CN101942585B - 铝合金和柴油机活塞 - Google Patents

铝合金和柴油机活塞 Download PDF

Info

Publication number
CN101942585B
CN101942585B CN2010105066613A CN201010506661A CN101942585B CN 101942585 B CN101942585 B CN 101942585B CN 2010105066613 A CN2010105066613 A CN 2010105066613A CN 201010506661 A CN201010506661 A CN 201010506661A CN 101942585 B CN101942585 B CN 101942585B
Authority
CN
China
Prior art keywords
alloy
cerium
duraluminum
content
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010105066613A
Other languages
English (en)
Other versions
CN101942585A (zh
Inventor
刘德怀
杨志勇
易绿林
李世环
何德生
刘维涛
朱亿鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jiangbin Machinery Group Co Ltd
Original Assignee
Hunan Jiangbin Machinery Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Jiangbin Machinery Group Co Ltd filed Critical Hunan Jiangbin Machinery Group Co Ltd
Priority to CN2010105066613A priority Critical patent/CN101942585B/zh
Publication of CN101942585A publication Critical patent/CN101942585A/zh
Application granted granted Critical
Publication of CN101942585B publication Critical patent/CN101942585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

本发明提供一种铝合金,包括:13.1wt%~16wt%的Si;4.1wt%~5.5wt%的Cu;0.6wt%~1.1wt%的Mg;2.5wt%~3.5wt%的Ni;0.15wt%~0.3wt%的Mn;0.05wt%~0.2wt%的Ti;0~0.09wt%的Zr,Zr的含量大于0;0~0.01wt%的B,B的含量大于0;0~0.2wt%的Sc,Sc的含量大于0;0.1wt%~0.3wt%的富铈稀土,所述富铈稀土中的铈含量大于45wt%;0wt%~0.7wt%的Fe;其他杂质元素总量不超过0.15wt%,且其他单个杂质元素含量不超过0.05wt%;余量Al。本发明提供的铝合金中添加了适量的Sc和富铈稀土,并调整了合金元素的整体配比,如Si、Cu、Mg、Ni、Mn、Ti、Zr、B等合金元素的比例关系。实验结果表明,与现有技术相比,本发明提供的铝合金不但具有良好的高温性能,而且具有良好的加工性能,特别适用于制备铸造铝合金活塞。

