CN101936619B - 一种太阳能热泵系统及其装置 - Google Patents
一种太阳能热泵系统及其装置 Download PDFInfo
- Publication number
- CN101936619B CN101936619B CN 201010274118 CN201010274118A CN101936619B CN 101936619 B CN101936619 B CN 101936619B CN 201010274118 CN201010274118 CN 201010274118 CN 201010274118 A CN201010274118 A CN 201010274118A CN 101936619 B CN101936619 B CN 101936619B
- Authority
- CN
- China
- Prior art keywords
- heat
- exchange module
- solar
- thermal collector
- heat exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances   O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 152
- 238000001816 cooling Methods 0.000 claims abstract description 65
- 230000000875 corresponding Effects 0.000 claims description 8
- 238000009413 insulation Methods 0.000 claims description 8
- 230000001105 regulatory Effects 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 abstract description 22
- 230000001932 seasonal Effects 0.000 abstract description 2
- 239000003507 refrigerant Substances 0.000 description 38
- 238000005057 refrigeration Methods 0.000 description 23
- 239000007788 liquid Substances 0.000 description 22
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 10
- 239000012530 fluid Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004321 preservation Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000000903 blocking Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001678 irradiating Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003020 moisturizing Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000000153 supplemental Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 230000003313 weakening Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Abstract
本发明公开了一种太阳能热泵系统,其特征在于:太阳能集热器可从支架中拉出伸展或收纳设置在支架内;太阳能集热器通过循环泵与置于蓄热水箱的热交换器形成换热回路;压缩机出来的管路与置于蓄热水箱内的室外水冷换热器的进口连接;或者压缩机出来的管路与太阳能集热器的换热介质入口连接,太阳能集热器的换热介质出口与室外换热模块连接。本发明优点是:采用抽屉式的太阳能集热模块,与热泵原有的室外风冷换热器联合控制,太阳能集热器可以收缩并调节吸热面角度,可以有效的随地区季节变化调节所需要的热量,实现冬天供暖夏天制冷的功能。另外系统设置多种工作模式,可以全面的为用户提供全方位的运行模式,满足客户在不同时间不同的需求。
Description
—种太阳能热泵系统及其装置
技术领域
[0001] 本发明涉及一种热泵系统,具体为一种太阳能热泵系统及其装置。
背景技术
[0002] 将太阳能与热泵结合起来,使热泵系统能同时获得太阳能和空气能,可以有效地节约能源。现有技术中,将太阳能与热泵结合的思路多是将蒸发器与集热器做成一体机。
[0003] 专利申请号为CN200710190062.3,专利名称为集热蓄能蒸发一体化太阳能热泵系统的中国发明专利,提供的技术方案中,集热蓄能蒸发一体化设计的蒸发器采用蒸发冷媒管与集热管并联连接,热泵系统只能提供热水和供暖,但无法实现夏季制冷。
[0004] 专利申请号为CN00137579.2,专利名称为集热器蓄热器蒸发器三位一体太阳能热泵的中国发明专利提供的技术方案中,是将蒸发管与漫发射板结合在一起,同时吸收太阳能与空气能的热量。但该系统同样无法兼顾夏季制冷。
