming the surface region overlying the first electrode layer 402 absorbing layer. 在一个具体实施方式中,吸收层可以为薄膜半导体材料。 In a specific embodiment, the absorber layer may be a thin film semiconductor material. 在一个具体实施方式中,取决于应用, 薄膜半导体材料为由铜铟二硫化物材料、或铜铟镓二硫化物材料、或铜铟二硒化物材料、或铜铟镓二硒化物材料、这些的任何组合等提供的P型半导体材料。 In one specific embodiment, depending on the application, the thin film semiconductor material is a copper indium disulfide material or copper indium gallium disulfide material, or a copper indium diselenide material, or a copper indium gallium diselenide material, such P-type semiconductor material provided by any combination thereof. 典型地,P型特征可以利用掺杂剂如硼或铝物质提供。 Typically, P-type dopants may be utilized features such as boron or aluminum species are also available. 吸收层可以通过如溅射、电镀、蒸发(包括硫化或硒化步骤) 的技术沉积。 Absorbing layer may be deposited by techniques such as sputtering, plating, evaporation (including sulfurization or selenization step) is. 形成吸收材料的进一步的细节可以在共同转让的标题为“HighEfficiency Photovoltaic Cell and Manufacturing Method”的临时美国专利申请号61/059,253 中找至IJ,将其通过引用的方式并入本文中。 Further details of the absorbent material may be formed in the provisional application commonly assigned U.S. Patent to "HighEfficiency Photovoltaic Cell and Manufacturing Method". No. 61 / 059,253 to find the IJ, which is incorporated by reference herein.

[0019] 在一个具体实施方式中,该方法形成覆盖在吸收层的表面区之上的窗口层502以形成光电膜堆叠从而为光电池提供pn结。 [0019] In one embodiment, the method forms a window layer 502 overlying a surface region of the absorbent layer to form a photovoltaic film stack to provide a pn junction for the photovoltaic cell. 在一个具体实施方式中,通常利用用于ρ型吸收层的广带隙η型半导体材料来提供窗口层。 In a specific embodiment, the window layer is often provided using a wide bandgap semiconductor material for η ρ type absorber layer. 在一个优选的实施方式中,对于利用CIGS、CIS 和相关材料作为吸收层的光电池,窗口层利用镉硫化物材料。 In a preferred embodiment, for use CIGS, CIS and related materials as absorber layer of a photovoltaic cell, using a cadmium sulfide window layer material. 窗口层可以利用如溅射、真空蒸发、化学浴沉积等的技术来沉积。 The window layer may be utilized, such as sputtering and vacuum evaporation, chemical bath deposition, or the like is deposited.

[0020] 参照图6,该方法包括提供基板602。 [0020] Referring to FIG 6, the method includes providing a substrate 602. 该基板包括透明基板构件,该透明基板构件具有覆盖在透明基板构件之上的第一电极层。 The substrate includes a transparent substrate member, the transparent substrate member having a first electrode layer overlying the transparent substrate member. 薄膜吸收层覆盖在第一电极层之上,而窗口层覆盖在薄膜吸收层之上。 A film absorber layer overlies the first electrode layer and a window layer overlies the thin film absorber layer. 如所示的,将基板装载到室604中。 As shown, the substrate 604 is loaded into the chamber. 该室包括内容积606。 The chamber 606 includes a volume. 该室还包括泵送系统608以提供合适的真空水平。 The chamber also includes pumping system 608 to provide a suitable vacuum level. 如所示的,在一个具体实施方式中,该室包括一个或多个气体管线610和多个辅助件以引入一种或多种前体物质用于形成覆盖在窗口层之上的透明导电氧化物材料614。 As shown, in one embodiment, the chamber comprises one or more gas lines 610 and a plurality of auxiliary members to introduce one or more precursor species for forming a window layer overlying the transparent conductive oxide material 614. 该室包括一个或多个加热装置612以提供用于透明导电材料沉积的的合适的反应温度。 The chamber includes one or more heating devices 612 to provide a suitable reaction temperature of the transparent conductive material is deposited. 在一个优选的实施方式中,透明导电氧化物包括氧化锌材料。 In a preferred embodiment, the transparent conductive oxide includes a zinc oxide material. 当然,可以存在其他改变、更改、和替换。 Of course, there can be other variations, modifications, and substitutions.

[0021] 再次参照图6,该方法包括将基板装载到室中。 [0021] Referring again to Figure 6, the method includes loading a substrate into the chamber. 在一个具体实施方式中,向下抽吸该室与基板以使压力在从约0. 1托到约0.02托的范围。 In one specific embodiment, the downward suction chamber and the substrate holder so that the pressure in the range of from about 0.1 to about 0.02 Torr. 利用一个或多个气体管线,将反应物或前体物质的混合物引入到室中。 Using one or more gas lines, the reaction mixture or precursor species is introduced into the chamber. 在一个具体实施方式中,对于氧化锌材料,反应物物质的混合物可以包括利用载气提供的二乙基锌材料和含氧的物质。 In a specific embodiment, the zinc oxide material, a mixture of reactant species can include oxygen-containing substances using diethyl zinc material and a carrier gas. 在一个具体实施方式中, 含氧的物质可以为水。 In a specific embodiment, the oxygen-containing substance may be water. 取决于实施方式,二乙基锌材料可以以半导体级、或催化剂级提供。 Depending on the implementation, diethyl zinc material may be provided in a semiconductor grade, or a catalyst stage. 在一个具体实施方式中,水与二乙基锌比率大于约1到约4。 In a specific embodiment, the water to diethylzinc ratio is greater than about 1 to about 4. 在另一个实施方式中,水与二乙基锌比率为约1。 In another embodiment, the water to diethylzinc ratio is about 1. 在一个具体实施方式中,载气可以为惰性气体如氮、氩、氦等。 In a specific embodiment, the carrier gas may be an inert gas such as nitrogen, argon or helium. 在某一个实施方式中,来源于乙硼烷物质的含硼的物质也可以以选择的流速与反应物的混合物一起引入以形成掺杂硼的氧化锌材料。 In one embodiment, the boron-containing substance derived from a diborane species may also be in a mixture with a flow rate of introduction of reactants selected together to form a boron doped zinc oxide material. 取决于应用,也可以使用其他含硼的物质如硼卤化物(例如,三氯化硼、三氟化硼、三溴化硼)、或硼氢卤化物。 Depending on the application, other materials may also be used, such as boron, boron halide (e.g., boron trichloride, boron trifluoride, boron tribromide), or boron hydrohalides. 可以以0%至约5%的乙硼烷与二乙基锌比率提供乙硼烷物质。 Diborane species may provide from 0% to about 5% of diborane to diethylzinc ratio. 在一个具体实施方式中,乙硼烷比率与二乙基锌比率为约1%。 In a specific embodiment, the diborane ratio to diethylzinc ratio is about 1%. 取决于实施方式,在氧化锌材料沉积期间,该室可以处于约0. 5托到约1托的压力下。 Depending on the embodiment, the zinc oxide material during deposition, the chamber may be at about 0.5 Torr to about 1 Torr. 在一个具体实施方式中,为了氧化锌材料的沉积,将基板保持在从约130摄氏度到约190摄氏度范围内的温度。 In a specific embodiment, the material for the deposition of zinc oxide, the substrate maintained at a temperature from about 130 degrees to about 190 degrees Celsius range. 在一个可替换的实施方式中,可以将基板保持在约200摄氏度的温度,并且可以更高。 In an alternative embodiment, the substrate may be maintained at a temperature of about 200 degrees Celsius, and may be higher. 含硼的物质可以降低氧化锌材料的电阻率特性。 Boron-containing materials may reduce the resistivity of the material characteristics of the zinc oxide. 取决于氧化锌材料中含硼的物质的水平,氧化锌材料可以具有约2. 5毫欧-cm和更小的电阻率。 Zinc oxide species depends on the level of boron-containing material, a zinc oxide material can have about 2.5 milliohms -cm resistivity and smaller. 此外,取决于含硼的物质的水平,氧化锌材料可以具有从约3000埃到约5000埃范围内的粒度以对于在从约800 纳米到约1200纳米范围内的波长范围中的电磁辐射提供80%或更大并优选为90%和更大的透射比。 Further, depending on the level of boron-containing material, a zinc oxide material may have a particle size of from about 3000 angstroms to about 5000 angstroms to electromagnetic radiation in the wavelength range from about 800 nm to about 1200 nm range to provide 80 % or more and more preferably 90% and transmittance. 在一个具体实施方式中,氧化锌材料可以具有模糊的(hazy)外观。 In a specific embodiment, the zinc oxide material may have a blur (Hazy) appearance. 当然,可以存在其他改变、更改、和替换。 Of course, there can be other variations, modifications, and substitutions.