Description

铝合金和柴油机活塞
技术领域
本发明涉及金属材料领域,特别涉及一种铝合金和柴油机活塞。
背景技术
铝-硅-铜-镁-镍系耐高温铸造合金因具有密度小、导热性能优异、减磨性高以及良好的铸造性能和机械加工性能等优点被广泛应用于电力工业、汽车制造业和航天工业领域。例如,使用该合金制造的内燃机活塞与其它材质相比具有更好的使用性能。
目前,国家对内燃机尾气的排放标准日益提高,内燃机的额定值、燃油经济性和耐久性等指标不断向强化方向发展,使内燃机热负荷不断提高,因此作为内燃机传递动力的关键活动件-活塞的服役温度也越来越高。通常,衡量铝合金活塞材料的高温性能的方法是测试其在360℃的高温抗拉强度。目前,提高铝合金活塞材料的高温性能已经成为材料工作者的一个研究方向。
提高铝合金高温性能的方法通常有三种:第一种是采用合金化技术,即通过在铝合金中添加新合金元素或者改变铝合金现有合金元素的配比关系来提高其高温性能,典型的如通过调整硅、铜、镁和镍的配比关系来利用铜和镍的固溶强化作用以及Mg2Si、CuAl2、Al3Ni等第二相粒子的沉淀强化作用来提高铝合金的高温性能;第二种是采用单晶技术或定向凝固技术使材料内形成伪单晶结构,增强铝合金材料的高温性能;第三种是采用陶瓷颗粒增强技术提高材料的高温性能。上述三种方法中,第二种和第三种方法均存在设备昂贵、工艺复杂的问题,不易在实践中推广应用。因此,合金化技术已经成为提高铝合金高温性能的的主要手段。
现有技术中,已经公开了多种可以用于制造内燃机活塞的铝合金。例如,GB/T1173中公布的合金代号为ZL109的铸造铝合金材料是目前活塞行业中最常用的材料,该材料中各元素及其重量百分比如下:11.0wt%~13.0wt%的Si,0.5wt%~1.5wt%的Cu,0.8wt%~1.3wt%的Mg,0.8wt%~1.5wt%的Ni,0.05wt%~0.2wt%的Ti,0~0.7wt%的Fe,0~0.2wt%的Zn,0~0.2wt%的Mn,0~0.01wt%的Sn,0~0.05wt%的Pb,杂质元素总量不超过1.2wt%,余量为Al。该材料在360℃时的抗拉强度值约为70MPa左右,已经逐渐不能适应内燃机活塞的更高要求
德国马勒公司生产的M142型铝合金材料中各元素及其重量百分比如下:11wt%~13wt%的Si,2.5wt%~4wt%的Cu,0.5wt%~1.2wt%的Mg,1.75wt%~3.0wt%的Ni,0~0.7wt%Fe,0.05wt%~0.2wt%的Zr,0.05wt%~0.2wt%的Ti,0.05wt%~0.18wt%的V,0~0.3wt%的Mn,0~0.3wt%的Zn,0~0.05wt%的Cr,0~0.05wt%的Pb,0~0.05wt%的Sn,0~0.01wt%的Ca,其他杂质元素不超过0.05wt%,杂质元素总量≤0.15%,余量为Al。与ZL109铸造铝合金材料相比,M142铝合金在360℃时的抗拉强度可提高至80MPa。尽管如此,上述铝合金材料依然不能满足高功率密度的柴油机活塞在高温状态所需的强度要求。
因此,需要提供一种高温抗拉强度高且加工性能好的铝合金。
发明内容
本发明的目的在于提供一种具有较高的高温抗拉强度和较好加工性能的铝合金。
为了解决以上技术问题,本发明提供一种铝合金,包括:
13.1wt%~16wt%的Si;
4.1wt%~5.5wt%的Cu;
0.6wt%~1.1wt%的Mg;
2.5wt%~3.5wt%的Ni;
0.15wt%~0.3wt%的Mn;
0.05wt%~0.2wt%的Ti;
0~0.09wt%的Zr,Zr的含量大于0;
0~0.01wt%的B,B的含量大于0;
0~0.2wt%的Sc,Sc的含量大于0;
0.1wt%~0.3wt%的富铈稀土,所述富铈稀土中的铈含量大于45wt%;
0wt%~0.7wt%的Fe;
其他杂质元素总量不超过0.15wt%,且其他单个杂质元素含量不超过0.05wt%;
余量Al。
优选的,所述铝合金包括:13.1wt%~14.5wt%的Si。