[0005] 因为上述两个专利都没有区分工质集热量与蒸发吸热量在数量与等级的不同,在寒冷的季节里,工质的蒸发甚至会造成太阳能集热量的散失,将大大降低热泵系统的能效。
[0006] 专利申请号为CN02117298,专利名称为太阳能热泵空调系统和太阳能+空气源热泵空调系统的中国发明专利的技术方案中将室外空气换热器与太阳能换热器直接串联,制冷剂必须与室外空气进行强制对流换热,在气温很低的季节,会降低系统的蒸发温度,削弱太阳能换热器的效果。此外该发明专利还采用在室外空气换热器上设不透光的遮挡板或可拆卸的遮阳罩的方法来避免夏季吸热。此方法会给用户使用带来很多麻烦,且遮挡的可靠性需要时常维护。
[0007] 专利申请号为CN200610114393.4,专利名称为多热源多功能太阳能热泵的中国发明专利提供的技术方案中,集热器与制冷系统相连,带室内外两个水箱来蓄热;热泵供暖热源采用空气能与太阳能混合,夏季制冷系统制冷,同时将产生的冷凝废热用水冷冷凝器回收送入室外水箱储存。集热器直接给室内水箱供热,制取热水;或者制冷系统单独制冷,太阳能制热水直接送入室内水箱。春秋季太阳能制热水为主,不足时用热泵制热;冬季制热时,通过室外水冷换热器吸取水箱热量,或通过室外空冷器吸收空气中的热量。但是上述技术方案不能同时使用太阳能和空气能这两种热源。
[0008] 专利申请号为CN200610114394.9,专利名称为:光伏太阳能热泵多功能一体化系统的中国发明专利申请提供的技术方案是在光伏电池板下面设一个PV/T蒸发器,与风冷冷凝器并联作为辅助补充热源,但是此供热方法同样存在没有同时使用太阳能和空气能这两种热源的不足。
[0009] 专利申请号为CN200510079955.1,专利名称为太阳能热泵及使用该热泵的冬夏两用空调系统的中国发明专利申请提供的技术方案为:包括依次串接的蒸发器、压缩机、冷凝器和膨胀阀,在蒸发器和压缩机之间依次串接单向阀和太阳能热水器,太阳能热水器是由太阳能热水箱、第二循环泵和太阳能集热器依次串联组成的回路,单向阀的出液端与太阳能热水箱内的盘管的进液端相连,太阳能热水箱内的盘管的出液端与压缩机的进液端相连。冬夏两用空调系统包括:依次串接的能量采集装置、太阳能热泵和散热装置。该太阳能热泵充分利用了太阳能,大大降低了热泵中用电大户压缩机的用电负荷,使热泵及使用该热泵的冬夏两用空调系统的耗电量大大降低,从而节约了能源。但是蒸发器中制冷剂吸收水箱中的热量来进行热泵循环会出现不匹配的情形,即当太阳能充足的时候,水箱温度越高,蒸发温度越高,可能造成蒸发压力过高的问题。
[0010] 另外,在春、秋、冬季使用的太阳能热利用系统,其太阳能集热器的理想方位角为(-10° ,10° ),最佳方位角为0° ,即将集热板朝向正南;夏季,平板型集热器方位角的变化对集热器上太阳辐射量的影响因倾斜角β而不同。当0° < β <60°,平板型太阳集热器的理想方位角范围(-35°,10° ),当60° < β <90°,平板型太阳集热器的理想方位角范围是(-60°,45° )。经计算分析得知,一年中平板型集热器最佳倾角及集热器表面的最大月平均日辐射量变化均很大,集热器最佳倾角的确定要根据系统具体应用目的而定。一般而言,吉林地区全年应用的太阳能系统应尽量使平板型集热器的倾角在(30°,60° )范围内。春、夏、秋季使用的太阳能热利用系统应在(15° ,30° )范围内,冬季使用的应在(55° ,75° )。而现有的太阳能热泵集热系统无法根据地区的变化来调整集热器表面的倾斜角,更无法根据具体工况的需要调整太阳能吸热量。
[0011] 由于现有技术存在以上所述的众多不足,因此需要改进。
发明内容
[0012] 针对上述现有技术存在的不足,本发明的目的是提供一种可以充分利用太阳能,并且可以根据不同季节及用户需求进行调节的太阳能热泵系统。
[0013] 本发明的另一目的是提供一种可以伸缩调节太阳能吸热的太阳能集热模块。
[0014] 为了实现上述目的,本发明所采用的技术方案是:太阳能热泵系统,包括压缩机、太阳能换热模块、室外换热模块和室内换热模块,压缩机与太阳能换热模块连接,太阳能换热模块与室外换热模块连接,室外换热模块与室内换热模块连接,室内换热模块与压缩机连接形成一个循环回路;所述的压缩机与室外换热模块之间设置有第一分支管路连接,太阳能换热模块与室内换热模块之间设置有第二分支管路连接;所述的太阳能换热模块包括太阳能集热器和支架,太阳能集热器可在支架内伸展或收纳的活动设置在支架内。
[0015] 所述的太阳能换热模块还包括蓄热水箱、热交换器和室外水冷换热器;热交换器置于蓄热水箱中,太阳能集热器通过循环泵与热交换器形成换热回路;室外水冷换热器置于蓄热水箱内,压缩机出来的管路与室外水冷换热器的进口连接,室外水冷换热器的出口通过管路与室外换热模块连接,室外换热模块与室内换热模块连接。
[0016] 所述的压缩机出来的管路与太阳能集热器的换热介质入口连接,太阳能集热器的换热介质出口与室外换热模块连接。
[0017] 所述的室外换热模块与室内换热模块之间设置有换热水箱,在换热水箱内设置有第二水冷换热器,室外换热模块出来的管路与第二水冷换热器入口连接,第二水冷换热器的出口通过管路与室内换热模块连接。
[0018] 所述的第二水冷换热器的出口与压缩机之间设置有第五分支管路连接。
[0019] 所述的蓄热水箱内设置有辅助电加热器;所述的室内风冷换热器上设置有室内电加热器。[0020] 太阳能集热模块,包括太阳能集热器和支架,在支架内最少设有一带滑槽的空腔,在太阳能集热器上设置有与滑槽相应的导轨,太阳能集热器通过相配合的滑槽和导轨活动设置在空腔内。