[0022] 虽然已经利用具体的实施方式描述了本发明,但应当理解可以实施对本发明中所用的方法的多种改变、更改、和变换而没有偏离如所附的权利要求中限定的本发明的精神和范围。 [0022] Although the use of specific embodiments described in the present invention, it should be understood that implement various changes to the methods of the present invention is used, modifications, and variations without departing from the as defined in the appended claims the invention the spirit and scope. 例如,可以利用硼作为掺杂剂物质示出氧化锌材料。 For example, using boron as a dopant species shows a zinc oxide material. 也可以使用其他掺杂剂如氢、 铝、铟、镓等。 Other dopants may also be used such as hydrogen, aluminum, indium and gallium. 此外,虽然上面已经就CIS和/或CIGS薄膜电池的具体结构进行了一般描述,但也可以使用其他具体CIS和/或CIGS构造,如在美国专利号4,612,411和美国专利号4,611,091中提及的那些构造,将其通过引用方式并入本文中,而没有偏离通过本文的权利要求描述的本发明。 Further, while the above has been on CIS and / or CIGS thin film cells specific configuration generally described, it may be used in other specific CIS and / or CIGS configurations, as described in U.S. Patent No. 4,612,411 and U.S. Patent No. 4, those mentioned configurations 611,091, which is incorporated by reference herein, without departing from the present invention described in the claims herein. 此外,根据本发明的实施方式可以用于其他薄膜构造如由金属氧化物材料、金属硫化物材料或金属硒化物材料提供的那些构造。 Further, according to an embodiment of the present invention may be configured for other thin film configurations such as those provided by a metal oxide material, a metal sulfide material or a metal selenide material. 本领域的普通技术人员会认识到其他改变、更改、和替换。 Those skilled in the art will recognize other variations, modifications, and substitutions.

Claims (23)

1. 一种用于制造薄膜光电器件的方法,所述方法包括: 提供包括吸收层和覆盖的窗口层的基板;将所述基板装载到室中;使所述基板经受从0. 1托到约0. 02托范围内的真空环境; 引入来源于二乙基锌物质和水物质的反应物物质的混合物和载气; 利用选择的流速将乙硼烷物质引入到所述反应物物质的混合物中; 利用所述选择的流速形成覆盖在所述窗口层之上的氧化锌膜以限定透明导电氧化物以提供约2. 5毫欧-cm和更小的电阻率和约3000埃到约5000埃的平均粒度。 1. A method for manufacturing a thin film photovoltaic device, the method comprising: providing a substrate comprising an absorber layer and the window layer is covered; loading the substrate into the chamber; subjecting the substrate holder from 0.1 to vacuum environment within the range from about 0.02 Torr; and the carrier gas is introduced from a mixture of reactants diethylzinc species and water species; using the selected flow rate of diborane species is introduced into the mixture of reactant species ; and using the selected flow rate for forming a zinc oxide film overlying the window layer to define a transparent conductive oxide to provide from about 2.5 milliohm and less -cm resistivity of about 3000 angstroms to about 5000 angstroms the average particle size.
2.根据权利要求1所述的方法,其中,所述二乙基锌物质为二乙基锌蒸气。 2. The method according to claim 1, wherein the diethylzinc species is diethylzinc vapor.
3.根据权利要求1所述的方法,其中,所述水物质为水蒸气。 3. The method according to claim 1, wherein said substance is water vapor.
4.根据权利要求1所述的方法,其中,所述载气包括氮气或氩气。 4. The method according to claim 1, wherein said carrier gas comprises nitrogen or argon.
5.根据权利要求1所述的方法,其中,所述水与二乙基锌比率为大于约1到约4 The method according to claim 1, wherein the water to diethylzinc ratio is greater than about 1 to about 4
6.根据权利要求1所述的方法,其中,所述水与二乙基锌比率为约1。 6. The method according to claim 1, wherein the water to diethylzinc ratio is about 1.
7.根据权利要求1所述的方法,其中,所述乙硼烷与二乙基锌比率从约0%到约5%的范围。 The method according to claim 1, wherein the diborane to diethylzinc ratio ranges from about 0% to about 5%.
8.根据权利要求1所述的方法,其中,所述乙硼烷与二乙基锌比率为1%。 8. The method according to claim 1, wherein the diborane to diethylzinc ratio is one percent.
9.根据权利要求1所述的方法,其中,将所述基板保持在约130摄氏度到约190摄氏度的温度。 9. The method according to claim 1, wherein said substrate is maintained at a temperature of about 130 degrees Celsius to about 190 degrees Celsius.
10.根据权利要求1所述的方法,其中,将所述基板保持在大于约200摄氏度的温度。 10. The method according to claim 1, wherein the substrate is maintained at a temperature greater than about 200 degrees Celsius.
11.根据权利要求1所述的方法,其中,所述氧化锌膜是模糊的。 11. The method according to claim 1, wherein the zinc oxide film is blurred.
12.根据权利要求1所述的方法,其中,所述氧化锌膜具有90%和更大的透光比。 12. The method according to claim 1, wherein the zinc oxide film having a transmittance of 90% and greater than.
13.根据权利要求1所述的方法,其中,所述氧化锌膜对于具有约800纳米到约1200纳米的波长的电磁辐射具有80%和更大的透射比。 13. The method according to claim 1, wherein the zinc oxide film for electromagnetic wavelengths of about 800 nm to about 1200 nm of 80% and greater radiation transmittance.
14.根据权利要求1所述的方法,其中,所述引入将所述室的压力增大到约0. 5到1托。 14. The method according to claim 1, wherein said introducing said pressure chamber is increased to about 0.5 to 1 Torr.
15.根据权利要求1所述的方法,其中,所述二乙基锌为半导体级。 15. The method according to claim 1, wherein the diethylzinc is semiconductor grade.
16.根据权利要求1所述的方法,其中,所述二乙基锌为催化剂级。 16. The method according to claim 1, wherein said catalyst is diethyl zinc level.
17.根据权利要求1所述的方法,其中,所述吸收层包含CIGS材料或CIG材料。 17. The method according to claim 1, wherein the absorber layer comprises a CIGS material or a CIG material.
18.根据权利要求1所述的方法,其中,所述窗口层包含镉硫化物材料。 18. The method according to claim 1, wherein the window layer comprises a cadmium sulfide material.
19. 一种用于形成薄膜光电器件的方法,所述方法包括: 提供包括表面区的基板;形成覆盖在所述表面区之上的第一电极层;形成覆盖在所述第一电极层之上的包含铜物质、铟物质、和硒化物物质的吸收材料; 形成覆盖在所述吸收材料之上的包含镉硒化物物质的窗口层; 利用包含锌物质和氧物质的一种或多种前体气体和包含至少氮物质的载气形成覆盖在所述窗口层之上的氧化锌层,所述氧化锌层的特征在于从约3000埃到约5000埃范围内的粒度;以及在大于约200摄氏度的温度下进行至少形成氧化锌层的全部或一部分,同时保持包含锌物质和氧物质的气体混合物的选择的流速。 19. A method for forming a thin film photovoltaic device, the method comprising: providing a substrate comprising a surface region; forming a first electrode layer covering over the surface region; forming the first electrode layer overlying the comprising the copper species, an indium species, and the absorbent material, selenide material; former utilizes a substance containing zinc and oxygen species or more; forming a window layer comprising a cadmium selenide species overlying the absorber material body material gas containing at least nitrogen carrier gas is formed overlying the window layer zinc oxide layer, a zinc oxide layer is characterized by a particle size of from about 3000 angstroms to about 5000 angstroms; and greater than about 200 all or a portion for forming the zinc oxide layer at a temperature of at least degrees while maintaining the flow rate of the gas containing zinc and oxygen species substance mixture selected.
20.根据权利要求19所述的方法,其中,含氧的物质来源于水蒸气。 20. The method according to claim 19, wherein the oxygen-containing substance is derived from water vapor.
21.根据权利要求19所述的方法,其中,所述锌物质来源于二乙基锌。 21. The method according to claim 19, wherein the zinc species is derived from diethyl zinc.
22.根据权利要求19所述的方法,其中,所述氮物质为氮气。 22. The method of claim 19, wherein the nitrogen species is nitrogen gas.
23.根据权利要求19所述的方法,其中,所述氧化锌层的特征在于99%和更大的透光 23. The method according to claim 19, wherein the zinc oxide layer characterized in that the light transmittance of 99% and greater
CN201010503960.1A 2008-10-17 2010-09-30 Zinc oxide film method and structure for a battery cigs CN102044632B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/577,132 2009-10-09
US12/577,132 US8168463B2 (en) 2008-10-17 2009-10-09 Zinc oxide film method and structure for CIGS cell

Publications (2)

Publication Number Publication Date
CN102044632A true CN102044632A (en) 2011-05-04
CN102044632B CN102044632B (en) 2015-07-29

Family

ID=43558390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010503960.1A CN102044632B (en) 2008-10-17 2010-09-30 Zinc oxide film method and structure for a battery cigs

Country Status (4)

Country Link
US (3) US8168463B2 (en)
EP (1) EP2309554A3 (en)
CN (1) CN102044632B (en)
TW (1) TWI501414B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9105776B2 (en) * 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8187434B1 (en) 2007-11-14 2012-05-29 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
US8772078B1 (en) 2008-03-03 2014-07-08 Stion Corporation Method and system for laser separation for exclusion region of multi-junction photovoltaic materials
US8642138B2 (en) * 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US7855089B2 (en) 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US7947524B2 (en) 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US7863074B2 (en) 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8906732B2 (en) * 2010-10-01 2014-12-09 Stion Corporation Method and device for cadmium-free solar cells
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8998606B2 (en) 2011-01-14 2015-04-07 Stion Corporation Apparatus and method utilizing forced convection for uniform thermal treatment of thin film devices
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices
CN102597858A (en) * 2011-11-29 2012-07-18 深圳市华星光电技术有限公司 Liquid Crystal Panel,oled Display Panel, Glass Substrates And Method For The Same
CN105047750A (en) * 2014-10-10 2015-11-11 广东汉能薄膜太阳能有限公司 Method for increasing conversion efficiency of thin-film solar cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873118A (en) * 1988-11-18 1989-10-10 Atlantic Richfield Company Oxygen glow treating of ZnO electrode for thin film silicon solar cell
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
CN101295586A (en) * 2008-06-11 2008-10-29 中国科学院上海硅酸盐研究所 Production method of nanocrystalline TiO2 solar battery prototype device