优选的,所述铝合金包括:4.5wt%~5.2wt%的Cu。
优选的,所述铝合金包括:2.5wt%~3wt%的Ni。
优选的,所述铝合金包括:0.2wt%~0.26wt%的Mn。
优选的,所述铝合金包括:0.6wt%~0.8wt%的Mg。
优选的,所述铝合金的成分为:Si:14wt%,Cu:4.7wt%,Mg:0.6wt%,Ni:2.8wt%,Zr:0.02wt%,Sc:0.01wt%,Mn:0.2wt%,Ti:0.1wt%,B:0.001wt%,富铈稀土:0.2wt%,Fe:0.5wt%,余量Al;所述富铈稀土中的铈含量为65wt%。
优选的,所述铝合金的成分为:Si:13.4wt%,Cu:5.1wt%,Mg:0.8wt%,Ni:2.6wt%,Zr:0.004wt%,Sc:0.02wt%,Mn:0.2wt%,Ti:0.09wt%,B:0.001wt%,富铈稀土为0.2wt%,Fe为0.4wt%,余量为Al;所述富铈稀土中的铈含量为65wt%。
优选的,所述铝合金的金相组织中含有细小的、均匀分布的Al4CuNi金属间化合物。
本发明还提供一种由以上任一项技术方案所述的铝合金铸造的内燃机活塞。
本发明提供的铝合金中添加了适量的Sc和富铈稀土,并调整了合金元素的整体配比,如Si、Cu、Mg、Ni、Mn、Ti、Zr、B等合金元素的比例关系。实验结果表明,与现有技术相比,本发明提供的铝合金不但具有良好的高温性能,而且具有良好的加工性能,特别适用于制备铸造铝合金活塞。
本发明的具体思路如下:
首先,本发明通过调整硅、铜和镍的含量,充分发挥铜、镍在铝基体中的固溶强化作用和热强作用,并使合金溶液保持较好的流动性,提高合金的铸造性能,同时降低合金的线膨胀系数,提高合金的高温稳定性。其中Cu、Ni和Al形成的金属间化合物Al4CuNi和Al6Cu3Ni,均匀的分布于Al基体中,能有效增加合金的高温强度。
其次,本发明还向合金中加入适量的Ti、Zr、Sc等元素,上述元素分别与铝形成Al3Ti、Al3Zr、Al3Sc等第二相粒子,通过第二相弥散强化作用和沉淀硬化作用进一步提高合金在高温下的变形抗力。
第三,本发明提供的合金中B和富铈稀土等合金元素分布于晶界上,可以起到强化晶界的作用。此外,富铈稀土的晶粒细化作用也有助于提高合金的高温强度。
最后,本发明还调整了Mn的含量,少量的Mn用于与Fe、Al和Si形成块状的AlFeMnSi化合物,不仅可以降低合金的脆性,还可提高合金的高温强度。
综上所述,在上述合金元素的综合作用下,本发明提供的铝合金不但具有较高的高温强度,同时还具有较好的铸造性和机械加工性。实验结果表明,本发明提供的铝合金不但具有较好的导热系数和线膨胀系数,而且在高温下具有较高的抗拉强度,适合用于高功率密度的柴油机活塞。
附图说明
图1为本发明实施例1制得的铝合金材料的扫描电镜图;
图2为本发明实施例1制得铝合金材料的拉伸测试曲线。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种铝合金,包括:
13.1wt%~16wt%的Si;
4.1wt%~5.5wt%的Cu;
0.6wt%~1.1wt%的Mg;
2.5wt%~3.5wt%的Ni;
0.15wt%~0.3wt%的Mn;
0.05wt%~0.2wt%的Ti;
0~0.09wt%的Zr,Zr的含量大于0;
0~0.01wt%的B,B的含量大于0;
0~0.2wt%的Sc,Sc的含量大于0;
0.1wt%~0.3wt%的富铈稀土,所述富铈稀土中的铈含量大于45wt%;
0wt%~0.7wt%的Fe;
其他杂质元素总量不超过0.15wt%,且其他单个杂质元素含量不超过0.05wt%;
余量Al。