[0021] 所述的空腔在支架的四面分层的可以设置为一个或一个以上,在空腔内分别活动设置有相应的太阳能集热器。
[0022] 所述的太阳能集热器的外侧设置有两可调节高低的支撑杆,在太阳能集热器的内侧边缘设置有可调整角度的铰链球,铰链球卡在空腔的开口处。通过调节支撑杆的高低,可以360度的调节太阳能集热器的倾斜度。
[0023] 所述的太阳能集热器的导轨上设置有放置软管的管槽。支架内空腔的四周设置有隔热板,在空腔上端的隔热板上安装原有热泵的室外机,包括压缩机、储液器、气液分离器、室外风冷换热器等以节省安装空间。
[0024] 采用上述结构后,本发明和现有技术相比所具有的优点是:采用抽屉式的太阳能集热模块,与热泵原有的室外风冷换热器联合控制:在冬季有太阳但气温低于_15°C时,太阳能集热器单独作为热泵循环的蒸发器;若气温高于-15°C时,制冷剂顺次流经室外换热模块和太阳能集热模块,逐步提高温度,提升热泵循环的蒸发温度;在冬季没有太阳且气温高于-15°C时,室外风冷换热器单独用作蒸发器吸收空气能;在夏季将太阳能集热模块收进抽屉式结构中,制冷剂不从外界环境吸热,此时室外风冷换热器作为冷凝器排出室内多余的热量。设置多种工作模式,可以全面的为用户提供全方位的运行模式,满足客户在不同时间不同的需求。
附图说明
[0025] 下面结合附图和实施例对本发明进一步说明。
[0026] 图1是本发明太阳能热泵系统的实施例1的系统原理图;
[0027] 图2是本发明太阳能热泵系统的实施例2的系统原理图;
[0028] 图3是本发明的太阳能集热模块的立体结构图;
[0029] 图4是本发明的太阳能集热模块的右视图;
[0030] 图5是本发明的太阳能集热模块的局部剖视图;
[0031] 图6是本发明的太阳能集热模块中的太阳能集热器的立体结构图。
具体实施方式
[0032] 以下所述仅为本发明的较佳实施例,并不因此而限定本发明的保护范围。
[0033] 实施例1
[0034] 太阳能热泵系统,如图1所示,包括压缩机1、室外换热模块13、换热水箱30、室外换热模块13、室内换热模块18以及太阳能集热模块5。其中,室外换热模块13可以是室外风冷换热器,室内换热模块18可以是室内风冷换热器。压缩机I与四通阀2连接,四通阀2经气液分离器3后与压缩机I连接形成一个循环回路;压缩机I出来的管路经过四通阀2与太阳能集热模块5连接;所述的太阳能集热模块包括太阳能集热器5,四通阀2出来的管道与太阳能集热器35的换热介质入口连接,太阳能集热器35的换热介质出口与室外换热模块13连接。太阳能集热器35与集热换热器做成一体;这样的可以有效的直接利用太阳能集热器吸收的热能,相对用如通过蓄热水箱等其他换热介质二次换热冷媒换热而言,可以有效的减少热能的损失。太阳能集热器35与室外换热模块13连接,室外换热模块13通过经储液器15后与换热水箱30内的第二水冷换热器32连接,第二水冷换热器32与室内换热模块18连接,室内换热模块18出来的管路与四通阀2连接。
[0035] 在四通阀2与太阳能集热模块5之间设置有第一电磁阀4,太阳能集热模块5与室外换热模块13之间设置有第三电磁阀11。在四通阀2与第三电磁阀11之间设置有带有第七电磁阀21的第一分支管路连接。室外换热模块13通过储液器15与室内换热模块18连接,太阳能集热模块5与储液器15之间通过带有第二电磁阀10的第二分支管路连接。储液器15与四通阀2之间通过带有第十电磁阀26、第十一电磁阀33和第十三电磁阀29串接的的第三分支管路连接。在储液器15与室内换热模块18之间设置有换热水箱30,在换热水箱30内设置有第二水冷换热器32,室外换热模块13经储液器15通过管路与第二水冷换热器32的入口连接,第二水冷换热器32的出口通过管路与室内换热模块18连接。在储液器15与第二水冷换热器32之间的管路上设置有第二电子膨胀阀17,在第二电子膨胀阀17与第二水冷换热器32之间的管路上设置有第十四电子膨胀阀44,在第二水冷换热器32与室内换热模块18之间的管路上设置有第三电子膨胀阀27。储液器15与第二水冷换热器32之间可以设置有带有第十电磁阀26的第四分支管路与第二水冷换热器32连接。第二电子膨胀阀17与第三电子膨胀阀27之间可以设置有带有第十一电磁阀33的第六分支管路连接。第二水冷换热器32与室内换热模块18之间可以设置有带有第十二电磁阀28的第七分支管路连接。第二水冷换热器32与四通阀2之间设置有带有第十二电磁阀28和第十三电磁阀29的第五分支管路连接。在换热水箱30内设置有水箱辅助电加热器31,以对水箱内的温度进行必要的调节。在室内换热模块18内设置有室内电加热器24,以在需要时给室内提供暖气。在换热介质出口与室外换热模块之间设置了第三电磁阀11。太阳能集热模块5包括可以收纳太阳能集热器在其内的支架34和太阳能集热器35,太阳能集热器35活动的设置在支架34上,太阳能集热器35可在支架34内伸展出来或者收纳于支架之内。
[0036] 太阳能集热模块,如图3〜6所示,包括太阳能集热器35和支架34,在支架34内最少设有一两边带滑槽37的空腔,在太阳能集热器35上对两侧面设置有与滑槽相应的导轨43,太阳能集热器35通过相配合的滑槽37和导轨43活动设置在空腔内。太阳能集热器35可以随意拉出或者收纳于空腔内,可以根据具体换热要求来调整太阳能集热器35的吸热面积,从而调整太阳能吸热量。空腔可以在支架34的四面分层的设置有四个,每个空腔内分别活动设置有相应的太阳能集热器35。一般来说,只需要在支架34的三面分层设置有空腔,空腔内分别活动设置有相应的太阳能集热器35,因为其中的一面为背阳面,太阳照射时间非常短。在太阳能集热器35的外侧设置有两可以调节高低的支撑杆36,在太阳能集热器35的内侧边缘设置有可调整角度的铰链球41,铰链球41可以卡在空腔的开口处。通过调节两个支撑杆36的高低,可以O〜75°的调节太阳能集热器35的倾斜度,这样能够调整太阳能集热器35接受太阳的照射角度,最大程度的接受太阳光的照射。太阳能集热器35通过两支撑杆36的高度调节最佳在15〜75°内接收太阳光的照射。支撑杆36上可以设置有锁紧旋钮46。在太阳能集热器35的吸热表面设置有选择性吸收涂层,对太阳辐射波段具有高的吸收率和低的反射率,且在工作温度下有低的发射率。太阳能集热器35的两侧导轨43内侧设置有下凹的放置水管的管槽45。管槽45内安放连接太阳能集热器35内盘管的软管(橡胶、金属等),以便于可随太阳能集热器35运动。软管的长度不少于集热平板的边长。每层太阳能集热器35之间用软管按一定的方式串联、并联或混联连接。在太阳能集热器35的外侧面板上安装有拉栓40,以便于将太阳能集热器35从支架34内的空腔内拉出。
[0037] 在支架34内空腔的四周(即拉栓40所在的面板也是隔热板)设置有隔热板38,在隔热板38采用足够厚度的绝热材料制成。太阳能集热模块5与室外换热模块13及压缩机I可做成一个一体化组合体,即在隔热板38上安装热泵机组,以节省安装空间。在制冷循环运行时,太阳能集热器35可以收进室外换热模块13及压缩机I之下的支架34内的空腔内,且在太阳能集热器35和压缩机I之间有良好的隔热层38。在热泵循环运行时,太阳能集热器35可以拉出来以吸收太阳能。以上所述的太阳能集热器35可以为太阳能平板集热器。
[0038] 本实施例的工作过程在不同气候条件和用户需求下可以按以下不同的工作模式运行:
[0039] (I)单独制冷模式
[0040] 单独制冷按单独风冷制冷模式运行,此时第一电磁阀4关闭,太阳能集热模块内的所有太阳能集热器35收回支架34的空腔中。室内换热模块18吸收室内的热量,并通过室外换热模块13排到室外空气当中。在本单独制冷模式中,制冷剂流向依次为压缩机1、四通阀2、第七电磁阀21、第三电磁阀11、室外换热模块13、储液器15、第十电磁阀26、第十一电磁阀33、第三电子膨胀阀27、室内换热模块18、第六电磁阀19、四通阀2、气液分离器3、最后是压缩机I,此制冷剂流向记为制冷剂第一流向。
[0041] (2)制冷兼制热水模式
[0042] 第一电磁阀4关闭,将太阳能集热模块5中的所有太阳能集热器35收回支架34的空腔中。
[0043] A、当换热水箱30中的水温低于设定值(可以是55°C )时,室外换热模块13的管路上的第三电磁阀11关闭,制冷剂通过室外换热模块13将从室内换热模块18吸收的热量传递给换热水箱30中的水,此工作模式制冷剂流向为压缩机1、四通阀2、第七电磁阀21、第二电磁阀10、储液器15、第十电磁阀26、第十四电磁阀44、第二水冷换热器32、第三电子膨胀阀27、室内换热模块18、第六电磁阀19、四通阀2、气液分离器3、最后进入压缩机1,此制冷剂流向记为制冷剂第二流向。在上述制冷过程中,有效回收利用了制冷剂从热泵机组带出的热量,提高了能源的利用率和空调制冷的经济性。
[0044] B、当换热水箱30中的水温高于设定值(可以为55°C )时,制冷剂在室外换热模块13的管路中进行制冷循环,制冷剂流向为上述的制冷剂第一流向。
[0045] (3)单独供热模式
[0046] 单独供热模式按单独太阳能或空气源供热或同时太阳能及空气源模式运行:
[0047] A、当太阳充足,且室外温度高于设定值(可以设为_15°C )时,将太阳能集热器35从支架34的空腔中拉出展开并根据季节和所在地理位置调整到最佳倾角,室外换热模块13也同时受控启动,制冷剂同时从室外空气和太阳能集热器35中吸热,进行供暖循环。此模式的制冷剂流向为压缩机1、四通阀2、第六电磁阀19、室内换热模块18、第三电子膨胀阀
27、第十一电磁阀33、第十电磁阀26、储液器15、室外换热模块13、第三电磁阀11、太阳能集热器35、第一电磁阀4、四通阀2、气液分离器3、最后进入压缩机1,此制冷剂流向记为制冷
剂第二流向。
[0048] B、当太阳充足,且室外空气的温度低于设定值(可以设置为_15°C )时,室外换热模块13关闭,制冷剂从太阳能集热器35中吸收热量,进行供暖循环。制冷剂流向为压缩机1、四通阀2、第六电磁阀19、室内换热模块18、第三电子膨胀阀27、第十一电磁阀33、第十电磁阀26、储液器15、第二电磁阀10、太阳能集热模块5、第一电磁阀4、四通阀2、气液分离器
3、最后进入压缩机I,此制冷剂流向记为制冷剂第四流向。
[0049] C、当无太阳,且室外空气温度高于设定值(可以设置为_15°C )时,供暖循环工质的吸热源为室外空气。制冷剂流向为压缩机1、四通阀2、第六电磁阀19、室内换热模块18、第三电子膨胀阀27、第十一电磁阀33、第十电磁阀26、储液器15、室外换热模块13、第三电磁阀11、第九电磁阀21、四通阀2、气液分离器3、最后进入压缩机I,此制冷剂流向记为制冷剂第五流向。
[0050] D、当无太阳,且室外空气温度低于设定值(可以设为_15°C)时,室内换热模块18内的室内电加热器24启动,此时室内机类似电暖器工作。
[0051] (4)单独制热水模式
[0052] 单独制热水模式按单独太阳能或空气源供热或同时太阳能及空气源模式运行。
[0053] A、当太阳充足,且室外温度高于设定值(可以设置为_15°C )时,将太阳能集热器35从支架34的空腔中拉出展开并根据季节和所在地理位置调整到最佳倾角,室外换热模块13也同时受控启动,制冷剂同时从室外空气和太阳能集热器中吸热。制冷剂流向为压缩机1、四通阀2、第十三电磁阀29、第十二电磁阀28、第二水冷换热器32、第十四电磁阀44、第二电子膨胀阀17、储液器15、室外换热模块13、第三电磁阀11、太阳能集热器35、第一电磁阀4、四通阀2、气液分离器3、最后进入压缩机1,此制冷剂流向记为制冷剂第六流向。
[0054] B、当太阳充足,室外空气的温度低于设定值(可以设置为_15°C )时,室外换热模块13关闭,制冷剂从将太阳能集热器35中吸收热量。制冷剂流向为压缩机1、四通阀2、第十三电磁阀29、第十二电磁阀28、第二水冷换热器32、第十四电磁阀44、第二电子膨胀阀17、储液器15、第二电磁阀10、太阳能集热器35、第一电磁阀4、四通阀2、气液分离器3、最后进入压缩机1,此时制冷剂流向为制冷剂第七流向。
[0055] C、当无太阳,且室外空气温度高于设定值(可以设置为_15°C )时,供暖循环工质的吸热源为室外空气。制冷剂流向为压缩机1、四通阀2、第十三电磁阀29、第十二电磁阀
28、第二水冷换热器32、第十四电磁阀44、第二电子膨胀阀17、储液器15、室外换热模块13、第三电磁阀11、第七电磁阀21、四通阀2、气液分离器3、最后进入压缩机1,此制冷剂流向记为制冷剂第八流向。
[0056] D、当无太阳,且室外空气温度低于_15°C (设定值)时,在换热水箱30内设置有水箱辅助电加热器31启动,此时类似电热水器工作。
[0057] 上述制冷、供暖和制热水循环中各个控制温度的设定值,可以根据不同的地区和用户的使用要求进行调节。
[0058] 实施例2
[0059] 太阳能热泵系统,如图2所示,包括压缩机1、太阳能集热模块5、室外换热模块13和室内换热模块18。压缩机I出来的管路可以先与四通阀2连接,四通阀2出来的管路经气液分离器3后与压缩机I连接。太阳能集热模块5包括蓄热水箱6和室外水冷换热器8,室外水冷换热器8置于蓄热水箱6内,四通阀2出来的管路与室外水冷换热器8连接。在蓄热水箱6内可以设置有辅助电加热器20,以解决长时间无太阳时蓄热水箱6储存的热量不够的缺点。太阳能集热模块5包括太阳能集热器35和热交换器7,热交换器7置于蓄热水箱6中,太阳能集热器35通过循环泵9与热交换器7连接形成换热回路。太阳能集热器35吸收的热量通过热交换器7与蓄热水箱6内的水等传热介质进行热交换,蓄热水箱6内传热介质再通过室外水冷换热器8进行热交换。在四通阀2与室外水冷换热器8之间的管路上设置有第一电磁阀4。室外水冷换热器8出来的管路与室外换热模块13连接,室外换热模块13通过经储液器15后与室内换热模块18连接,室内换热模块18出来的管路与四通阀2的连接。在室外水冷换热器8与室外换热模块13之间的管路上依次设置有第九电磁阀23和第三电磁阀11。在四通阀2与第一电磁阀4之间的管路上设置有与带有第七电磁阀21的第一分支管路与第九电磁阀23与第三电磁阀11之间的管路连接,第一分支管路使四通阀2出来的管路可以直接与室外换热模块13进行连接。在室外水冷换热器8的盘管中设置有带有第八电磁阀22的第八分支管路与第九电磁阀23与第三电磁阀11之间的管路连接,这样可以通过第八分支管路的选择来改变室外水冷换热器8的热交换效果。在第九电磁阀23与第三电磁阀11之间的管路上设置有带有膨胀阀12的第九分支管路与室外换热模块13连接。室外换热模块13与储液器15之间设置有第四电磁阀14,在第九电磁阀23与第三电磁阀11之间的管路上设置有带有第二电磁阀10的第二分支管路与第四电磁阀14和储液器15之间的管路连接。储液器15与室内换热模块18之间设置有第二电子膨胀阀17,室内换热模块18与四通阀2之间可以设置有第六电磁阀19,在储液器15与第二电子膨胀阀17之间设置有带有第五电磁阀16的第十分支管路与四通阀2连接。在室内换热模块18上可以设置有室内电加热器24,以给室内提供暖气。本实施例中太阳能集热模块5的构造与实施例1相同。
[0060] 本实施例的太阳能热泵系统的工作过程在不同气候条件和用户需求下可以按以下不同的工作模式运行:
[0061] (I)单独制冷模式
[0062] 夏季单独制冷按单独风冷制冷模式运行,此时太阳能集热模块5所有太阳能集热器35收回支架中。此模式分两种情况:一种情况是,当室外气温小于设定值(可以设为350C )时或蓄热水箱6中的水温超过设定值(可以设为40°C )时,室内换热模块18吸收室内的热量,并通过室外换热模块13排到室外空气当中。制冷剂流向为压缩机1、四通阀2、第六电磁阀21、第三电磁阀11、室外换热模块13、第四电磁阀14、储液器15、第二电子膨胀阀17、室内换热模块18、第六电磁阀19、四通阀2、气液分离器3,最后进入压缩机1,此制冷剂记为制冷剂第一流向。另一种情况是,当室外气温大于设定值(可以设为35°C)时,且蓄热水箱中的水温低于设定值(可以设为35°C )时,室内源换热模块16吸收室内的热量,并通过室外水冷换热器8排到蓄热水箱6储存的水中,制冷剂流向为压缩机1、四通阀2、第一电磁阀4、室外水冷换热器8、第九电磁阀23、第二电磁阀10、储液器15、第二电子膨胀阀17、室内换热模块18、第六电磁阀19、四通阀2、气液分离器3,进入最后压缩机1,此制冷剂流向记为制冷剂第二流向。
[0063] (2)制冷兼制热水模式[0064] 夏季制冷兼制热水工况为:将太阳能集热模块5内的太阳能集热器35收回支架中。A、当蓄热水箱6中的水温低于设定值(可以设为35°C)时,室外换热模块13通路上的第三电磁阀11关闭,制冷剂通过室外水冷换热器8将从室内风冷换热器吸收的热量传递给蓄热水箱中的水,制冷剂流向为上述制冷剂流向2。在上述制冷过程中,有效回收利用了制冷剂从热泵机组带出的热量,提高了能源的利用率和空调制冷的经济性。B、当蓄热水箱中的水温高于设定值(可以设为40°C )且室外气温低于设定值(可以设为35°C )时,制冷剂在室外换热模块18通路中进行制冷循环,制冷剂流向为上述制冷剂第一流向。C、当水箱中的水温高于设定值(可以设为40°C ),且室外气温高于设定值(可以设为35V )时,自动对蓄热水箱6进行排水和补水,保持水温不超过设定值(可以设为42°C ),室外换热模块13和水冷换热器通路同时工作。制冷剂流向为压缩机1、四通阀2、第一电磁阀4、室外水冷换热器8、第九电磁阀23、第三电磁阀11、室外换热模块13、第四电磁阀14、储液器15、第二电子膨胀阀17、室内换热模块18、第六电磁阀19、四通阀2、气液分离器3,最后进入压缩机I,此时记为制冷剂第三流向。
[0065] (3)单独供热模式
[0066] 单独供热模式按单独太阳能热水水源或空气源供热或同时热水水源及空气源模式运行:
[0067] A、当无太阳且室外空气温度高于设定值(可以设为_15°C )时,供暖循环工质的吸热源为室外空气。制冷剂流向为压缩机1、四通阀2、第六电磁阀19、室内换热模块18、第二电子膨胀阀17、储液器15、第四电磁阀14、室外换热模块13、第三电磁阀11、第六电磁阀21、四通阀2、气液分离器3,最后进入压缩机1,此制冷剂流向记为制冷剂第四流向。
[0068] B、当太阳充足时,将太阳能集热器从支架31中拉出展开并根据季节和所在地理位置调整到最佳倾角,启动集热器循环,此时如果室外温度高于设定值(可以设为-10°C )时,室外换热模块也同时受控启动,制冷剂同时与室外空气和蓄热水箱中水进行换热,进行供暖循环。制冷剂流向为压缩机1、四通阀2、第六电磁阀19、室内换热模块18、第二电子膨胀阀17、储液器15、第四电磁阀14、室外换热模块13、第三电磁阀11、第八电磁阀22、室外水冷换热器8、第一电磁阀4、四通阀2、气液分离器3,最后进入压缩机1,此时制冷剂流向为制冷剂第五流向;当室外空气的温度低于设定值(可以设为-1re)时,室外换热模块关闭,循环工质与太阳能蓄热水箱中水进行换热,吸收热量,进行供暖循环。制冷剂流向为压缩机1、四通阀2、第六电磁阀19、室内换热模块18、第二电子膨胀阀17、储液器15、第二电磁阀10、第九电磁阀23、室外水冷换热器8、第一电磁阀4、四通阀2、气液分离器3,最后进入压缩机1,此制冷剂流向记为制冷剂第六流向。
[0069] C、当无太阳,室外空气温度低于设定值(可以设为_15°C ),且太阳能蓄热水箱中的水温低于设定值(可以为l°c)时,室内电加热器24启动开始工作,此时室内机类似电暖
器工作。
[0070] D、当无太阳,室外空气温度低于设定值(可以设为_15°C ),且太阳能蓄热水箱中水高于设定值(可以设为5°C)时,室内电加热器24关闭,供暖循环工质的吸热源为蓄热水箱6。制冷剂流向为压缩机1、四通阀2、第六电磁阀19、室内换热模块18、第二电子膨胀阀17、储液器15、第二电磁阀10、第九电磁阀23、室外水冷换热器8、第一电磁阀4、四通阀2、气液分离器3,最后进入压缩机1,此制冷剂流向记为制冷剂第七流向。[0071] (4)单独制热水模式
[0072] 无制冷或供暖需求时,系统可按单独制热水模式运行。A、当阳光充足时,将太阳能集热器35从支架34中拉出展开,并根据季节和所在地理位置调整到最佳倾角,启动循环泵9,太阳集热器吸收的太阳能通过室外换热工质传给蓄热水箱6中的水。同时,若室外空气温度高于设定值(可以设为_5°C )时,启动热泵循环,制冷剂的吸热源为室外空气,室外换热模块13从空气中吸热并通过室外水冷换热器8将热量传给蓄热水箱6中的水。制冷剂流向为压缩机1、四通阀2、第一电磁阀4、室外水冷换热器8、第八电磁阀22、第一电子膨胀阀12、室外换热模块13、第四电磁阀14、储液器15、第五电磁阀16、四通阀2、气液分离器3,最后进入压缩机I,此时制冷剂流向为制冷剂第八流向。
[0073] B、阴雨天或晚上无太阳时,关闭循环泵9,若室外空气温度高于设定值(可以设为_5°C )时,启动热泵循环,制冷剂流向为压缩机1、四通阀2、第一电磁阀4、室外水冷换热器8、第九电磁阀23、第一电子膨胀阀12、室外换热模块13、第四电磁阀14、储液器15、第五电磁阀16、四通阀2、气液分离器3,最后进入压缩机1,此制冷剂流向记为制冷剂第九流向。上述两种情况下利用空气中的热量制热水,提高了效率。
[0074] C、阴雨天或晚上无太阳时,关闭循环泵9,若室外空气温度低于设定值(可以设为-5V )时,关闭热泵循环,蓄热水箱内的辅助电加热器20,启动开始工作,此时为电热水器工作模式。
[0075] 上述制冷、供暖和制热水循环中各个控制温度的设定值,可以根据不同的地区和用户的使用要求进行调节。
Claims (9)
1.太阳能热泵系统,包括压缩机、太阳能换热模块、室外换热模块和室内换热模块,压缩机与太阳能换热模块连接,太阳能换热模块与室外换热模块连接,室外换热模块与室内换热模块连接,室内换热模块与压缩机连接形成一个循环回路;其特征在于:所述的压缩机与室外换热模块之间设置有第一分支管路连接,太阳能换热模块与室内换热模块之间设置有第二分支管路连接;所述的太阳能换热模块包括太阳能集热器和支架,太阳能集热器可伸展或收纳的活动设置在支架内;在支架内最少设有一带滑槽的空腔,在太阳能集热器上设置有与滑槽相应的导轨,太阳能集热器通过相配合的滑槽和导轨活动设置在空腔内;所述的太阳能集热器的外侧设置有两可调节高低的支撑杆,在太阳能集热器的内侧边缘设置有可调整角度的铰链球,铰链球卡在空腔的开口处;通过调节两个支撑杆的高低15〜75°的调节太阳能集热器的倾斜度,且太阳能集热器和压缩机之间有隔热层。
2.根据权利要求1所述的太阳能热泵系统,其特征在于:所述的太阳能换热模块还包括蓄热水箱、热交换器和室外水冷换热器;热交换器置于蓄热水箱中,太阳能集热器通过循环泵与热交换器形成换热回路;室外水冷换热器置于蓄热水箱内,压缩机出来的管路与室外水冷换热器的进口连接,室外水冷换热器的出口通过管路与室外换热模块连接,室外换热模块与室内换热模块连接。
3.根据权利要求1所述的太阳能热泵系统,其特征在于:所述的压缩机出来的管路与太阳能集热器的换热介质入口连接,太阳能集热器的换热介质出口与室外换热模块连接。
4.根据权利要求3所述的太阳能热泵系统,其特征在于:所述的室外换热模块与室内换热模块之间设置有换热水箱,在换热水箱内设置有第二水冷换热器,室外换热模块出来的管路与第二水冷换热器入口连接,第二水冷换热器的出口通过管路与室内换热模块连接。
5.根据权利要求4所述的太阳能热泵系统,其特征在于:所述的第二水冷换热器的出口与压缩机之间设置有第五分支管路连接。
6.根据权利要求2所述的太阳能热泵系统,其特征在于:所述的蓄热水箱内设置有辅助电加热器;所述的室内风冷换热器上设置有室内电加热器。
7.太阳能集热模块,包括太阳能集热器和支架,其特征在于:在支架内最少设有一带滑槽的空腔,在太阳能集热器上设置有与滑槽相应的导轨,太阳能集热器通过相配合的滑槽和导轨活动设置在空腔内;所述的太阳能集热器的外侧设置有两可调节高低的支撑杆,在太阳能集热器的内侧边缘设置有可调整角度的铰链球,铰链球卡在空腔的开口处;通过调节两个支撑杆的高低15〜75°的调节太阳能集热器的倾斜度。
8.根据权利要求7所述的太阳能集热模块,其特征在于:所述的空腔在支架的四面分层的设置为一个或一个以上,在空腔内分别活动设置有相应的太阳能集热器。
9.根据权利要求7所述的太阳能集热模块,其特征在于:所述的太阳能集热器的导轨上设置有放置软管的管槽。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010274118 CN101936619B (zh) | 2010-09-03 | 2010-09-03 | 一种太阳能热泵系统及其装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010274118 CN101936619B (zh) | 2010-09-03 | 2010-09-03 | 一种太阳能热泵系统及其装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101936619A CN101936619A (zh) | 2011-01-05 |
CN101936619B true CN101936619B (zh) | 2013-06-12 |
Family
ID=43390079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010274118 Active CN101936619B (zh) | 2010-09-03 | 2010-09-03 | 一种太阳能热泵系统及其装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101936619B (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104610941A (zh) * | 2013-11-05 | 2015-05-13 | 中国石油化工集团公司 | 一种用于页岩油气藏勘探开发的钻井液 |
CN104501455B (zh) * | 2014-12-15 | 2017-01-25 | 广东工业大学 | 一种冷暖联供太阳能辅助热泵系统 |
CN105605714A (zh) * | 2016-03-17 | 2016-05-25 | 亿代科技(江苏)有限公司 | 一种太阳能空调系统 |
CN105823240A (zh) * | 2016-03-24 | 2016-08-03 | 安庆市凌康机电产品设计有限公司 | 太阳能变量调节集热器 |
CN109307361A (zh) * | 2018-10-10 | 2019-02-05 | 宁波市建筑设计研究院有限公司 | 空气源热泵的节能控制方法 |
CN113669774A (zh) * | 2021-07-26 | 2021-11-19 | 浙江中广电器股份有限公司 | 一种多热源采暖机组控制系统、控制方法及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802864A (en) * | 1997-04-01 | 1998-09-08 | Peregrine Industries, Inc. | Heat transfer system |
CN1515850A (zh) * | 2003-08-28 | 2004-07-28 | 上海交通大学 | 直膨式太阳能热泵空调及热水系统 |
CN1828184A (zh) * | 2006-04-10 | 2006-09-06 | 浙江大学 | 太阳能辅助多功能热泵系统 |
CN101196355A (zh) * | 2007-12-07 | 2008-06-11 | 广东五星太阳能有限公司 | 多功能太阳能热泵 |
CN201772676U (zh) * | 2010-09-03 | 2011-03-23 | 广东工业大学 | 太阳能热泵系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201256369Y (zh) * | 2008-09-08 | 2009-06-10 | 动力新跃(北京)汽车科技有限公司 | 伸缩式太阳能电池板 |
-
2010
- 2010-09-03 CN CN 201010274118 patent/CN101936619B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5802864A (en) * | 1997-04-01 | 1998-09-08 | Peregrine Industries, Inc. | Heat transfer system |
CN1515850A (zh) * | 2003-08-28 | 2004-07-28 | 上海交通大学 | 直膨式太阳能热泵空调及热水系统 |
CN1828184A (zh) * | 2006-04-10 | 2006-09-06 | 浙江大学 | 太阳能辅助多功能热泵系统 |
CN101196355A (zh) * | 2007-12-07 | 2008-06-11 | 广东五星太阳能有限公司 | 多功能太阳能热泵 |
CN201772676U (zh) * | 2010-09-03 | 2011-03-23 | 广东工业大学 | 太阳能热泵系统 |
Also Published As
Publication number | Publication date |
---|---|
CN101936619A (zh) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201246923Y (zh) | 热泵系统蒸发器与太阳能光伏集热器复合热源装置 | |
CN101936619B (zh) | 一种太阳能热泵系统及其装置 | |
CN103776196B (zh) | 一种太阳能集热和辐射制冷综合应用装置 | |
CN101334220B (zh) | 对流型光电转化强化与光热回收全工况复合热源装置 | |
CN102645055B (zh) | 自适应匹配的太阳能辅助空气源热泵装置 | |
CN105276833B (zh) | 一种太阳能热水系统和热泵制热制冷系统及其方法 | |
CN109373481B (zh) | 一种人体优先受用的炕体通风空调及采暖系统 | |
CN209870025U (zh) | 一种光伏多功能热泵系统 | |
CN110145796A (zh) | 一种太阳能支撑的微能源网 | |
CN109114804A (zh) | 太阳能光伏-市电联合驱动的光伏光热一体化双源热泵热水系统及其运行方法 | |
KR101333143B1 (ko) | 축열식 냉난방 장치 | |
CN205119519U (zh) | 一种太阳能热水系统和热泵制热制冷系统 | |
CN103900287B (zh) | 太阳能与地热能联合运行的热交换系统 | |
CN106288077B (zh) | 一种太阳能空调装置 | |
CN201772676U (zh) | 太阳能热泵系统 | |
CN212806110U (zh) | 利用自然能的储能装置和二氧化碳热泵耦合系统 | |
CN205351607U (zh) | 多源能源获取系统 | |
CN205351845U (zh) | 多源复用热泵机组 | |
CN111156590B (zh) | 兼备制冷、供热及热水供应的太阳能-空气源热泵空调系统 | |
KR20180126941A (ko) | 복합 집열기 적용 하이브리드 히트펌프 시스템의 제어 시스템 | |
CN204373267U (zh) | 家用太阳能光伏-空气源复合一体式热泵 | |
CN210463651U (zh) | 光伏发电冷热能回收利用装置 | |
CN209084971U (zh) | 一种分布式太阳能制冷供暖储能一体机 | |
CN110486779A (zh) | 一种利用土壤冷量冷却光伏电池的太阳能综合利用系统 | |
CN208042559U (zh) | 一种高效空气源热泵装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20180427 Address after: 528241 Guangdong 11 Foshan powerhouse Air Conditioning Co., Ltd., No. 11, Shengli village, Lishui Town, Nanhai District, Nanhai District. Patentee after: Guangdong Gaoermei Refrigeration Equipment Co., Ltd. Address before: 510006 Panyu District, Guangzhou, Guangdong, Panyu District, No. 100, West Ring Road, outside the city. Patentee before: Guangdong University of Technology |