Family Cites Families (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520732A (en) 1965-10-22 1970-07-14 Matsushita Electric Ind Co Ltd Photovoltaic cell and process of preparation of same
US3828722A (en) 1970-05-01 1974-08-13 Cogar Corp Apparatus for producing ion-free insulating layers
US3975211A (en) 1975-03-28 1976-08-17 Westinghouse Electric Corporation Solar cells and method for making same
US4062038A (en) 1976-01-28 1977-12-06 International Business Machines Corporation Radiation responsive device
US4332974A (en) 1979-06-28 1982-06-01 Chevron Research Company Multilayer photovoltaic cell
US4263336A (en) 1979-11-23 1981-04-21 Motorola, Inc. Reduced pressure induction heated reactor and method
US5217564A (en) 1980-04-10 1993-06-08 Massachusetts Institute Of Technology Method of producing sheets of crystalline material and devices made therefrom
EP0192280A3 (en) 1980-04-10 1986-09-10 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
US4335266A (en) 1980-12-31 1982-06-15 The Boeing Company Methods for forming thin-film heterojunction solar cells from I-III-VI.sub.2
US4441113A (en) 1981-02-13 1984-04-03 Energy Conversion Devices, Inc. P-Type semiconductor material having a wide band gap
US4465575A (en) 1981-09-21 1984-08-14 Atlantic Richfield Company Method for forming photovoltaic cells employing multinary semiconductor films
DE3314197A1 (en) 1982-04-28 1983-11-03 Energy Conversion Devices Inc P-type amorphous silicon alloy with a large band gap and manufacturing method thereof
US4442310A (en) 1982-07-15 1984-04-10 Rca Corporation Photodetector having enhanced back reflection
US4518855A (en) 1982-09-30 1985-05-21 Spring-Mornne, Inc. Method and apparatus for statically aligning shafts and monitoring shaft alignment
US4461922A (en) 1983-02-14 1984-07-24 Atlantic Richfield Company Solar cell module
US4471155A (en) 1983-04-15 1984-09-11 Energy Conversion Devices, Inc. Narrow band gap photovoltaic devices with enhanced open circuit voltage
US4517403A (en) 1983-05-16 1985-05-14 Atlantic Richfield Company Series connected solar cells and method of formation
US4724011A (en) 1983-05-16 1988-02-09 Atlantic Richfield Company Solar cell interconnection by discrete conductive regions
US4598306A (en) 1983-07-28 1986-07-01 Energy Conversion Devices, Inc. Barrier layer for photovoltaic devices
US4499658A (en) 1983-09-06 1985-02-19 Atlantic Richfield Company Solar cell laminates
US4532372A (en) 1983-12-23 1985-07-30 Energy Conversion Devices, Inc. Barrier layer for photovoltaic devices
US4589194A (en) 1983-12-29 1986-05-20 Atlantic Richfield Company Ultrasonic scribing of thin film solar cells
US4542255A (en) 1984-01-03 1985-09-17 Atlantic Richfield Company Gridded thin film solar cell
US4581108A (en) 1984-01-06 1986-04-08 Atlantic Richfield Company Process of forming a compound semiconductive material
US4661370A (en) 1984-02-08 1987-04-28 Atlantic Richfield Company Electric discharge processing of thin films
US4507181A (en) 1984-02-17 1985-03-26 Energy Conversion Devices, Inc. Method of electro-coating a semiconductor device
US4611091A (en) 1984-12-06 1986-09-09 Atlantic Richfield Company CuInSe2 thin film solar cell with thin CdS and transparent window layer
US4599154A (en) 1985-03-15 1986-07-08 Atlantic Richfield Company Electrically enhanced liquid jet processing
US4623601A (en) 1985-06-04 1986-11-18 Atlantic Richfield Company Photoconductive device containing zinc oxide transparent conductive layer
JPH0682625B2 (en) 1985-06-04 1994-10-19 シーメンス ソーラー インダストリーズ,エル.ピー. Method of depositing a zinc oxide film
US4663495A (en) 1985-06-04 1987-05-05 Atlantic Richfield Company Transparent photovoltaic module
US4638111A (en) 1985-06-04 1987-01-20 Atlantic Richfield Company Thin film solar cell module
US4612411A (en) 1985-06-04 1986-09-16 Atlantic Richfield Company Thin film solar cell with ZnO window layer
US4798660A (en) 1985-07-16 1989-01-17 Atlantic Richfield Company Method for forming Cu In Se2 films
US4625070A (en) 1985-08-30 1986-11-25 Atlantic Richfield Company Laminated thin film solar module
JPS6273784A (en) 1985-09-27 1987-04-04 Sanyo Electric Co Ltd Photovoltaic device
US4865999A (en) 1987-07-08 1989-09-12 Glasstech Solar, Inc. Solar cell fabrication method
US4775425A (en) 1987-07-27 1988-10-04 Energy Conversion Devices, Inc. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same
US4816082A (en) 1987-08-19 1989-03-28 Energy Conversion Devices, Inc. Thin film solar cell including a spatially modulated intrinsic layer
US4968354A (en) 1987-11-09 1990-11-06 Fuji Electric Co., Ltd. Thin film solar cell array
US5045409A (en) 1987-11-27 1991-09-03 Atlantic Richfield Company Process for making thin film solar cell
US4793283A (en) 1987-12-10 1988-12-27 Sarkozy Robert F Apparatus for chemical vapor deposition with clean effluent and improved product yield
US5008062A (en) 1988-01-20 1991-04-16 Siemens Solar Industries, L.P. Method of fabricating photovoltaic module
US5259883A (en) 1988-02-16 1993-11-09 Kabushiki Kaisha Toshiba Method of thermally processing semiconductor wafers and an apparatus therefor
US4915745B1 (en) 1988-09-22 1992-04-07 A Pollock Gary
US5180686A (en) 1988-10-31 1993-01-19 Energy Conversion Devices, Inc. Method for continuously deposting a transparent oxide material by chemical pyrolysis
US4996108A (en) 1989-01-17 1991-02-26 Simon Fraser University Sheets of transition metal dichalcogenides
US4950615A (en) 1989-02-06 1990-08-21 International Solar Electric Technology, Inc. Method and making group IIB metal - telluride films and solar cells
FR2646560B1 (en) 1989-04-27 1994-01-14 Solems Sa A method for improving the spectral response of a photoconductive structure, solar cell structure and photoreceptive IMPROVED
US5028274A (en) 1989-06-07 1991-07-02 International Solar Electric Technology, Inc. Group I-III-VI2 semiconductor films for solar cell application
DE69024304T2 (en) 1989-09-06 1996-07-18 Sanyo Electric Co Method of manufacturing a flexible photovoltaic device
US5078803A (en) 1989-09-22 1992-01-07 Siemens Solar Industries L.P. Solar cells incorporating transparent electrodes comprising hazy zinc oxide
JPH03124067A (en) 1989-10-07 1991-05-27 Showa Shell Sekiyu Kk Photovoltaic device and its manufacture
US5011565A (en) 1989-12-06 1991-04-30 Mobil Solar Energy Corporation Dotted contact solar cell and method of making same
US5154777A (en) 1990-02-26 1992-10-13 Mcdonnell Douglas Corporation Advanced survivable space solar power system
DK170189B1 (en) 1990-05-30 1995-06-06 Yakov Safir A process for the production of semiconductor devices, as well as the solar cell made therefrom
EP0460287A1 (en) 1990-05-31 1991-12-11 Siemens Aktiengesellschaft Novel chalcopyrite solar cell
EP0468094B1 (en) 1990-07-24 1995-10-11 Siemens Aktiengesellschaft Process for producing a chalcopyrite solar cell
JP2729239B2 (en) 1990-10-17 1998-03-18 昭和シェル石油株式会社 Integrated photovoltaic device
US5528397A (en) 1991-12-03 1996-06-18 Kopin Corporation Single crystal silicon transistors for display panels
US6784492B1 (en) 1991-03-18 2004-08-31 Canon Kabushiki Kaisha Semiconductor device including a gate-insulated transistor
JPH0788063A (en) 1991-05-08 1995-04-04 Sharp Corp Handle holding structure
US5211824A (en) 1991-10-31 1993-05-18 Siemens Solar Industries L.P. Method and apparatus for sputtering of a liquid
US5699035A (en) * 1991-12-13 1997-12-16 Symetrix Corporation ZnO thin-film varistors and method of making the same
US5231047A (en) 1991-12-19 1993-07-27 Energy Conversion Devices, Inc. High quality photovoltaic semiconductor material and laser ablation method of fabrication same
US5501744A (en) 1992-01-13 1996-03-26 Photon Energy, Inc. Photovoltaic cell having a p-type polycrystalline layer with large crystals
US5261968A (en) 1992-01-13 1993-11-16 Photon Energy, Inc. Photovoltaic cell and method
JPH05243596A (en) 1992-03-02 1993-09-21 Showa Shell Sekiyu Kk Manufacture of laminated type solar cell
US5512107A (en) 1992-03-19 1996-04-30 Siemens Solar Gmbh Environmentally stable thin-film solar module
US5248349A (en) 1992-05-12 1993-09-28 Solar Cells, Inc. Process for making photovoltaic devices and resultant product
US5298086A (en) 1992-05-15 1994-03-29 United Solar Systems Corporation Method for the manufacture of improved efficiency tandem photovoltaic device and device manufactured thereby
EP0574716B1 (en) 1992-05-19 1996-08-21 Matsushita Electric Industrial Co., Ltd. Method for preparing chalcopyrite-type compound
DE69320725T2 (en) 1992-06-29 1999-04-01 Canon Kk Resin composition for sealing and covered with sealing resin composition semiconductor device
ES2171415T3 (en) 1992-06-29 2002-09-16 United Solar Systems Corp Process microwave energized deposition with regulation of the substrate temperature.
EP0662247B1 (en) 1992-09-22 1999-03-10 Siemens Aktiengesellschaft Process for rapidly generating a chalkopyrite semiconductor on a substrate
US5474939A (en) 1992-12-30 1995-12-12 Siemens Solar Industries International Method of making thin film heterojunction solar cell
US5436204A (en) 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
DE4333407C1 (en) 1993-09-30 1994-11-17 Siemens Ag Solar cell comprising a chalcopyrite absorber layer
US5738731A (en) 1993-11-19 1998-04-14 Mega Chips Corporation Photovoltaic device
DE69425230D1 (en) 1993-12-17 2000-08-17 Canon Kk Manufacturing process of an electron-emitting device, an electron source and an image forming apparatus
CN1274009C (en) 1994-06-15 2006-09-06 精工爱普生株式会社 Method for making thin-film semicondcutor device
US5578103A (en) 1994-08-17 1996-11-26 Corning Incorporated Alkali metal ion migration control
DE4442824C1 (en) 1994-12-01 1996-01-25 Siemens Ag Solar cell having higher degree of activity
EP0729189A1 (en) 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
US5674325A (en) 1995-06-07 1997-10-07 Photon Energy, Inc. Thin film photovoltaic device and process of manufacture
US6743723B2 (en) 1995-09-14 2004-06-01 Canon Kabushiki Kaisha Method for fabricating semiconductor device
US5925308A (en) 1996-08-05 1999-07-20 Corning Incorporated Rapid-setting formable mixtures and method of making and using same
US5977476A (en) 1996-10-16 1999-11-02 United Solar Systems Corporation High efficiency photovoltaic device
JP3249407B2 (en) 1996-10-25 2002-01-21 昭和シェル石油株式会社 Thin-film solar cell comprising a chalcopyrite multinary compound semiconductor thin film light absorbing layer
JP3249408B2 (en) 1996-10-25 2002-01-21 昭和シェル石油株式会社 Method and apparatus for manufacturing a thin-film light absorbing layer of the thin-film solar cell
JP3527815B2 (en) 1996-11-08 2004-05-17 昭和シェル石油株式会社 The method for producing a transparent conductive film of the thin-film solar cell
JPH1154773A (en) 1997-08-01 1999-02-26 Canon Inc Photovoltaic element and its manufacture
DE19741832A1 (en) 1997-09-23 1999-03-25 Inst Solarenergieforschung A process for producing a solar cell and solar cell
US6258620B1 (en) 1997-10-15 2001-07-10 University Of South Florida Method of manufacturing CIGS photovoltaic devices
WO1999025024A1 (en) 1997-11-10 1999-05-20 Kendall Don L Quantum ridges and tips
DE69911529T2 (en) 1998-02-05 2004-08-05 Nippon Sheet Glass Co., Ltd. Object with an uneven surface, process for its production and compilation for
US6107562A (en) 1998-03-24 2000-08-22 Matsushita Electric Industrial Co., Ltd. Semiconductor thin film, method for manufacturing the same, and solar cell using the same
JPH11330507A (en) * 1998-05-12 1999-11-30 Yazaki Corp Solar cell
US6344608B2 (en) 1998-06-30 2002-02-05 Canon Kabushiki Kaisha Photovoltaic element
US6127202A (en) 1998-07-02 2000-10-03 International Solar Electronic Technology, Inc. Oxide-based method of making compound semiconductor films and making related electronic devices
US6451415B1 (en) 1998-08-19 2002-09-17 The Trustees Of Princeton University Organic photosensitive optoelectronic device with an exciton blocking layer
JP3428931B2 (en) 1998-09-09 2003-07-22 キヤノン株式会社 Dismantling processing method of the flat panel display
US6323417B1 (en) 1998-09-29 2001-11-27 Lockheed Martin Corporation Method of making I-III-VI semiconductor materials for use in photovoltaic cells
JP2000150861A (en) 1998-11-16 2000-05-30 Hiroshi Kawazoe Oxide thin film
JP2001156321A (en) 1999-03-09 2001-06-08 Fuji Xerox Co Ltd Semiconductor device and its manufacturing method
US6160215A (en) 1999-03-26 2000-12-12 Curtin; Lawrence F. Method of making photovoltaic device
US6307148B1 (en) 1999-03-29 2001-10-23 Shinko Electric Industries Co., Ltd. Compound semiconductor solar cell and production method thereof
US6328871B1 (en) 1999-08-16 2001-12-11 Applied Materials, Inc. Barrier layer for electroplating processes
WO2001057932A1 (en) 2000-02-07 2001-08-09 Cis Solartechnik Gmbh Flexible metal substrate for cis solar cells, and method for producing the same
US7194197B1 (en) 2000-03-16 2007-03-20 Global Solar Energy, Inc. Nozzle-based, vapor-phase, plume delivery structure for use in production of thin-film deposition layer
US6372538B1 (en) 2000-03-16 2002-04-16 University Of Delaware Fabrication of thin-film, flexible photovoltaic module
US6423565B1 (en) 2000-05-30 2002-07-23 Kurt L. Barth Apparatus and processes for the massproduction of photovotaic modules
WO2002017362A2 (en) 2000-08-22 2002-02-28 President And Fellows Of Harvard College Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
JP2002196337A (en) 2000-09-06 2002-07-12 Seiko Epson Corp Manufacturing method and manufacturing apparatus for optoelectronic device and manufacturing method and manufacturing apparatus for liquid crystal panel
US6576112B2 (en) 2000-09-19 2003-06-10 Canon Kabushiki Kaisha Method of forming zinc oxide film and process for producing photovoltaic device using it
US6930041B2 (en) * 2000-12-07 2005-08-16 Micron Technology, Inc. Photo-assisted method for semiconductor fabrication
DE10104726A1 (en) 2001-02-02 2002-08-08 Siemens Solar Gmbh A process for patterning a layer applied to a carrier material oxide layer
US6858308B2 (en) 2001-03-12 2005-02-22 Canon Kabushiki Kaisha Semiconductor element, and method of forming silicon-based film
US7053294B2 (en) 2001-07-13 2006-05-30 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
JP2003106895A (en) * 2001-10-01 2003-04-09 Nec Corp Thermal infrared detecting element and method of manufacturing the same
JP4236081B2 (en) 2001-10-16 2009-03-11 大日本印刷株式会社 Method for producing pattern forming body
EP1443527A4 (en) 2001-10-19 2007-09-12 Asahi Glass Co Ltd Substrate with transparent conductive oxide film and production method therefor, and photoelectric conversion element
US6635307B2 (en) 2001-12-12 2003-10-21 Nanotek Instruments, Inc. Manufacturing method for thin-film solar cells
US6716479B2 (en) * 2002-01-04 2004-04-06 Rutgers, The State University Of New Jersey Tailoring piezoelectric properties using MgxZn1-xO/ZnO material and MgxZn1-xO/ZnO structures
US7414188B2 (en) 2002-01-25 2008-08-19 Konarka Technologies, Inc. Co-sensitizers for dye sensitized solar cells
US7276749B2 (en) 2002-02-05 2007-10-02 E-Phocus, Inc. Image sensor with microcrystalline germanium photodiode layer
US6690041B2 (en) 2002-05-14 2004-02-10 Global Solar Energy, Inc. Monolithically integrated diodes in thin-film photovoltaic devices
US7560641B2 (en) 2002-06-17 2009-07-14 Shalini Menezes Thin film solar cell configuration and fabrication method
US6852920B2 (en) 2002-06-22 2005-02-08 Nanosolar, Inc. Nano-architected/assembled solar electricity cell
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7291782B2 (en) 2002-06-22 2007-11-06 Nanosolar, Inc. Optoelectronic device and fabrication method
EP1540741B1 (en) 2002-09-05 2014-10-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
EP1537445B1 (en) 2002-09-05 2012-08-01 Nanosys, Inc. Nanocomposites
EP1556902A4 (en) 2002-09-30 2009-07-29 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells
US6849798B2 (en) 2002-12-17 2005-02-01 General Electric Company Photovoltaic cell using stable Cu2O nanocrystals and conductive polymers
US6936761B2 (en) 2003-03-29 2005-08-30 Nanosolar, Inc. Transparent electrode, optoelectronic apparatus and devices
US7279832B2 (en) 2003-04-01 2007-10-09 Innovalight, Inc. Phosphor materials and illumination devices made therefrom
US20040252488A1 (en) 2003-04-01 2004-12-16 Innovalight Light-emitting ceiling tile
WO2004090995A1 (en) 2003-04-09 2004-10-21 Matsushita Electric Industrial Co., Ltd. Solar cell
US7265037B2 (en) 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
JP4579160B2 (en) 2003-07-14 2010-11-10 株式会社フジクラ Electrolyte composition, photoelectric conversion device using the same, and dye-sensitized solar cell
AU2003300775A1 (en) 2003-09-03 2005-04-21 Midwest Research Institute Zno/cu(inga)se2 solar cells prepared by vapor phase zn doping
EP1521308A1 (en) 2003-10-02 2005-04-06 Scheuten Glasgroep Ball or grain-shaped semiconductor element to be used in solar cells and method of production; method of production of a solar cell with said semiconductor element and solar cell
US20070169810A1 (en) 2004-02-19 2007-07-26 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of chalcogen-containing vapor
US8623448B2 (en) 2004-02-19 2014-01-07 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles
US20070163643A1 (en) 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of chalcogen layer and the use of an inter-metallic material
EP2469605A3 (en) 2004-02-20 2014-03-05 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
US7842882B2 (en) 2004-03-01 2010-11-30 Basol Bulent M Low cost and high throughput deposition methods and apparatus for high density semiconductor film growth
US7122398B1 (en) 2004-03-25 2006-10-17 Nanosolar, Inc. Manufacturing of optoelectronic devices
JP4695850B2 (en) 2004-04-28 2011-06-08 本田技研工業株式会社 Chalcopyrite solar cell
US7871502B2 (en) 2004-05-11 2011-01-18 Honda Motor Co., Ltd. Method for manufacturing chalcopyrite thin-film solar cell
TW201341440A (en) 2004-06-08 2013-10-16 Sandisk Corp Post-deposition encapsulation of nanostructures: compositions, devices and systems incorporating same
CA2567930A1 (en) 2004-06-08 2005-12-22 Nanosys, Inc. Methods and devices for forming nanostructure monolayers and devices including such monolayers
US7446335B2 (en) 2004-06-18 2008-11-04 Regents Of The University Of Minnesota Process and apparatus for forming nanoparticles using radiofrequency plasmas
JP2008503880A (en) 2004-06-18 2008-02-07 ウルトラドッツ・インコーポレイテッドUltraDots, Inc. Nanostructured material and photovoltaic device comprising nanostructured material
JP2006049768A (en) 2004-08-09 2006-02-16 Showa Shell Sekiyu Kk Cis compound semiconductor thin film solar battery and manufacturing method for light absorbing layer of solar battery
US7750352B2 (en) 2004-08-10 2010-07-06 Pinion Technologies, Inc. Light strips for lighting and backlighting applications
US7732229B2 (en) 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
US20060249202A1 (en) 2004-09-20 2006-11-09 Seunghyup Yoo Photovoltaic cell
WO2006053127A2 (en) 2004-11-10 2006-05-18 Daystar Technologies, Inc. Process and photovoltaic device using an akali-containing layer
EP1809785A2 (en) 2004-11-10 2007-07-25 Daystar Technologies, Inc. Vertical production of photovoltaic devices
TW200633241A (en) 2004-11-10 2006-09-16 Daystar Technologies Inc Vertical production of photovoltaic devices
WO2006053032A1 (en) 2004-11-10 2006-05-18 Daystar Technologies, Inc. Thermal process for creation of an in-situ junction layer in cigs
US20060096536A1 (en) 2004-11-10 2006-05-11 Daystar Technologies, Inc. Pressure control system in a photovoltaic substrate deposition apparatus
WO2006073562A2 (en) 2004-11-17 2006-07-13 Nanosys, Inc. Photoactive devices and components with enhanced efficiency
US20060130890A1 (en) 2004-12-20 2006-06-22 Palo Alto Research Center Incorporated. Heterojunction photovoltaic cell
US7491431B2 (en) * 2004-12-20 2009-02-17 Nanogram Corporation Dense coating formation by reactive deposition
JP2006179626A (en) 2004-12-22 2006-07-06 Showa Shell Sekiyu Kk Cis system thin film solar cell module, and its manufacturing method and separation method
JP2006183117A (en) 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk METHOD FOR PRODUCING ZnO-BASED TRANSPARENT ELECTROCONDUCTIVE FILM BY USING MOCVD (ORGANO-METAL CHEMICAL VAPOR DEPOSITION) PROCESS
JP4131965B2 (en) 2004-12-28 2008-08-13 昭和シェル石油株式会社 Method for producing light absorption layer of CIS thin film solar cell
JP2006186200A (en) 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk Precursor film and film formation method therefor
KR100495925B1 (en) 2005-01-12 2005-06-08 (주)인솔라텍 Optical absorber layers for solar cell and manufacturing method thereof
US7276724B2 (en) 2005-01-20 2007-10-02 Nanosolar, Inc. Series interconnected optoelectronic device module assembly
JP5010806B2 (en) 2005-02-01 2012-08-29 日本ペイント株式会社 Powder coating composition and method for coating aluminum wheel
JP4801928B2 (en) 2005-04-25 2011-10-26 富士フイルム株式会社 Organic electroluminescence device
US20090091033A1 (en) * 2005-05-27 2009-04-09 Wei Gao Fabrication of metal oxide films
JP4841173B2 (en) 2005-05-27 2011-12-21 昭和シェル石油株式会社 High resistance buffer layer / window layer continuous film forming method and film forming apparatus for CIS thin film solar cell
JP3963924B2 (en) 2005-07-22 2007-08-22 本田技研工業株式会社 Chalcopyrite solar cell
EP1920454A4 (en) 2005-08-05 2014-01-22 First Solar Inc Manufacture of photovoltaic devices
FR2890232A1 (en) 2005-08-23 2007-03-02 Saint Gobain Coplanar discharge plane lamp and uses therefor
JP2007123721A (en) 2005-10-31 2007-05-17 National Institute Of Advanced Industrial & Technology Photoelectric transducer and method of manufacturing same
US7442413B2 (en) 2005-11-18 2008-10-28 Daystar Technologies, Inc. Methods and apparatus for treating a work piece with a vaporous element
ES2391255T3 (en) * 2005-12-21 2012-11-22 Saint-Gobain Glass France thin film photovoltaic device
DE102005062977B3 (en) 2005-12-28 2007-09-13 Sulfurcell Solartechnik Gmbh Method and apparatus for converting metallic precursor layers to chalcopyrite layers of CIGSS solar cells
US8389852B2 (en) 2006-02-22 2013-03-05 Guardian Industries Corp. Electrode structure for use in electronic device and method of making same
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US8071419B2 (en) 2006-06-12 2011-12-06 Nanosolar, Inc. Thin-film devices formed from solid particles
US7879685B2 (en) 2006-08-04 2011-02-01 Solyndra, Inc. System and method for creating electric isolation between layers comprising solar cells
TW200810167A (en) 2006-08-09 2008-02-16 Ind Tech Res Inst Dye-sensitized solar cell and the method of fabricating thereof
DE102006041046A1 (en) 2006-09-01 2008-03-06 Cis Solartechnik Gmbh & Co. Kg Solar cell, process for the production of solar cells and electrical trace
US8426722B2 (en) 2006-10-24 2013-04-23 Zetta Research and Development LLC—AQT Series Semiconductor grain and oxide layer for photovoltaic cells
US8203073B2 (en) 2006-11-02 2012-06-19 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
FR2908406B1 (en) 2006-11-14 2012-08-24 Saint Gobain Porous layer, method for manufacturing the same, and applications thereof
US20080121264A1 (en) 2006-11-28 2008-05-29 Industrial Technology Research Institute Thin film solar module and method of fabricating the same
CN101636842B (en) 2006-12-21 2013-05-01 海利安特斯有限公司 Method for making solar sub-cells from a solar cell
JP4616359B2 (en) * 2007-01-09 2011-01-19 韓國電子通信研究院Electronics and Telecommunications Research Institute Method for forming ZnO semiconductor film for electronic device and thin film transistor including the semiconductor film
EP2115783A2 (en) 2007-01-31 2009-11-11 Jeroen K.J. Van Duren Solar cell absorber layer formed from metal ion precursors
US20080204696A1 (en) 2007-02-28 2008-08-28 Tdk Corporation Method of alignment
KR101414243B1 (en) * 2007-03-30 2014-07-14 서울반도체 주식회사 Method of coating sulfide phosphor and light emitting device employing the coated sulfide phosphor
KR100882668B1 (en) 2007-07-18 2009-02-06 삼성모바일디스플레이주식회사 Organic light emitting display device and method of manufacturing the same
FR2919429B1 (en) 2007-07-27 2009-10-09 Saint Gobain Front panel substrate of photovoltaic cell and use of a substrate for a front panel of photovoltaic cell
US20090087939A1 (en) 2007-09-28 2009-04-02 Stion Corporation Column structure thin film material using metal oxide bearing semiconductor material for solar cell devices
JP2009099476A (en) 2007-10-19 2009-05-07 Sony Corp Dye-sensitized photoelectric conversion element and its manufacturing method
US8187434B1 (en) 2007-11-14 2012-05-29 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
JP2009135337A (en) 2007-11-30 2009-06-18 Showa Shell Sekiyu Kk Laminate structure, integrated structure and manufacturing method, of cis-based solar cell
US8001283B2 (en) 2008-03-12 2011-08-16 Mips Technologies, Inc. Efficient, scalable and high performance mechanism for handling IO requests
US8981211B2 (en) 2008-03-18 2015-03-17 Zetta Research and Development LLC—AQT Series Interlayer design for epitaxial growth of semiconductor layers
US20090235987A1 (en) 2008-03-24 2009-09-24 Epv Solar, Inc. Chemical Treatments to Enhance Photovoltaic Performance of CIGS
EP2291855B1 (en) 2008-04-15 2018-06-27 Global Solar Energy, Inc. Apparatus for manufacturing thin-film solar cells
JP4384237B2 (en) 2008-05-19 2009-12-16 昭和シェル石油株式会社 CIS type thin film solar cell manufacturing method
FR2932009B1 (en) 2008-06-02 2010-09-17 Saint Gobain Photovoltaic cell and photovoltaic cell substrate
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US7855089B2 (en) 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8008112B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8008111B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk copper species treatment of thin film photovoltaic cell and manufacturing method
US7960204B2 (en) 2008-09-30 2011-06-14 Stion Corporation Method and structure for adhesion of absorber material for thin film photovoltaic cell
US7863074B2 (en) 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US7947524B2 (en) 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8217261B2 (en) 2008-09-30 2012-07-10 Stion Corporation Thin film sodium species barrier method and structure for cigs based thin film photovoltaic cell
US8053274B2 (en) 2008-09-30 2011-11-08 Stion Corporation Self cleaning large scale method and furnace system for selenization of thin film photovoltaic materials
US7910399B1 (en) 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110018103A1 (en) 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8003430B1 (en) 2008-10-06 2011-08-23 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
WO2010091025A2 (en) 2009-02-04 2010-08-12 Applied Materials, Inc. Metrology and inspection suite for a solar production line
US8197912B2 (en) 2009-03-12 2012-06-12 International Business Machines Corporation Precision separation of PV thin film stacks
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8142521B2 (en) 2010-03-29 2012-03-27 Stion Corporation Large scale MOCVD system for thin film photovoltaic devices
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US20110259413A1 (en) 2010-04-21 2011-10-27 Stion Corporation Hazy Zinc Oxide Film for Shaped CIGS/CIS Solar Cells
US20110259395A1 (en) 2010-04-21 2011-10-27 Stion Corporation Single Junction CIGS/CIS Solar Module
US20120018828A1 (en) 2010-07-23 2012-01-26 Stion Corporation Sodium Sputtering Doping Method for Large Scale CIGS Based Thin Film Photovoltaic Materials
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US9215235B1 (en) 2011-05-23 2015-12-15 Palo Alto Networks, Inc. Using events to identify a user and enforce policies
FR3058855A1 (en) 2016-11-16 2018-05-18 Commissariat Energie Atomique Switch having phase change material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873118A (en) * 1988-11-18 1989-10-10 Atlantic Richfield Company Oxygen glow treating of ZnO electrode for thin film silicon solar cell
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US7235736B1 (en) * 2006-03-18 2007-06-26 Solyndra, Inc. Monolithic integration of cylindrical solar cells
CN101295586A (en) * 2008-06-11 2008-10-29 中国科学院上海硅酸盐研究所 Production method of nanocrystalline TiO2 solar battery prototype device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN X L, ET AL: "Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition", 《THIN SOLID FILMS》, vol. 515, no. 78, 3 November 2006 (2006-11-03), pages 3753 - 3759, XP005890785, DOI: doi:10.1016/j.tsf.2006.09.039 *
FAŸ S, FEITKNECHT L, SCHLÜCHTER R, ET AL: "Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells", 《SOLAR ENERGY MATERIALS AND SOLAR CELLS》, vol. 90, no. 1819, 27 July 2006 (2006-07-27), pages 2960 - 2967 *

Also Published As

Publication number Publication date
EP2309554A3 (en) 2016-08-17
US9059370B2 (en) 2015-06-16
US20110263064A1 (en) 2011-10-27
CN102044632B (en) 2015-07-29
US20140170808A1 (en) 2014-06-19
EP2309554A2 (en) 2011-04-13
US8168463B2 (en) 2012-05-01
TW201126743A (en) 2011-08-01
TWI501414B (en) 2015-09-21
US8557625B1 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
DE69330835T3 (en) A process for producing a tandem photovoltaic device with improved efficiency and device produced thereby
KR910001742B1 (en) Photo electromotive force device
US8778448B2 (en) Method of stabilizing hydrogenated amorphous silicon and amorphous hydrogenated silicon alloys
US7667133B2 (en) Hybrid window layer for photovoltaic cells
JPWO2005011002A1 (en) Silicon-based thin film solar cell
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
US20080000522A1 (en) Photovoltaic device which includes all-back-contact configuration; and related processes
EP2128904A2 (en) Tandem thin-film silicon solar cell and method for manufacturing the same
US20080135089A1 (en) Graded hybrid amorphous silicon nanowire solar cells
EP0523919A1 (en) Multijunction photovoltaic device and fabrication method
US7960204B2 (en) Method and structure for adhesion of absorber material for thin film photovoltaic cell
US8211736B2 (en) Bulk copper species treatment of thin film photovoltaic cell and manufacturing method
US6121541A (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
US20080251120A1 (en) Thin Film Solar Cell and Manufacturing Method
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
CN102150276B (en) Thin film sodium species barrier method and structure for CIGS based thin film photovoltaic cell
US8344243B2 (en) Method and structure for thin film photovoltaic cell using similar material junction
US20050205127A1 (en) Photovoltaic device
JP2008153646A (en) Manufacturing method of semiconductor device
EP2109155A2 (en) Thin film silicon solar cell and manufacturing method thereof
Okamoto et al. Device physics and design of a-Si ITO/pin heteroface solar cells
US8003432B2 (en) Consumable adhesive layer for thin film photovoltaic material
CN101582464B (en) Compositionally-graded and structurally-graded photovoltaic device and method of making the same
CN101904013B (en) Method for obtaining high performance thin film devices deposited on highly textured substrates

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C41 Transfer of patent application or patent right or utility model
C53 Correction of patent for invention or patent application
ASS Succession or assignment of patent right

Owner name: DEVELOPMENT EXPERT COMPANY

Free format text: FORMER OWNER: CM MANUFACTURING INC.

Effective date: 20150113

Owner name: HETF SOLAR INC.

Free format text: FORMER OWNER: DEVELOPMENT EXPERT COMPANY

Effective date: 20150113

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: STION CORP. TO: CM MANUFACTURING INC.

Free format text: CORRECT: APPLICANT; FROM: HETF SOLAR INC. TO: STION CORP.

C14 Grant of patent or utility model
CF01