本发明提供的铝合金中,Cu和Ni用于固溶强化合金Al基体相,本发明中选用4.1wt%~5.5wt%的Cu和2.5wt%~3.5wt%的Ni。实验结果表明,按照上述比例搭配的铜和镍可充分发挥铜、镍在铝基体中的固溶强化作用和热强作用。此外,Cu、Ni和Al形成金属间化合物Al4CuNi和Al6Cu3Ni可均匀的分布于Al基体中,有效增加合金的高温强度。本发明优选控制Cu的含量为4.5wt%~5.2wt%,更优选为4.7wt%或5.1wt%;Ni的含量优选为2.5wt%~3wt%,更优选为2.6wt%~2.8wt%。Cu和Ni含量过高则会提高合金的线膨胀系数,降低合金的高温稳定性,同时还会增加合金的热裂倾向。
本发明提供的铝合金包括13.1wt%~16wt%的硅,确定上述硅含量的目的在于:一方面可以降低合金的线膨胀系数,从而提高合金的高温稳定性;另一方面可以使合金溶液保持较好的流动性,使合金具有良好的铸造性能和机械加工性。本发明优选控制硅的含量为13.1wt%~14.5wt%,更优选为13.4wt%~14wt%,若硅含量过高,则会使合金的耐磨性过于增强,由此造成合金机械加工性能的下降,同时会降低合金的导热系数,进而影响合金的使用性能。
本发明提供的铝合金中Mg含量为0.6wt~1.1wt%,Mg与Cu配合加入合金中,形成W相,即Al4Mg5Cu4Si4,可以提高合金的高温强度和耐热性能。若镁含量超过1.1wt%时,不但对合金强度的提高作用并不明显,且会使合金脆化。本发明优选控制镁的含量为0.6wt%~0.8wt%。
本发明提供的铝合金中还包括微量的Ti、Zr和Sc。上述微量元素一方面可以分布在合金的晶体缺陷中,降低位错的畸变能,在高温下可以阻止位错运动,从而提高强度。此外,上述微量元素与铝元素还可以分别形成Al3Ti、Al3Zr、Al3Sc等第二相粒子,这些第二相粒子弥散分布可以起到沉淀硬化的作用,提高了合金在高温下的变形抗力。但是,若Ti、Zr和Sc含量过高则会增加合金的脆性。
本发明提供的铝合金中,B元素为必须组分,B与富铈稀土中的铈和镧等元素吸附于晶界上,增加了界面激活能,阻止晶界的滑移,提高晶界裂纹形成时的表面能,有效强化了晶界,提高了高温下晶界的强度。富铈稀土还起到变质作用,细化初晶硅和共晶硅,可提高合金高温强度,降低线膨胀系数。
此外,目前公知的熔炼方法在熔炼过程中都难以避免从原材料和使用的工具中带进铁元素,Fe与Al和Si形成的片状铁相AlFeSi化合物对基体起割裂作用,使合金变脆,降低合金的塑性和热稳定性,为此本发明添加0.15wt%~0.3wt%的锰来消除铁的这种不利影响,使Fe与Al、Si和Mn形成块状铁相AlFeMnSi化合物,不仅可以降低合金的脆性,还对提高合金的高温强度有益。但锰含量过高会恶化合金的铸造性能和损坏铸件的致密性,因此本发明选用适量的锰,同时控制铁的含量在0.7wt%以下。
对于上述铝合金的制备方法,可以为本领域技术人员熟知的方法,具体如将合金原料依次进行熔炼、精炼、铸造后进行热处理,本发明对此并无特别限制。
本发明还提供一种由上述铝合金铸造的柴油机活塞。
为了进一步理解本发明,下面结合实施例对本发明提供的铝合金及其制备方法进行描述。以下实施例中的结晶硅含硅98wt%以上;工业纯铝锭含铝99.6wt%以上;铝镍中间合金含镍约10wt%,其余为铝;铝铜中间合金含铜约50wt%,其余为铝;回炉料是生产过程中产生的浇口、冒口、铝屑及活塞废品等通过熔炼,自行回收的材料,本发明实施例使用的回炉料包括:13.6wt%的Si、4.2wt%的Cu、0.8wt%的Mg、2.3wt%的Ni、0.2wt%的Mn、0.1wt%的Ti、0.001wt%的B、0.001wt%的Zr、0.001wt%的Sc、0.15wt%的RE、0.4wt%的Fe和余量的Al;金属锰含锰96.5%以上;富铈混合稀土采用GB4153中的RECe-45;锆合金含锆约4wt%,其余为铝;钪合金含钪约2wt%,其余为铝。
实施例1
本实施例制备如下成分的铝合金:Si:14wt%,Cu:4.7wt%,Mg:0.6wt%,Ni:2.8wt%,Fe:0.5wt%,Zr:0.02wt%,Sc:0.01wt%,Mn:0.2wt%,Ti:0.11wt%,B:0.001wt%,富铈稀土:0.23wt%,余量Al,其制备工艺如下:
1、在中频炉中加入结晶硅、工业纯铝锭、铝镍中间合金、铝铜中间合金和回炉料进行熔炼。
2、将上述炉料熔化后升温至约600℃时,向中频炉中加入锰、铝钛硼合金、富铈稀土金属、锆合金和钪合金。
3、待上述炉料全部熔化后,升温至约780℃并用钟罩压入湖北洪湖市红梅冶金材料有限责任公司生产的红梅1号磷变质剂对合金液进行变质处理。
4、将步骤3得到的合金液倒入电阻坩埚炉中,温度降至760℃左右用钟罩压入金属镁。
5、待合金液温度达约720℃时用钟罩压入六氯乙烷精炼。
6、静置20分钟取样分析,必要时进行调料处理。
7、当合金液温度为750℃时浇入金属模中。
8、待铸件凝固后,在铸件表面温度450℃时取出铸件,进行快速冷却。
9、将铸件装入220℃的箱式电阻炉中保温8小时,进行人工时效处理。
本实施例制得的合金材料的扫描电镜图如图1所示,图中1为Al基体相,颜色略浅,2为Si相,颜色较深,3为Al4CuNi金属间化合物相,颜色较白。
将本实施例制得的合金材料制成直径φ5的标准拉伸试样,取3个拉伸试样分别在美国Instron3369力学试验机上,按GB/T4338《金属材料高温拉伸试验方法》,在360℃时做拉伸试验记录的拉伸曲线,如图2所示,测试速度1mm/min。
图2中,曲线1为试样1的拉伸曲线,抗拉强度103.7MPa,曲线2为试样2的拉伸曲线,抗拉强度95.2MPa,曲线3为试样3的拉伸曲线,抗拉强度99.3MPa。
对本实施例制备的铝合金材料进行测试,其物理性能如下:
密度:2.71(g/cm3)
导热系数:125.9(W/mk,室温~360℃)
线膨胀系数:18.14×10-6(1/K,室温~360℃)
实施例2
本实施例制备的铝合金成分如下:Si:13.4wt%,Cu:5.1wt%,Mg:0.84wt%,Ni:2.6wt%,Fe:0.46wt%,Zr:0.0042wt%,Sc:0.02wt%,Mn:0.21wt%,Ti:0.09wt%,B:0.0011wt%,RECe:0.18%,Al余量。其制备工艺与实施例1相同。
对本实施例制备的铝合金材料进行测试,其力学性能和物理性能如下:
360℃时的抗拉强度:三个试样的抗拉强度依次为94MPa,98MPa,102MPa。
密度:2.72(g/cm3)
导热系数:125.6(W/mk,室温~360℃)
线膨胀系数:18.23×10-6(1/K,室温~360℃)
比较例1
制备M142铝合金
本比较例制备的铝合金成分如下:Si:12.8wt%,Cu:4wt%,Mg:0.6wt%,Ni:2.3wt%,Fe:0.4wt%,Zr:0.12wt%,Ti:0.06wt%,V:0.1wt%,Mn:0.2wt%,Zn:0.13wt%,Cr:0.02wt%,Sn:0.03wt%,Al余量。其制备工艺如下:
1、在中频炉中加入结晶硅、工业纯铝锭、铝镍中间合金、铝铜中间合金和回炉料后进行熔炼。
2、将上述炉料熔化后升温至约600℃时向中频炉中加入金属锰、铝钛合金、锆合金、钒合金和锌合金。
3、待上述炉料全部熔化后,升温至约780℃并用钟罩压入湖北洪湖市红梅冶金材料有限责任公司生产的红梅1号磷变质剂对合金液进行变质处理。
4、将步骤3得到的合金液倒入电阻坩埚炉中,温度降至760℃用钟罩压入金属镁。
5、待合金液温度达约720℃时用钟罩压入六氯乙烷精炼。
6、静置20分钟取样分析,必要时进行调料处理。
7、当合金液温度为750℃时浇入金属模中。
8、待铸件凝固后,在铸件表面温度450℃时取出铸件,进行快速冷却。
9、将铸件装入220℃的箱式电阻炉中保温8小时,进行人工时效处理。
对比较例制备的铝合金材料进行测试,其力学性能和物理性能如下:
360℃时的抗拉强度:79.6MPa
密度:2.76(g/cm3)
导热系数:125.5(W/mk,室温~360℃)
线膨胀系数:18.58×10-6(1/K,室温~360℃)
比较例2
制备ZL109铝合金
本比较例制备的铝合金成分如下:Si:13wt%,Cu:1.4wt%,Mg:1wt%,Ni:1.3wt%,Fe:0.4wt%,Ti:0.08wt%,Mn:0.2wt%,Al余量。其制备工艺如下:
1、在中频炉中加入结晶硅、工业纯铝锭、铝镍中间合金、铝铜中间合金和回炉料后进行熔炼。
2、将上述炉料熔化后升温至600℃时向中频炉中加入金属锰和铝钛合金。
3、待上述炉料全部熔化后,升温至780℃并用钟罩压入湖北洪湖市红梅冶金材料有限责任公司生产的红梅1号磷变质剂对合金液进行变质处理。
4、将步骤3得到的合金液倒入电阻坩埚炉中,温度降至760℃用钟罩压入金属镁。
5、待合金液温度达720℃时用钟罩压入六氯乙烷精炼。
6、静置20分钟取样分析,必要时进行调料处理。
7、当合金液温度为750℃时浇入金属模中。
8、待铸件凝固后,在铸件表面温度450℃时取出铸件,进行快速冷却。
9、将铸件装入220℃的箱式电阻炉中保温8小时,进行人工时效处理。
对本比较例制备的铝合金材料进行测试,其力学性能和物理性能如下:
360℃时的抗拉强度:68.2MPa
密度:2.69(g/cm3)
导热系数:124.8(W/mk,室温~360℃)
线膨胀系数:18.43×10-6(1/K,室温~360℃)
由上述结果可知,本发明提供的铝合金在360℃的抗拉强度高于90Mpa,明显高于ZL109和M142材料,且导热系数和线膨胀系数与ZL109和M142材料相当,适合用作高功率密度的柴油机活塞。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种铝合金,其特征在于,包括:
13.1wt%~16wt%的Si;
4.1wt%~5.5wt%的Cu;
0.6wt%~1.1wt%的Mg;
2.5wt%~3.5wt%的Ni;
0.15wt%~0.3wt%的Mn;
0.05wt%~0.2wt%的Ti;
大于0~小于等于0.09wt%的Zr;
大于0~小于等于0.01wt%的B;
大于0~小于等于0.2wt%的Sc;
0.1wt%~0.3wt%的富铈稀土,所述富铈稀土中的铈含量大于45wt%;
0wt%~0.7wt%的Fe;
其他杂质元素总量不超过0.15wt%,且其他单个杂质元素含量不超过0.05wt%;
余量Al;
所述Cu、Ni和Al形成金属间化合物Al4CuNi和Al6Cu3Ni,均匀的分布于Al基体中。
2.根据权利要求1所述的铝合金,其特征在于,包括:13.1wt%~14.5wt%的Si。
3.根据权利要求1所述的铝合金,其特征在于,包括:4.5wt%~5.2wt%的Cu。
4.根据权利要求1所述的铝合金,其特征在于,包括:2.5wt%~3wt%的Ni。
5.根据权利要求1所述的铝合金,其特征在于,包括:0.2wt%~0.26wt%的Mn。
6.根据权利要求1所述的铝合金,其特征在于,包括:0.6wt%~0.8wt%的Mg。
7.根据权利要求1所述的铝合金,其特征在于,其成分为:Si:14wt%,Cu:4.7wt%,Mg:0.6wt%,Ni:2.8wt%,Zr:0.02wt%,Sc:0.01wt%,Mn:0.2wt%,Ti:0.1wt%,B:0.001wt%,富铈稀土:0.2wt%,Fe:0.5wt%,余量Al;所述富铈稀土中的铈含量为65wt%。
8.根据权利要求1所述的铝合金,其特征在于,其成分为:Si:13.4wt%,Cu:5.1wt%,Mg:0.8wt%,Ni:2.6wt%,Zr:0.004wt%,Sc:0.02wt%,Mn:0.2wt%,Ti:0.09wt%,B:0.001wt%,富铈稀土为0.2wt%,Fe为0.4wt%,余量为Al;所述富铈稀土中的铈含量为65wt%。
9.由权利要求1~8任意一项铝合金铸造的柴油机活塞。
CN2010105066613A 2010-10-11 2010-10-11 铝合金和柴油机活塞 Active CN101942585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105066613A CN101942585B (zh) 2010-10-11 2010-10-11 铝合金和柴油机活塞

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105066613A CN101942585B (zh) 2010-10-11 2010-10-11 铝合金和柴油机活塞

Publications (2)

Publication Number Publication Date
CN101942585A CN101942585A (zh) 2011-01-12
CN101942585B true CN101942585B (zh) 2012-05-09

Family

ID=43434789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105066613A Active CN101942585B (zh) 2010-10-11 2010-10-11 铝合金和柴油机活塞

Country Status (1)

Country Link
CN (1) CN101942585B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937767B (zh) * 2017-12-28 2019-07-26 苏州仓松金属制品有限公司 一种新型高性能铝合金材料及其制备方法
CN108262576B (zh) * 2018-01-26 2020-10-13 江苏豪然新材料有限公司 铝合金焊丝及其制造方法
CN109797302A (zh) * 2018-12-10 2019-05-24 昆山市超群金属制品有限公司 一种铝棒免均质的方法
CN109355534A (zh) * 2018-12-14 2019-02-19 广东省海洋工程装备技术研究所 一种多元共晶Al-Si合金材料及其制备方法和活塞
CN110129631B (zh) * 2019-05-24 2020-08-11 西安康博新材料科技有限公司 一种内燃机用高强韧耐热铝合金材料及其制备方法
CN111304500B (zh) * 2020-04-10 2021-12-17 浙江大学宁波理工学院 一种用于高功率密度活塞的铸造铝合金及其制备方法
CN113897520A (zh) * 2020-07-06 2022-01-07 济南科为达新材料科技有限公司 发动机活塞用高强耐热铸造铝硅合金
CN114892047A (zh) * 2022-05-09 2022-08-12 安徽省恒泰动力科技有限公司 一种新型内燃机铝活塞材料及其制备方法
CN116516220B (zh) * 2023-04-21 2024-06-21 哈尔滨工业大学 一种镧微合金化的高硅铝合金变质细化和除气熔炼方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3619181A (en) * 1968-10-29 1971-11-09 Aluminum Co Of America Aluminum scandium alloy
SU1573044A1 (ru) * 1988-06-06 1990-06-23 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Сплав на основе алюмини
US5162065A (en) * 1989-02-13 1992-11-10 Aluminum Company Of America Aluminum alloy suitable for pistons
WO1996010099A1 (en) * 1994-09-26 1996-04-04 Ashurst Technology Corporation (Ireland) Limited High strength aluminum casting alloys for structural applications
AT412726B (de) * 2003-11-10 2005-06-27 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh Aluminiumlegierung, bauteil aus dieser und verfahren zur herstellung des bauteiles
DE102007033827A1 (de) * 2007-07-18 2009-01-22 Technische Universität Clausthal Aluminium-Gusslegierung und deren Verwendung
CN101638746A (zh) * 2009-08-28 2010-02-03 江苏万里活塞轴瓦有限公司 低塑性钪铝合金活塞材料配比及熔炼工艺

Also Published As

Publication number Publication date
CN101942585A (zh) 2011-01-12

Similar Documents

Publication Publication Date Title
CN101942585B (zh) 铝合金和柴油机活塞
CN109182854B (zh) 一种1GPa高强度铝基轻质中熵合金及其制备方法
CN102912196B (zh) 一种铝硅镁系铸造铝合金及其制备方法
CN106756319A (zh) 一种用于制备高强高塑铝基复合材料的铝合金和铝基复合材料
KR20090063173A (ko) 티타늄 알루미나이드 합금
WO2006095999A1 (en) Mg alloys containing misch metal, manufacturing method of wrought mg alloys containing misch metal, and wrought mg alloys thereby
CN110592444A (zh) 一种700-720MPa强度耐热高抗晶间腐蚀铝合金及其制备方法
CN106553008A (zh) 一种稀土掺杂改性铝合金焊丝及其制备方法
CN110592445A (zh) 720-740MPa冷挤压Al-Zn-Mg-Cu-Ti铝合金及制备方法
KR20240063025A (ko) 열처리 프리 다이 캐스팅 알루미늄 합금, 그 제조 방법 및 응용
CN102002617A (zh) 汽车用铸造铝合金及其制备方法
CN113215452A (zh) 一种Al-Si-Fe系合金材料及其制备方法
CN114231798A (zh) 一种耐高温耐磨铝合金材料及其制备方法与应用
CN101857934A (zh) 一种耐热镁合金及其制备方法
CN102912197A (zh) 一种铝硅镁系铸造铝合金及其制备方法
CN113564415B (zh) 一种铜镍锡硅合金及其制备方法和应用
CN101818293B (zh) 一种耐热镁合金
CN101985715B (zh) 高性能铸造镁合金及其制备方法
CN111979455B (zh) 一种压铸铝合金及其制备方法和应用
CN109161767B (zh) 一种含w相的抗蠕变性能镁合金及其制备方法
CN104561717A (zh) 高性能耐热铸造镁合金及其制备方法
CN113136512B (zh) 通过轧制和预压缩提高镁合金高温蠕变性能的加工方法
CN110106407B (zh) 一种含Zn的高强度铝基轻质中熵合金及其制备方法
CN111575549A (zh) 一种石墨烯增强过共晶铝硅合金及其制备方法
KR101646267B1 (ko) 내크리프 특성이 우수한 중력주조용 내열 마그네슘 합금

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant