CN102010621B - 一种气相粉体合成过程中原位包覆和表面改性的方法 - Google Patents

一种气相粉体合成过程中原位包覆和表面改性的方法 Download PDF

Info

Publication number
CN102010621B
CN102010621B CN 201010534906 CN201010534906A CN102010621B CN 102010621 B CN102010621 B CN 102010621B CN 201010534906 CN201010534906 CN 201010534906 CN 201010534906 A CN201010534906 A CN 201010534906A CN 102010621 B CN102010621 B CN 102010621B
Authority
CN
China
Prior art keywords
gas phase
modification
phase powder
coating
atomizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010534906
Other languages
English (en)
Other versions
CN102010621A (zh
Inventor
李春忠
胡彦杰
刘杰
王云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN 201010534906 priority Critical patent/CN102010621B/zh
Publication of CN102010621A publication Critical patent/CN102010621A/zh
Application granted granted Critical
Publication of CN102010621B publication Critical patent/CN102010621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种气相粉体合成过程中原位包覆和表面改性的方法。该方法在原有气相燃烧反应器基础上,通过淬火环和雾化喷嘴分别引入包覆层前躯体和表面改性溶液,将气相粉体合成、表面包覆和表面处理这三步结合在一个连续化的气相过程中,实现了气相原位包覆和改性。该方法可通过控制包覆层和改性层前躯体进料量和浓度精确控制包覆层厚度和改性接枝率,也可单独仅对气相粉体进行包覆或者改性,是一种对于气相粉体后处理的通用方法,能够用于工业化制备表面改性的二氧化钛/二氧化硅、三氧化二铁/二氧化硅、三氧化铁/二氧化钛等核壳结构的纳米粉体,具有极其广泛的工业前景。

Description

一种气相粉体合成过程中原位包覆和表面改性的方法
技术领域
[0001] 本发明涉及气相粉体生产过程中,对颗粒进行原位包覆和表面改性的方法及其在工业连续化生产中的应用。
背景技术
[0002] 气相燃烧法制备纳米颗粒的生产工艺最早在上世纪四十年代由德国Degussa公司首先开发成功,经过几十年的发展,该生产工艺逐步得到了改进,被广泛的用于炭黑、SiO2,TiO2,A1203>SnO2,Fe2O3>ZrO2 等单氧化物产品,并逐步扩展到 SiO2AiO2,1ΤΟ,ΑΤ0,V2O5/TiO2等复合氧化物以及一些非氧化物(TiN、TiB, SiC等)。这些产品的年产量可达几百万公吨,生产效率约为每天100公吨。这些纳米颗粒由于极小的粒径和极高的表面活性,必须经过包覆和表面改性才能真正得以应用。如二氧化钛,其具有很强的光催化作用,在高分子复合材料应用中,必须对其进行二氧化硅或者三氧化二铝的表面钝化处理,再进行表面疏 水处理,才能得到很好的应用。
[0003]目前,传统工艺是利用均相沉淀和溶胶-凝胶法对气相粉体进行后期表面包覆,再进行必要的表面改性处理。该方法往往将粉体制备同包覆和改性视为独立的过程,分步甚至在不同的工厂进行,得到的粉体分散性较差,加之复杂的预处理步骤,极大的增加了生产成本,限制了气相粉体的工业应用。因此,寻求气相粉体原位的气相包覆和表面改性方法具有广泛的工业化前景,是该领域急需解决的问题。
发明内容
[0004] 本发明的目的之一,是提供一种气相粉体原位包覆和表面改性相结合的方法,以克服现有技术所存在的缺陷。
[0005] 本发明的目的之二,是提供上述反应器的应用方法,即制备Y -甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)、Y-缩水甘油醚氧丙基三甲氧基硅烷(KH560)、三甲氧基-丙基硫醇硅(MPTMS)改性的核壳结构二氧化钛/ 二氧化硅、三氧化二铁/ 二氧化硅、二氧化硅/二氧化钛等纳米粉体的制备方法。
[0006] 本发明的构思是这样的:
[0007] 首先,利用燃烧法合成二氧化钛、三氧化二铁、二氧化硅等纳米颗粒,反应过程中大量放热并产生水蒸气。通过淬火环引入气相包覆层前躯体同该高温气溶胶(1000^2000oC )在后期高速均匀混合,发生水解反应生成包覆层材料,二氧化硅、二氧化钛等,并在气相粉体表面生长形成包覆层,该处反应温度控制在50(Ti00(rc,以保证前躯体反应完全;包覆完成后,核壳结构的气溶胶继续和表面改性溶液雾滴均匀混合,在高温下,雾滴气化,表面活性剂分子在颗粒表面发生缩合反应,实现粉体的原位气相表面改性。同样的方法,该表面包覆和表面改性可以单独进行,最大程度上实现了粉体表面的性能的可控。
[0008] 本发明所述的制备方法,其特征在于,包括如下步骤:
[0009] (I)合成气溶胶流体:首先,将前躯体通过燃烧装置通入高速射流火焰,反应生成气相粉体颗粒,同时产生水蒸气并放出大量热,使气相粉体颗粒成气溶胶流体状态且温度为 1000〜2000。。;
[0010] (2)表面包覆:在所述气相粉体颗粒形成的后期,利用淬火环将气态包覆层前躯体引入反应器,同所述气溶胶流体均匀混合,发生水解反应,实现原位的表面包覆;
[0011] (3)表面改性:包覆结束后,利用喷雾烧嘴将表面改性前躯体溶液雾化后
[0012] 引入反应器,同所述气溶胶流体均匀混合,表面发生缩聚反应,实现原位的表面改性。
[0013] 所述燃烧装置是气相燃烧装置、喷雾燃烧装置和固相燃烧装置(气相燃烧装置如专利 CN1884083 所示,喷雾燃烧装置如文献 Chunzhong Li, Chem. Eng. J. , 2009, 151(1-3) : 220-227 所示,固相燃烧装置如文献 Sangsun Yang, Powder Technology 197(2010) 170 - 176所示);所述气相粉体颗粒是金属氧化物或金属盐类。 [0014] 所述金属氧化物是二氧化钛、二氧化硅、三氧化二铝或三氧化二铁;所述金属盐类是磷酸钙或锰酸锂等。
[0015] 所述淬火环的内侧有均匀分布的Γ64个小孔,每个小孔的孔径为O. 2^2mm ;小孔的开孔方向与环面和半径方向的夹角分别为(Γ40°和5〜30° ;
[0016] 所述淬火环与所述燃烧装置的燃烧反应烧嘴的距离为10(T500mm,水解反应温度为 500〜1000。。。
[0017] 所述气态包覆层前躯体是低沸点的正硅酸乙酯或钛酸四异丙酯,以惰性气体为载气通入淬火环,同加速空气混合,高速喷出,出口气速为4(T200m/s。
[0018] 所述表面改性前躯体溶液为乙醇、水和表面活性剂的混合溶液,其中,乙醇和水的体积比为10 :Γ5 :1,表面活性剂在乙醇和水的混合溶剂中摩尔浓度为O. 05^1mol/l ;所述表面活性剂包括疏水型(如Y-甲基丙烯酰氧基丙基三甲氧基硅烷KH570、Y-缩水甘油醚氧丙基三甲氧基硅烷KH560等)和亲水型(如三甲氧基-丙基硫醇硅MPTMS等)两种,分别实现对材料表面的疏水或亲水控制。
[0019] 所述雾化的方式为气流雾化,雾化液滴的尺寸为5飞00 μ m ;所述雾化喷嘴与所述燃烧装置的燃烧反应烧嘴的距离为60(Tl200mm,雾化喷嘴与水平方向夹角20飞0°,缩合反应温度为5(T250°C。
[0020] 所述表面包覆的包覆层厚度为f 5. 5nm。
[0021] 所述表面改性的改性接枝率为广8%。
[0022] 本发明的有益效果如下:
[0023] 本发明在原有气相燃烧反应器基础上,通过淬火环和雾化喷嘴分别引入包覆层前躯体和表面改性溶液,将气相粉体合成、表面包覆和表面处理这三步结合在一个连续化的气相过程中,实现了气相原位包覆和改性,极大的缩短了生产周期和节约了成本,且利用该方法可以有效避免气相颗粒后期的凝聚过程,并可以通过控制包覆层前躯体和改性溶液的浓度和进料量精确控制包覆层厚度和改性接枝率,实现了材料结构和性能的控制。例如,能够用于工业化制备表面改性的二氧化钛/ 二氧化硅、三氧化二铁/ 二氧化硅、三氧化铁/ 二氧化钛等核壳结构的纳米粉体材料。另外,本方法两个后处理过程可以分开单独进行也可以连续合并进行,表现出该方法极其广泛的工业应用性和通用性。附图说明
[0024] 图I是本发明实施例所述的方法流程示意图;
[0025] 图2是实施例I产物的电镜照片;
[0026] 图3是实施例I产物的IR图谱;
[0027] 图4是实施例2产物的电镜照片;
[0028] 图5是实施例2产物的IR图谱;
[0029] 图6是实施例3产物的电镜照片;
[0030] 图7是实施例3产物的IR图谱。 具体实施方式
[0031] 下面通过实施例对本发明进行具体描述。有必要在此指出的是以下实施例只用于对本发明作进一步说明,不能理解为对本发明保护范围的限制,该领域的专业技术人员根据本发明的内容作出的一些非本质的改进和调整,仍属于本发明的保护范围。
[0032] 如图I所示,烧嘴由进前躯体的中心环和提供辅助火焰的二环和三环构成。气相、液相或者固相前躯体通过载气经中心环进入反应器,在二环和三环形成的辅助火焰中反应生成初始纳米颗粒,火焰温度为Tl。在颗粒形成后期,通过淬火环引入气相包覆层前躯体同该高温气溶胶高速均匀混合,发生水解反应生成包覆层材料,该处反应温度控制在T2,以保证前躯体反应完全;包覆完成后,核壳结构的气溶胶继续同经雾化喷嘴雾化后的表面改性溶液雾滴均匀混合,在高温下,雾滴气化,表面活性剂分子在颗粒表面发生缩合反应,实现粉体的原位气相表面改性,该处温度为T3。最终粉体由滤袋收集。
[0033] 实施例 I
[0034] 取体积比2 :1的钛酸四丁酯和乙醇均匀混合得到前躯体溶液,通过注射泵以2ml/min的速度加入温度为250°C蒸发器同I. 5m3/h空气混合,进入二环空气(lm3/h)和三环氢气(lm3/h)形成辅助燃烧火焰中,前驱体反应并形核生长成为二氧化钛纳米气相粉体颗粒,反应温度Tl为1500°C。在距烧嘴口 300mm处加入淬火环(所述淬火环的内侧有均匀分布的16个小孔,每个小孔的孔径为1_ ;小孔的开孔方向与环面和半径方向的夹角分别为20°和20° ),利用正硅酸乙酯发泡瓶(30°C ),以氮气(O. 2m3/h)为载气将气态正硅酸乙酯通过淬火环引入反应器进行水解反应,加速气体为空气(2. 5 m3/h),温度T2为700°C。接下来,在距烧嘴800mm处加入雾化喷嘴,将O. 2M的乙醇和水(体积比9 :1)的KH570溶液雾化后引入反应器进行缩合反应,温度T3为150°C。所得改性后的核壳结构Ti02/Si02粉体通过滤袋收集。由图2可知,样品TiO2核的尺寸为15nm,壳厚度为I. 7nm。图3为样品的红外谱图,3000"2800cm_1处为烃基的特征峰,1725-1705cm_1为羰基的特征峰,1400cm-1为Si-O-Si的特征峰,结果表明该方法成功地接枝了 KH570,接枝率为4%。
[0035] 实施例 2
[0036] 取5g三氯化铁溶于IOOml乙醇得到前躯体溶液,通过注射泵以lml/min的速度进入雾化喷嘴中心毛细管,雾化氧气(O. 3 m3/h)将前躯体溶液雾化为小液滴,进入到二环氧气(ImVh)和三环氢气(O. 5m3/h)形成辅助燃烧火焰中,液滴气化,前驱体反应并形核生长成为三氧化二铁纳米颗粒,反应温度Tl为1000°C。在距烧嘴口 IOOmm处加入淬火环(所述淬火环的内侧有均匀分布的64个小孔,每个小孔的孔径为O. 2mm ;小孔的开孔方向与环面和半径方向的夹角分别为0°和5° ),利用正硅酸乙酯发泡瓶(20°C),以氮气(0.2m3/h)为载气将气态正硅酸乙酯通过淬火环引入反应器进行水解反应,加速气体为空气(4.5 m3/h),温度T2为500°C。接下来,在距烧嘴600mm处加入雾化喷嘴,将O. IM的乙醇和水(体积比10 :1)的MPTMS溶液雾化后引入反应器进行缩合反应,温度T3为50°C。所得改性后的核壳结构Fe203/Si02粉体通过滤袋收集。由图4可知,样品TiO2核的尺寸为15nm,壳厚度为I. 7nm。图3为样品的红外谱图,3000〜28000^处为烃基的特征峰,2600-2550CHT1为硫醇基的特征峰,HOOcnT1为Si-O-Si的特征峰,结果表明该方法成功地接枝了 MPTMS,接枝率为2% ο
[0037] 实施例 3
[0038] 取5g三氯化铁溶于IOOml乙醇得到前躯体溶液,通过注射泵以3ml/min的速度进入雾化喷嘴中心毛细管,雾化氧气(O. 3 m3/h)将前躯体溶液雾化为小液滴,进入到二环氧
气(lm3/h)和三环氢气(lm3/h)形成辅助燃烧火焰中,液滴气化,前驱体反应并形核生长成为三氧化二铁纳米颗粒,反应温度Tl为2000°C。在距烧嘴口 500mm处加入淬火环(所述淬火环的内侧有均匀分布的4个小孔,每个小孔的孔径为2_;小孔的开孔方向与环面和半径方向的夹角分别为40°和30° ),利用正硅酸乙酯发泡瓶(50°C),以氮气(O. 3m3/h)为载气将气态正硅酸乙酯通过淬火环引入反应器进行水解反应,加速气体为空气(2.5 m3/h),温度T2为1000°C。接下来,在距淬火环1200mm处加入雾化喷嘴,将O. 5M的乙醇和水(体积比5 :1)的KH570溶液雾化后引入反应器进行缩合反应,温度T3为250°C。所得改性后的核壳结构Fe203/Si02粉体通过滤袋收集。由图6可知,样品Fe2O3核的尺寸为12nm,壳厚度为5. 5nm。图7为样品的红外谱图,SOOOlSOOcnT1处为烃基的特征峰,1725-1705cm^为羰基的特征峰,HOOcnT1为Si-O-Si的特征峰,结果表明该方法成功地接枝了 KH570,接枝率为
8% ο

Claims (10)

1. 一种气相粉体合成过程中原位包覆和表面改性的方法,其特征在于,包括如下步骤: 1)首先,将前驱体通过燃烧装置通入高速射流火焰,反应生成气相粉体颗粒,同时产生水蒸气并放出大量热,使所述气相粉体颗粒成气溶胶流体状态且温度为100(T200(TC ;所述前驱体是金属氯化物、金属硝酸盐或有机金属氧化物; 2)在所述气相粉体颗粒形成的后期,利用淬火环将气态包覆层前驱体引入反应器,同所述气溶胶流体均匀混合,发生水解反应,实现原位的表面包覆; 3)包覆结束后,利用雾化喷嘴将表面改性前驱体溶液雾化后引入反应器,同所述气溶 胶流体均匀混合,表面发生缩合反应,实现原位的表面改性。
2.根据权利要求I所述的方法,其特征在于,所述燃烧装置是气相燃烧装置、液相喷雾燃烧装置或固相燃烧装置;所述气相粉体颗粒是金属氧化物或金属盐类。
3.根据权利要求2所述的方法,其特征在于,所述金属氧化物是二氧化钛、二氧化硅、三氧化二铝或三氧化二铁;所述金属盐类是磷酸钙或锰酸锂。
4.根据权利要求I所述的方法,其特征在于,所述淬火环的内侧有均匀分布的Γ64个小孔,每个小孔的孔径为O. 2〜2mm;小孔的开孔方向与环面和半径方向的夹角分别为0〜40。和5〜30。; 所述淬火环与所述燃烧装置的烧嘴的距离为10(T500mm,所述水解反应温度为50(Tl000°C。
5.根据权利要求I所述的方法,其特征在于,所述气态包覆层前躯体是低沸点的正硅酸乙酯或钛酸四异丙酯,以惰性气体为载气通入淬火环,同加速空气混合,高速喷出,出口气速为 4(T200m/s。
6.根据权利要求I所述的方法,其特征在于,所述表面改性前躯体溶液为乙醇、水和表面活性剂的混合溶液,其中,乙醇和水的体积比为10 :Γ5 :1,表面活性剂在乙醇和水的混合溶剂中的摩尔浓度为O. 05^1mol/l ; 所述表面活性剂包括疏水型和亲水型两种,分别实现对材料表面的疏水或亲水控制。
7.根据权利要求I所述的方法,其特征在于,所述雾化的方式为气流雾化,雾化液滴的尺寸为5^500 μ m ; 所述雾化喷嘴与所述燃烧装置的烧嘴的距离为60(Tl200mm,所述雾化喷嘴与水平方向夹角20〜60°,所述缩合反应温度为5(T250°C。
8.根据权利要求6所述的方法,其特征在于,所述疏水型的表面活性剂是Y-甲基丙烯酰氧基丙基三甲氧基硅烷、Y-缩水甘油醚氧丙基三甲氧基硅烷烷,所述亲水型的表面活性剂是二甲氧基_丙基硫醇娃烧。
9.根据权利要求I所述的方法,其特征在于,所述表面包覆的包覆层厚度为广5. 5nm。
10.根据权利要求I所述的方法,其特征在于,所述表面改性的改性接枝率为广8%。
CN 201010534906 2010-11-08 2010-11-08 一种气相粉体合成过程中原位包覆和表面改性的方法 Active CN102010621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010534906 CN102010621B (zh) 2010-11-08 2010-11-08 一种气相粉体合成过程中原位包覆和表面改性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010534906 CN102010621B (zh) 2010-11-08 2010-11-08 一种气相粉体合成过程中原位包覆和表面改性的方法

Publications (2)

Publication Number Publication Date
CN102010621A CN102010621A (zh) 2011-04-13
CN102010621B true CN102010621B (zh) 2013-01-30

Family

ID=43840959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010534906 Active CN102010621B (zh) 2010-11-08 2010-11-08 一种气相粉体合成过程中原位包覆和表面改性的方法

Country Status (1)

Country Link
CN (1) CN102010621B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102558913A (zh) * 2011-12-30 2012-07-11 大连亚泰科技新材料有限公司 水镁石细化过程中的原位聚合表面处理方法
EP3484954A1 (en) * 2016-05-27 2019-05-22 Dow Global Technologies LLC Silsesquinoxane modified tio2 sol
CN106497390A (zh) * 2016-11-02 2017-03-15 常州创索新材料科技有限公司 一种降低氧阻聚紫外光固化涂料的制备方法
CN109183398B (zh) * 2018-08-15 2020-05-05 江南大学 一种具有抗菌、疏水性的可降解膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1593695A (zh) * 2004-06-23 2005-03-16 北京理工大学 原位包覆气溶胶粒子降低气溶胶灭火剂腐蚀性技术
CN1850598A (zh) * 2006-02-28 2006-10-25 华东理工大学 一种核壳式TiO2SiO2纳米复合颗粒的制备方法和设备
CN101066773A (zh) * 2007-06-11 2007-11-07 华东理工大学 一种气相法纳米氧化铝颗粒的制备方法
CN101215004A (zh) * 2008-01-18 2008-07-09 华东理工大学 一种空心球结构二氧化钛的制备方法
CN101215002A (zh) * 2008-01-18 2008-07-09 华东理工大学 一种核壳结构二氧化钛的制备方法
CN101264433A (zh) * 2008-05-06 2008-09-17 华东理工大学 一种制备纳米颗粒的气相燃烧反应器及其工业应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1593695A (zh) * 2004-06-23 2005-03-16 北京理工大学 原位包覆气溶胶粒子降低气溶胶灭火剂腐蚀性技术
CN1850598A (zh) * 2006-02-28 2006-10-25 华东理工大学 一种核壳式TiO2SiO2纳米复合颗粒的制备方法和设备
CN101066773A (zh) * 2007-06-11 2007-11-07 华东理工大学 一种气相法纳米氧化铝颗粒的制备方法
CN101215004A (zh) * 2008-01-18 2008-07-09 华东理工大学 一种空心球结构二氧化钛的制备方法
CN101215002A (zh) * 2008-01-18 2008-07-09 华东理工大学 一种核壳结构二氧化钛的制备方法
CN101264433A (zh) * 2008-05-06 2008-09-17 华东理工大学 一种制备纳米颗粒的气相燃烧反应器及其工业应用

Also Published As

Publication number Publication date
CN102010621A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
CN102010621B (zh) 一种气相粉体合成过程中原位包覆和表面改性的方法
JP2010053019A (ja) エマルション火炎噴霧熱分解法を利用するコアセラミック粒子のコーティング方法
Shen et al. A new strategy to synthesize TiO2-hollow spheres using carbon spheres as template
Guild et al. Perspectives of spray pyrolysis for facile synthesis of catalysts and thin films: An introduction and summary of recent directions
CN101784342A (zh) 具有可调节涂层的SiO2涂覆的二氧化钛颗粒的制备
CN101177245A (zh) 纳米结构氧化物粉体的制备方法
KR101282142B1 (ko) 복합 나노입자의 제조장치 및 제조방법
CN1850598B (zh) 一种核壳式TiO2/SiO2纳米复合颗粒的制备方法和设备
CN108067215A (zh) 一种锶掺杂纳米二氧化钛光催化涂层及其制备方法
CN101412592B (zh) 等离子体处理涂覆碳纳米管溶胶玄武岩纤维表面改性方法
Do Kim et al. Synthesis and characterization of titania-coated silica fine particles by semi-batch process
US20140206529A1 (en) Apparatus and method for manufacturing silica-titania catalyst
Kanno et al. Estimation of formation mechanism of spherical fine ZrO 2-SiO 2 particles by ultrasonic spray pyrolysis
CN1883786B (zh) 纳米颗粒合成方法
CN1075791C (zh) 一种纳米二氧化钛的制备方法
US20170173567A1 (en) Method of preparing selective catalytic reduction composite catalyst
CN102779986A (zh) 一种具有核壳结构的纳米复合材料的制备方法
Li et al. The efficient catalytic microsystem with halogen-free catalyst for the intensification on CO2 cycloaddition
CN104941645B (zh) 一种高性能复合光催化剂分散液的制备方法
CN102120611A (zh) 金红石型纳米二氧化钛制备方法
CN102228993B (zh) 一种具有高比饱和磁化强度的铁钴合金纳米颗粒的连续化制备方法
EP2419371B1 (en) A process and apparatus for depositing nanostructured material onto a substrate material
CN1884083B (zh) 一种纳米氧化铝空心球结构的制备方法
JPH06247712A (ja) セラミックス微粒子の製造方法及びその装置
KR20130112997A (ko) 비금속 주형 입자를 이용한 기체상 중공 나노입자의 제조장치 및 제조방법

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model