CN102034821B - Metal oxide half-field effect transistor layout structure and method - Google Patents

Metal oxide half-field effect transistor layout structure and method Download PDF

Info

Publication number
CN102034821B
CN102034821B CN 200910174517 CN200910174517A CN102034821B CN 102034821 B CN102034821 B CN 102034821B CN 200910174517 CN200910174517 CN 200910174517 CN 200910174517 A CN200910174517 A CN 200910174517A CN 102034821 B CN102034821 B CN 102034821B
Authority
CN
China
Prior art keywords
metal
structure
source
drain
field effect
Prior art date
Application number
CN 200910174517
Other languages
Chinese (zh)
Other versions
CN102034821A (en
Inventor
彭国伟
刘中唯
周倩华
Original Assignee
登丰微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 登丰微电子股份有限公司 filed Critical 登丰微电子股份有限公司
Priority to CN 200910174517 priority Critical patent/CN102034821B/en
Publication of CN102034821A publication Critical patent/CN102034821A/en
Application granted granted Critical
Publication of CN102034821B publication Critical patent/CN102034821B/en

Links

Abstract

本发明公开了一种金氧半场效晶体管布局结构及方法,包含复数个金氧半场效晶体管单元、一源极金属结构及一漏极金属结构。 The present invention discloses an oxide semiconductor field effect transistor layout structure and a method of one metal, comprising a plurality of metal oxide semiconductor field effect transistor unit, a source electrode and a drain metal structure metal structure. 源极金属结构电性连接至复数个金氧半场效晶体管单元的源极,于一预定轴方向源极金属结构的宽度逐渐变窄。 A source metal structure is electrically connected to a plurality of metal oxide semiconductor field effect transistor source means, in a predetermined axial width of the source metal structure Fangxiang Yuan gradually narrowed. 漏极金属结构,电性连接至复数个金氧半场效晶体管单元的漏极,于预定轴方向漏极金属结构的宽度逐渐变宽。 Drain metal structures electrically connected to the drain of a plurality of metal oxide semiconductor field effect transistor unit, drain width of the metal structure in the predetermined axial direction is gradually widened.

Description

金氧半场效晶体管布局结构及方法 Metal oxide semiconductor field effect transistor layout structure and method

技术领域 FIELD

[0001] 本发明涉及一种金氧半场效晶体管布局结构及方法,尤其涉及一种金氧半场效晶体管中的复数个金氧半场效晶体管单元流经大致相同电流的布局结构及方法。 [0001] The present invention relates to a metal oxide semiconductor field effect transistor layout structure and method, particularly to a method of substantially the same structure and layout of a plurality of current metal flowing through the MOSFET cell one metal oxide semiconductor field effect transistors .

背景技术 Background technique

[0002] 现今电脑的主要元件,例如:中央处理器(CPU)、存储器等,其工作电压有逐步下降的发展趋势。 [0002] Nowadays the major components of the computer, for example: a central processing unit (CPU), memory, operating voltage has gradually decline trends. 在所需的功耗未能等比例下降的情况下,这些元件操作所需的电流则逐步上升。 In the case of the required power and the like could not decrease the proportion of these elements required to operate the current is gradually increased. 因此,作为电源管理应用中的电源开关一金氧半导体晶体管而言,最大承受电流值也需随之上升。 Accordingly, as a power supply management application in switching a power MOS transistor, the current value required to withstand the maximum rise. 然而,在积体电路积集度提高的发展下,金氧半导体晶体管的源极与漏极的金属连接导线宽度势必受限,使得金属连接导线的电流密度提高及金属连接导线有严重电压降。 However, in the integrated circuit to improve the development of the product set, metal source and drain of MOS transistor is connected to conductor width inevitably limited, so that the current density is increased and the metal of the metal connecting wire connecting wires serious voltage drop. 严重电压则造成金氧半导体晶体管中的金氧半导体晶体管单元导通的电流不均。 Current caused by the severe voltage metal-oxide-metal-oxide-semiconductor transistors turned on transistor cell unevenness. 而金属连接导线的电流密度提高会使电迁移(Electron Migration)的问题变的明显,尤其导通电流不均更会使导通较大电流的金氧半导体晶体管单元更易因电迁移而毁损。 And the metal wires connecting the current density will increase the problem of electromigration (Electron Migration) becomes apparent, in particular, the on-current variation even make the conduction of a large current MOS transistor cells are more damaged due to electromigration. 因此,现有的功率金氧半导体晶体管很难兼具大电流功能与高积集度布局两种性质。 Thus, the conventional MOS power transistor combines both of these properties is difficult to function and a large current of a high current product distribution.

[0003] 请参考图1,为一现有的金氧半场效晶体管结构的平面示意图。 [0003] Please refer to FIG. 1, a schematic view of a conventional planar metal oxide semiconductor field effect transistor structure. 在此金氧半场效晶体管结构中,栅极导线具有短条状栅极图案31及长条状栅极图案32,蜿蜒并连接金氧半场效晶体管结构中的每个金氧半场效晶体管单元的栅极。 The metal oxide semiconductor field effect transistor structure, the gate having a strip conductor 31 and the gate pattern elongated gate pattern 32, and the winding is connected mosfet transistor structure of each of metal oxide semiconductor field the gate FET cell. 而金氧半场效晶体管结构中的金氧半场效晶体管单元源极区域14与漏极区域24则交错地位于长条状栅极图案32之间。 Between 32 and metal oxide semiconductor field effect transistor unit source region of MOSFET metal structure 14 and the drain region 24 are alternately positioned elongated gate pattern. 漏极金属导线21则具有复数个手指状图案22,源极金属导线11亦具有复数个手指状图案12。 Drain metal wire 21 having a plurality of finger-like pattern 22, the source metal wiring 11 also has a plurality of finger-like pattern 12. 手指状图案22与手指状图案12彼此互相交错,而每一手指状图案22则位于一漏极区域24上并通过漏极接触孔23与每个金氧半场效晶体管单元的漏极电性连接,每一手指状图案12则位于一源极区域14上并通过源极接触孔13与每个金氧半场效晶体管单元的源极电性连接。 Finger-shaped pattern 22 and the finger-shaped pattern 12 cross each other, and each finger-shaped pattern 22 is located on the drain contact hole 24 and through the drain electrode 23 and a drain region each of the metal oxide semiconductor field effect transistor cells connection, each of the finger-shaped pattern 12 is located in a source region 14 and a contact hole 13 through the source and the source of each metal oxide semiconductor field effect transistor cells electrically connected. 每一手指状图案22具有复数漏极接触孔23,以连接漏极区域24。 Each pattern 22 has a plurality of finger-shaped drain contact hole 23, is connected to the drain region 24. 每一手指状图案12具有复数源极接触孔13,以连接源极区域14。 Each pattern 12 has a plurality of finger-like source contact hole 13 for connecting the source region 14.

[0004] 现有的金氧半场效晶体管结构因过长的源极与漏极连接导线导致严重电压降。 [0004] The conventional metal oxide semiconductor field effect transistor structure due to the source and the drain is connected to long wires cause serious voltage drop. 请参考图2,为图I所示的金氧半场效晶体管结构中的金氧半场效晶体管单元栅极、漏极及源极电压随连接导线长度变化的示意图,其中线Svol代表源极电压,线Dvol代表漏极电压,线Gvol代表栅极电压。 Please refer to FIG. 2, metal oxide semiconductor field effect transistor structure as shown in Figure I of metal oxide semiconductor field effect transistor cell gate, drain and source voltage changes with the length of the wire connecting a schematic view, which denotes a source line Svol voltage, a drain voltage line Dvol representatives, Gvol line denotes a gate voltage. 为清楚描述图2与图I间的关系,在此于图I中定义一电流方向Z,故金氧半场效晶体管的电流I是由漏极金属导线21流入而由源极金属导线11流出。 To clearly describes the relationship between FIG. 2 and FIG. I, as defined herein in a current direction in FIG. I, Z, so the mosfet transistor by the drain current I is flowing into the metal wires 21 and flows out from a source metal wire 11 . 在电流的影响下,使得源极电压Svol与漏极电压Dvol随着距离下降而与理想源极电压Svol'与理想漏极电压Dvol'间的差距加大。 Under the influence of the current, so that the source voltage and the drain voltage DVOL SVOL decrease as the distance between the gap and to increase the source voltage over Svol 'and over the drain voltage Dvol'. 而由于金氧半场效晶体管的栅极并未流通电流,故栅极电压Gvol并没有变化。 And because the gate metal oxide semiconductor field effect transistor, the current does not flow, so that the gate voltage Gvol unchanged. 在此情况下,每个金氧半场效晶体管单元的栅极-源极电压Vgs会不同,导致每个金氧半场效晶体管单元导通的电流不同,尤其在大电流需求下金氧半场效晶体管单元个数增加而使金属连接导线增长的情况。 In this case, each of the gate metal oxide semiconductor field effect transistor cells - source voltage Vgs will be different, resulting in different current in each transistor cell mosfets turned, in particular at high current demand metal oxide semiconductor increasing the number of field effect transistor cells where the metal wire is connected growth.

[0005] 因此,现有的金氧半场效晶体管结构设计有着先天上的缺陷及限制,无法满足现今大电流发展趋势下的需求。 [0005] Thus, the conventional metal oxide semiconductor field effect transistor structure design has inherent limitations and defects, can not meet the needs of today's major trend in current. 发明内容 SUMMARY

[0006] 鉴于现有技术中的金氧半场效晶体管结构有电流密度不均问题,使得电迁移的问题明显并因而导致最大承受电流值无法有效提升。 [0006] In view of the metal oxide semiconductor field effect transistor structure of the prior art have the problem of uneven current density, so that electrical problems, and result in significant migration to withstand the maximum current value can not be effectively improved. 本发明利用随距离调整宽度的金属结构,使单位长度电阻值随距离变小,以重新分布电流密度。 The present invention utilizes the width of the distance adjustment with metal structure, so that the resistance value per unit length decreases with the distance, to redistribute current density. 因此,可使金氧半场效晶体管结构中的金氧半场效晶体管单元导通的电流均匀度增加。 Thus, the uniformity of current can be metal oxide semiconductor field effect transistor unit turned metal oxide semiconductor field effect transistor structure increases.

[0007] 为达上述目的,本发明提供了一种金氧半场效晶体管布局结构,包含复数个金氧半场效晶体管单元、一源极金属结构及一漏极金属结构。 [0007] To achieve the above object, the present invention provides a metal oxide semiconductor field effect transistor layout structure comprising a plurality of metal oxide semiconductor field effect transistor unit, a source electrode and a drain metal structure metal structure. 源极金属结构电性连接至复数个金氧半场效晶体管单元的源极,于一预定轴方向源极金属结构的宽度逐渐变窄。 A source metal structure is electrically connected to a plurality of metal oxide semiconductor field effect transistor source means, in a predetermined axial width of the source metal structure Fangxiang Yuan gradually narrowed. 漏极金属结构,电性连接至复数个金氧半场效晶体管单元的漏极,于预定轴方向漏极金属结构的宽度逐渐变宽。 Drain metal structures electrically connected to the drain of a plurality of metal oxide semiconductor field effect transistor unit, drain width of the metal structure in the predetermined axial direction is gradually widened.

[0008] 本发明也提供了一种金氧半场效晶体管布局方法,包含下述步骤:形成一源极金属结构于复数个金氧半场效晶体管单元之上,并与复数个金氧半场效晶体管单元的源极电性连接,且于一预定轴方向源极金属结构的宽度逐渐变窄;以及形成一漏极金属结构于复数个金氧半场效晶体管单元之上,并与复数个金氧半场效晶体管单元的漏极电性连接,且于预定轴方向漏极金属结构的宽度逐渐变宽。 [0008] The present invention also provides a metal oxide semiconductor field effect transistor layout method, comprising the steps of: forming a semi-source metal structure over the plurality of metal oxide semiconductor field effect transistor unit, and a plurality of metal-oxide and a source electrode of field effect transistor element is electrically connected, and tapering to a width of a predetermined metallic structure Fangxiang Yuan pole shaft; and forming a drain metal structure over the plurality of metal oxide semiconductor field effect transistor unit, and with a plurality of gold drain of MOSFET cells are connected, and the drain of the width of the metal structure to a predetermined axial direction is gradually widened.

[0009] 再者,在本发明的其他实施例中,还至少提供另一漏极金属结构及源极金属结构,藉此以分担导通的电流使电流密度更低,以承受更高的导通电流。 [0009] Further, in other embodiments of the present invention further provides at least one other metal structures drain and source metal structure, whereby a current balancing lower conductive causes the current density to withstand higher on current.

[0010] 以上的概述与接下来的详细说明皆为示范性质,是为了进一步说明本发明的申请专利范围。 [0010] foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the scope of the present invention. 而有关本发明的其他目的与优点,将在后续的说明与图示加以阐述。 Other objects and advantages of the present invention is related, it will be set forth in the ensuing description and illustration.

附图说明 BRIEF DESCRIPTION

[0011] 图I为一现有的金氧半场效晶体管结构的平面示意图; [0011] Figure I is a schematic view of a conventional planar metal oxide semiconductor field effect transistor structure;

[0012] 图2为图I所示的金氧半场效晶体管结构中的金氧半场效晶体管单元栅极、漏极及源极电压随连接导线长度变化的示意图; [0012] FIG. 2 is a schematic mosfet transistor structure shown in mosfet gate transistor cells, with the voltage of the drain and source connected to wire length varying FIG. I;

[0013] 图3为根据本发明的金氧半场效晶体管结构的金氧半场效晶体管单元分布示意图; [0013] FIG. 3 is a schematic diagram of the distribution of metal oxide semiconductor field effect transistor unit mosfet transistor structure of the present invention;

[0014] 图4为根据本发明的金氧半场效晶体管结构的导线的示意图; [0014] FIG. 4 is a schematic diagram MOSFET metal wire structure of the present invention;

[0015] 图5A及图5B为根据本发明的金氧半场效晶体管结构的金属层结构的局部示意图及整体示意图; [0015] FIGS. 5A and 5B is a partial schematic view of the metallic layer and the overall structure of a metal oxide semiconductor field effect transistor structure according to the invention;

[0016] 图6为根据本发明的金氧半场效晶体管结构的第二金属层结构的示意图。 [0016] FIG. 6 is a schematic configuration of a second metal layer metal oxide semiconductor field effect transistor structure according to the invention.

[0017] 主要元件符号说明 [0017] Main reference numerals DESCRIPTION

[0018] 源极金属导线11; 手指状图案12; [0018] The source metal wires 11; 12 finger-shaped pattern;

[0019] 源极接触孔13; 源极区域14; [0019] the source contact hole 13; a source region 14;

[0020] 漏极金属导线21 ; 手指状图案22 ; [0020] The drain metal wire 21; 22 finger-shaped pattern;

[0021] 漏极接触孔23 ; 漏极区域24 ; [0021] The drain contact hole 23; a drain region 24;

[0022] 短条状栅极图案31 ; 长条状栅极图案32 ; [0022] The strip-shaped gate pattern 31; elongated gate pattern 32;

[0023] 源极电压Svol; 漏极电压Dvol; [0023] source voltage SVOL; DVOL drain voltage;

[0024] 栅极电压Gvol; 电流方向Z ;[0025] 电流I; 理想源极电压Svol'; [0024] gate voltage Gvol; current direction Z; [0025] current I; over the source voltage Svol ';

[0026] 理想漏极电压Dvol ; 栅极-源极电压Vgs ; [0026] over the drain voltage DVOL; gate - source voltage Vgs of;

[0027] 源极S ; 漏极D ; [0027] The source S; drain D;

[0028] 栅极G ; 源极导线Sbus ; [0028] The gate G; Sbus source lead;

[0029] 第一轴方向A ; 第二轴方向B ; [0029] A first axis direction; a second axis B;

[0030] 漏极导线Dbus ; 区域5A ; [0030] The drain wire Dbus; region. 5A;

[0031] 第一源极金属结构SMl ; 第一漏极金属结构DMl ; [0031] The first source metal structure SML; DM1 first drain metal structure;

[0032] 第二源极金属结构SM2; 第二漏极金属结构DM2。 [0032] The second source metal structure SM2; second drain metal structure DM2.

具体实施方式 Detailed ways

[0033] 请参考图3,为根据本发明的金氧半场效晶体管结构的金氧半场效晶体管单元分布示意图。 [0033] Please refer to FIG. 3, according to the distribution unit mosfet transistor mosfet transistor structure of the present invention. FIG. 为方便说明,在本发明的实施例中的叙述是以N型金氧半导体晶体管为例来说明。 For convenience of description, embodiments of the invention described is based on the N-type metal oxide semiconductor transistor will be described as an example. 在本实施例中,金氧半场效晶体管单元的源极S及漏极D为交替排列,在前后及左右方向上,每两个源极S (漏极D)间有一个漏极D (源极S)。 In the present embodiment, the source S and the drain D mosfet transistor cells are arranged alternately in the longitudinal and lateral directions, each of the two source S (drain electrode D) between a drain D ( The source S). 而栅极G位于每对源极S、漏极D之间,并且为网状图案。 And the gate G is located between each pair of source S, a drain D, and a mesh pattern. 因此,每个源极S(漏极D)的周边有四个对应的漏极D (源极S),而大大提升了金氧半场效晶体管结构的积集度。 Thus, the periphery of each of the source S (drain electrode D) are four corresponding drain D (S source), greatly improved product set of metal oxide semiconductor field effect transistor structure.

[0034] 请参考图4,为根据本发明的金氧半场效晶体管结构的导线的示意图。 [0034] Please refer to FIG 4, is a schematic view of a wire metal oxide semiconductor field effect transistor structure of the present invention. 源极导线Sbus的图案为锯齿状且平行于一第一轴方向A,用以电性连接金氧半场效晶体管单元中的源极S,而漏极导线Dbus的图案同样为锯齿状且平行于第一轴方向A,用以电性连接金氧半场效晶体管单元中的漏极D。 Sbus pole conductor pattern is a zigzag source and parallel to a first axis A, is electrically connected to source metal oxide semiconductor field effect transistor unit electrode S, the drain wire Dbus likewise zigzag pattern and parallel to the first axis a, is electrically connected to the drain D. metal oxide semiconductor field effect transistor unit 有利于与上层金属的连接面积增加,进而更有效的分散电流。 Help to increase the area of ​​the upper metal connector, and thus more effective dispersion of current.

[0035] 接着,请参考图5A及图5B,为根据本发明的金氧半场效晶体管结构的金属层结构的局部示意图及整体示意图。 [0035] Next, referring to FIGS. 5A and 5B, a schematic diagram and a partial schematic view of the overall structure of a metal layer of metal oxide semiconductor field effect transistor structure according to the invention. 请先参考图5A,第一源极金属结构SMl及第一漏极金属结构DMl形成于导线结构之上,且分别通过源极导线Sbus及电性连接漏极导线Dbus电性连接至金氧半场效晶体管单元的源极S及漏极D。 Please 5A, the first source and first drain metal structure SMl DMl metal structure is formed on the conductor structure, and the electrode wires are electrically connected to the drain and the Sbus Dbus wires electrically connected to source metal oxide semiconductor by a source electrode of field effect transistor cells S and the drain D. 第一源极金属结构SMl有多个延伸臂,延一第二轴方向B (与第一轴方向A垂直)的宽度逐渐变窄,其方式可如图5A所示以阶梯式或其他等效方式变窄。 A first source metal structure SMl a plurality of extending arms, the width B (perpendicular to the first axis direction A) of the extension of a second axial direction gradually narrowed in a manner shown in Figure 5A can be a stepwise or equivalent narrower way. 第一漏极金属结构DMl有多个延伸臂,延第二轴方向B的宽度逐渐变宽,其方式可如图5A所示以阶梯式或其他等效方式变宽。 DMl first drain metal structure with a plurality of extending arms, the width of the extension of the second axis B is gradually widened, in a manner shown in Figure 5A can be a stepwise manner or other equivalent widened. 请参考图5B,其中图5A所示的局部区域为图5B中虚线所划出的区域5A。 Please 5B, the local region area 5A as shown in dotted line in Fig. 5B wherein delineated in Figure 5A. 在宏观下,第一源极金属结构SMl及第一漏极金属结构DMl均呈现梯型图案且方向相反。 In the macro, the first source and first drain metal structure SMl metal structure DMl showed a ladder pattern and opposite directions. 另外,第一源极金属结构SMl及第一漏极金属结构DMl所占的面积大致相等,在此设计下,本发明的金氧半场效晶体管结构的源极与漏极有互换性,增加使用者使用的便利性。 Further, the first source and first drain metal structure SMl DMl metal structure is substantially equal to an area occupied, in this design, the source and drain metal oxide semiconductor field effect transistor structure of the present invention are interchangeable, increase user convenience in use. 另外,由于金氧半场效晶体管是通过以打线接合(Wire Bonding)到焊片(Bonding Pad)的方式与外部元件电性连接,以输入或输出电流,因此流经的电流会由第一漏极金属结构DMl中最接近漏极打线的局部地区流入后扩散至各个金氧半场效晶体管单元漏极D流入,而后经源极S流出至第一源极金属结构SMl中最接近源极打线的局部地区流出。 Further, since the metal oxide semiconductor field effect transistor is by the wire bonding (Wire Bonding) to a solder tab (Bonding Pad) manner to the external device is electrically connected to the input or output current, so current will flow through the first flows into the drain diffusion metal structure DMl drain wire closest to the respective local areas of metal oxide semiconductor field effect transistor unit flows into the drain D, the source S and then flows through to the first source electrode closest to the source of the metal structure SMl pole wire out of the local area. 在本实施例中,与打线位置最接近的区域均在梯型图案的窄边,也就是电流会由第一漏极金属结构DMl之中单位长度阻值较大的区域流入然后扩散到其他部分,而由于其他部分相对较宽,故单位长度阻值较小,如此可减少压降值。 In the present embodiment, the position of the wire are in the region closest to the narrow side of the ladder pattern, i.e. the resistance per unit length of current will drain into the first large area metal structure DMl and then spread to other flows section, and since the other portions is relatively wide, so the smaller the resistance per unit length, so the value of the pressure drop can be reduced. 同理,电流由第一源极金属结构SMl之中单位长度阻值较小(宽度较宽)的区域集中至单位长度阻值较大(宽度较窄)的区域流出,故电流流经所造成的压降也较现有为小。 Similarly, the current from the source into a first metal structure SMl resistance per unit length is small (large width) is focused to a larger area (narrow width) of the region of the outflow resistance per unit length, so that current flows caused by the pressure drop is smaller than the existing. 在本发明这样的结构下,可以有效的将电流平均分布至每一个金氧半场效晶体管单元。 In such a structure of the present invention, the average current can be effectively distributed to each of the metal oxide semiconductor field effect transistor unit. 如此即可避免因为电流分布不均而使金氧半场效晶体管中较大电流密度部分会较早因电迁移的问题,使整体金氧半场效晶体管的最大电流承受值有效提升。 So as to avoid uneven current distribution in the metal oxide semiconductor field effect transistor in a large current density will be part of an earlier due to electromigration problems, the overall mosfet withstand the maximum current value of the transistor is effectively improved.

[0036] 另外,为了进一步增加金氧半场效晶体管结构的电流承受能力。 [0036] Further, in order to further increase the mosfets current capability of the transistor structure. 可以于第一源极金属结构SMl及第一漏极金属结构DMl以外,再增加至少一源极金属结构及至少一漏极金属结构,以分散电流而降低电流密度。 This can be the first source and first drain metal structure SMl DMl than metal structure, to add at least one source of metal structures and the at least one drain metal structure to reduce the current density and the current dispersion. 如此,金氧半场效晶体管结构能在导通更大的电流下,其电流密度也不至于导致电迁移现象的发生,也就是说,最大电流承受值能进一步提升。 Thus, metal oxide semiconductor field effect transistor structures can be greater in the conduction current, the current density that does not cause electromigration phenomenon, that is to say, to withstand the maximum current value can be further improved.

[0037] 请参考图6,为根据本发明的金氧半场效晶体管结构的第二金属层结构的示意图。 [0037] Please refer to FIG. 6, the second metal layer is a schematic configuration of a metal oxide semiconductor field effect transistor structure according to the invention. 第二源极金属结构SM2及第二漏极金属结构DM2形成于第一源极金属结构SMl及第一漏极金属结构DMl之上。 The second source and second drain metal structure SM2 DM2 metal structure formed on the first source and first drain metal structure SMl metal structure DMl. 第二源极金属结构SM2与第一源极金属结构SMl电性连接,且具有多个延伸臂延第二轴方向B的宽度逐渐变宽,其方式可如图5A所示以阶梯式或其他等效方式变宽。 SM2 second source metal structure electrically connected to the electrode structure SMl a first source of metal and having a plurality of extending arms extending second axis B of the width is gradually widened, in a manner shown in Figure 5A can be a stepwise or other widen equivalents. 第二漏极金属结构DM2与第一漏极金属结构DMl电性连接,且具有多个延伸臂延第一轴方向B的宽度逐渐变窄,其方式可如图5A所示以阶梯式或其他等效方式变窄。 The second drain is connected to a first metal structure DM2 DMl electrically metal drain structure, a plurality of extension arms and having a width extending in the first axis direction is gradually narrowed B, 5A, which manner a stepwise or other narrowing of equivalents. 第二源极金属结构SM2及第二漏极金属结构DM2的厚度可随欲增加电流承受能力而改变,其厚度越厚电流承受能力越高。 The thickness of the second source and second drain metal structure SM2 DM2 metal structure can be increased with the desire to change the current capacity, the higher the thicker the thickness of the current carrying capacity. 另外,值得注意的是,第二漏极金属结构DM2的延伸臂较宽的部分彼此连接而成为一个大面积区域,如此可承受更大的瞬间电流涌入。 Further, it is noted that the metal structure of the second drain extension arm DM2 wider portion connected to each other to become a large area, so can withstand more instantaneous current inrush. 第二源极金属结构SM2亦同,以承受更大的瞬间电流流出。 A second source metal structure SM2 likewise to withstand higher instantaneous current flows. 再者,于第一源极金属结构SMl及第二源极金属结构SM2,以及于第一漏极金属结构DMl及第二漏极金属结构DM2的宽度变化相反,也就是宽度窄的部分对应宽度宽的部分。 Further, the second electrode metal structure SMl and SM2 source metal structure, and a width in a first variation of the first source-drain metal structure DMl and DM2 second drain metal structure opposite, i.e. the width of the narrow portion corresponds to the width wide portion. 如此,通过第二源极金属结构SM2与第二漏极金属结构DM2以及第一源极金属结构SMl与第一漏极金属结构DMl对电流重新分布,将更有助于提高流入金氧半场效晶体管单元的电流均匀度。 Thus, redistribution of the current through the second source and second drain metal structure SM2 DM2 metal structure and the first source and the first drain metal structure SMl DM1 metal structure, will help to improve inflow of metal oxide semiconductor field current uniformity effect transistor cells.

[0038] 综上所述,本发明利用随距离调整宽度的金属结构,使单位长度电阻值随距离变小,以重新分布电流密度,可使金氧半场效晶体管结构中的金氧半场效晶体管单元导通的电流均匀度增加,有效降低电迁移现象的发生可能。 [0038] In summary, the present invention utilizes as the distance to adjust the width of the metal structure, the resistance value per unit length decreases with the distance, to redistribute current density, metal oxide semiconductor field gold can MOSFET structure current uniformity effect transistor means is turned on is increased, effectively reducing electromigration may occur. 而且,再通过至少提供另一漏极金属结构及源极金属结构,藉此以分担导通的电流使电流密度更低,以承受更高的导通电流。 Further, by providing then at least one other metal structures drain and source metal structure, whereby a current balancing lower conductive causes the current density to withstand higher conduction current.

[0039] 最后应说明的是:以上实施例仅用以说明本发明的技术方案而非对其进行限制,尽管参照较佳实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对本发明的技术方案进行修改或者等同替换,而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的精神和范围。 [0039] Finally, it should be noted that: the above embodiments are intended to illustrate the present invention and not to limit it, although the present invention has been described in detail with reference to preferred embodiments, those of ordinary skill in the art should be understood : it may still make modifications or equivalent replacements of the technical solution of the present invention, and such modifications or equivalent replacements can not make the technical solutions and modifications depart from the scope of the technical spirit of the present invention.

Claims (10)

1. 一种金氧半场效晶体管布局结构,包含: 复数个金氧半场效晶体管单元; 一第一源极金属结构,电性连接至该复数个金氧半场效晶体管单元的源极,于一预定轴方向该第一源极金属结构的宽度逐渐变窄; 一第一漏极金属结构,电性连接至该复数个金氧半场效晶体管单元的漏极,于该预定轴方向该第一漏极金属结构的宽度逐渐变宽;以及一源极导线结构及一漏极导线结构,该源极导线结构电性连接该复数个金氧半场效晶体管单元的源极及该第一源极金属结构且成锯齿状,该漏极导线结构电性连接该复数个金氧半场效晶体管单元的漏极及该第一漏极金属结构且成锯齿状。 A metal oxide semiconductor field effect transistor layout structure, comprising: a plurality of metal oxide semiconductor field effect transistor unit; a first source metal structure, a source electrically coupled to the plurality of metal oxide semiconductor field effect transistor unit electrode , in a predetermined axial direction of the width of the first source metal structure is gradually narrowed; a first drain metal structures electrically connected to the drain of the plurality of metal oxide semiconductor field effect transistor unit to the predetermined axis direction width of the first structure is gradually widened drain metal; and a source lead structure, and a drain wire structure, a wire electrode structure is electrically connected to the source of the plurality of metal oxide semiconductor field effect transistor unit and a source of the a source metal structure and a zigzag, the drain lead structure electrically connected to the drain of the plurality of metal oxide semiconductor field effect transistor unit and a drain of the first metal structure and a zigzag.
2.根据权利要求I所述的金氧半场效晶体管布局结构,其中该第一源极金属结构是以阶梯式变窄,而该第一漏极金属结构是以阶梯式变宽。 The metal oxide semiconductor field effect transistor layout structure according to claim I, wherein the first source metal structure is narrowed stepwise, and the first drain metal structure is a stepped widened.
3.根据权利要求2所述的金氧半场效晶体管布局结构,其中该第一源极金属结构的面积与该第一漏极金属结构的面积相等。 3. The metal oxide semiconductor field effect transistor layout structure according to claim 2, wherein the area of ​​the area of ​​the metal structure of the first source and the first drain metal structures are equal.
4.根据权利要求I所述的金氧半场效晶体管布局结构,还包含: 一第二源极金属结构,电性连接至第一源极金属结构,并于该预定轴方向该第二源极金属结构的宽度逐渐变宽;以及一第二漏极金属结构,电性连接至该第一漏极金属结构,于该预定轴方向该第二漏极金属结构的宽度逐渐变窄。 The metal oxide semiconductor field effect transistor layout structure according to claim I, further comprising: a source metal structure, a second source electrically connected to the first source metal structure, and to the predetermined axial direction of the second source the width of the source metal structure is gradually widened; metal structure and a second drain electrode electrically connected to the drain of the first metal structure, in which the predetermined axial direction width of the second drain metal structure is gradually narrowed.
5.根据权利要求4所述的金氧半场效晶体管布局结构,其中该第二源极金属结构是以阶梯式变窄,而该第二漏极金属结构是以阶梯式变宽。 The metal oxide semiconductor field effect transistor layout structure according to claim 4, wherein the second source metal structure is a stepped narrowed, and the drain of the second metal structure is a stepped widened.
6.根据权利要求5所述的金氧半场效晶体管布局结构,其中该第二源极金属结构的面积与该第二漏极金属结构的面积相等。 The metal oxide semiconductor field effect transistor layout structure according to claim 5, wherein the area of ​​the metal structure of the second electrode is equal to the area of ​​the second source drain metal structure.
7. 一种金氧半场效晶体管布局方法,包含步骤: 形成一第一源极金属结构于复数个金氧半场效晶体管单元之上,并与该复数个金氧半场效晶体管单元的源极电性连接,且于一预定轴方向该第一源极金属结构的宽度逐渐变窄;以及形成一第一漏极金属结构于复数个金氧半场效晶体管单元之上,并与该复数个金氧半场效晶体管单元的漏极电性连接,且于该预定轴方向该第一漏极金属结构的宽度逐渐变宽。 A metal oxide semiconductor field effect transistor layout method, comprising the steps of: forming a first source of metal structures over a plurality of metal oxide semiconductor field effect transistor unit, and the plurality of metal oxide semiconductor field effect transistor means a source electrode electrically connected to a predetermined axial direction and the width of the first source metal structure is gradually narrowed; and a drain electrode formed over a first metal structure on a plurality of metal oxide semiconductor field effect transistor unit, and the a plurality of metal drain of MOSFET cells connected to the predetermined axis direction and the width of the first drain metal structure is gradually widened.
8.根据权利要求7所述的金氧半场效晶体管布局方法,其中该第一源极金属结构是以阶梯式变窄,而该第一漏极金属结构是以阶梯式变宽。 Metal oxide semiconductor field effect transistor layout method according to claim 7, wherein the first source metal structure is narrowed stepwise, and the first drain metal structure is a stepped widened.
9.根据权利要求7所述的金氧半场效晶体管布局方法,还包含步骤: 形成一第二源极金属结构于该第一源极金属结构之上并与该第一源极金属结构电性连接,且于该预定轴方向该第二源极金属结构的宽度逐渐变宽;以及形成一第二漏极金属结构于该第一漏极金属结构之上并与该第一漏极金属结构电性连接,且于该预定轴方向该第二漏极金属结构的宽度逐渐变窄。 9. A metal oxide semiconductor field effect transistor layout method according to claim 7, further comprising the step of: forming a second source structure over the first metal source and the metal structure of the first source metal structure electrically connected, and the width of the second source metal structure is gradually widened in the predetermined axial direction; and forming a second drain metal drain structure over the first metal structure and the first drain metal structure is electrically connected to the predetermined axis direction and the width of the second drain metal structure is gradually narrowed.
10.根据权利要求9所述的金氧半场效晶体管布局方法,其中该第二源极金属结构是以阶梯式变窄,而该第二漏极金属结构是以阶梯式变宽。 Metal oxide semiconductor field effect transistor layout method according to claim 9, wherein the second source metal structure is a stepped narrowed, and the drain of the second metal structure is a stepped widened.
CN 200910174517 2009-09-28 2009-09-28 Metal oxide half-field effect transistor layout structure and method CN102034821B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910174517 CN102034821B (en) 2009-09-28 2009-09-28 Metal oxide half-field effect transistor layout structure and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910174517 CN102034821B (en) 2009-09-28 2009-09-28 Metal oxide half-field effect transistor layout structure and method

Publications (2)

Publication Number Publication Date
CN102034821A CN102034821A (en) 2011-04-27
CN102034821B true CN102034821B (en) 2013-03-13

Family

ID=43887472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910174517 CN102034821B (en) 2009-09-28 2009-09-28 Metal oxide half-field effect transistor layout structure and method

Country Status (1)

Country Link
CN (1) CN102034821B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107742626A (en) * 2017-09-26 2018-02-27 上海华虹宏力半导体制造有限公司 Semiconductor structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355817B2 (en) 1994-10-20 2002-12-09 株式会社デンソー Semiconductor device
CN1773704A (en) 2004-11-10 2006-05-17 台湾积体电路制造股份有限公司 A semiconductor structure for electrostatic discharge protection
DE102007046556A1 (en) 2007-09-28 2009-04-02 Infineon Technologies Austria Ag Semiconductor device with copper metallizations
CN101510559A (en) 2008-02-15 2009-08-19 联咏科技股份有限公司 Element and layout of power metal-oxide-semiconductor transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3355817B2 (en) 1994-10-20 2002-12-09 株式会社デンソー Semiconductor device
CN1773704A (en) 2004-11-10 2006-05-17 台湾积体电路制造股份有限公司 A semiconductor structure for electrostatic discharge protection
DE102007046556A1 (en) 2007-09-28 2009-04-02 Infineon Technologies Austria Ag Semiconductor device with copper metallizations
CN101510559A (en) 2008-02-15 2009-08-19 联咏科技股份有限公司 Element and layout of power metal-oxide-semiconductor transistor

Also Published As

Publication number Publication date
CN102034821A (en) 2011-04-27

Similar Documents

Publication Publication Date Title
CN1199285C (en) Semiconductor device
JP5161603B2 (en) Integrated circuit die and method of manufacturing the same
US9450091B2 (en) Semiconductor device with enhanced mobility and method
JP3136885B2 (en) Power mosfet
TWI331794B (en) Reproducible resistance variable insulating memory devices and methods for forming same
CN1297014C (en) Transistor array possessing shield electrode positioned outside of active unit array
EP0154998B1 (en) Improved structure of power supply wirings in semiconductor integrated circuit
US7217979B2 (en) Semiconductor apparatus including a radiator for diffusing the heat generated therein
US6710405B2 (en) Non-uniform power semiconductor device
CN101060120B (en) The semiconductor integrated circuit
CN1574335B (en) Semiconductor power device having a diamond shaped metal interconnect scheme
JP2973588B2 (en) Mos type semiconductor device
JP2919241B2 (en) Power supply wiring
US8541271B1 (en) Monolithic integration of multiple compound semiconductor FET devices
JP3041043B2 (en) Power mosfet transistor circuit
CN1641886A (en) Isolated high-voltage LDMOS transistor having a split well structure
CN101719487B (en) Inverted packaging device of monolithic integration switching-type regulator and its packaging method
CN101202266B (en) Chip scale package for power devices and method for making the same
JP2003152178A (en) Lateral power mosfet for high switching speed
CN101771049A (en) Real chip level package power metal oxide semiconductor field effect tube based on a bottom source electrode metal oxide semiconductor field effect tube
CN101395719B (en) Trench field plate termination for power devices
CN1767212A (en) Transistor with carbon nanotube channel and method of manufacturing the same
JP2000286387A5 (en)
CN101512759B (en) Dfn semiconductor package structure having reduced electrical resistance
US6630715B2 (en) Asymmetrical MOSFET layout for high currents and high speed operation

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted