New! View global litigation for patent families

CN101933810B - One saturated oxygen detection method - Google Patents

One saturated oxygen detection method Download PDF

Info

Publication number
CN101933810B
CN101933810B CN 201010272884 CN201010272884A CN101933810B CN 101933810 B CN101933810 B CN 101933810B CN 201010272884 CN201010272884 CN 201010272884 CN 201010272884 A CN201010272884 A CN 201010272884A CN 101933810 B CN101933810 B CN 101933810B
Authority
CN
Grant status
Grant
Patent type
Application number
CN 201010272884
Other languages
Chinese (zh)
Other versions
CN101933810A (en )
Inventor
胡丽丹
王干兵
Original Assignee
深圳市索莱瑞医疗技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开了一种血氧饱和度检测方法。 The present invention discloses a method for detecting blood oxygen saturation. 首先进行信号采集,然后进行预处理和自适应归一化处理;再进行FFT处理,将检测数据从时域变换到频域;最后进行R值计算并根据R值计算血氧饱和度。 First, signal acquisition, and then adaptive preprocessing and normalization processing; then FFT processing, the detected data from the time domain to the frequency domain; and finally calculated value R calculated from the oxygen saturation value R. 采用了本发明技术方案血氧饱和度检测方法的一种血氧饱和度检测系统,由于从频域中计算血氧饱和度且采用了新公式来计算归一化后的值,因而计算更简单,而且可以减小随机干扰,因而检测精度更高。 Using an oximetry system aspect of the present invention is a method of oximetry, since the oxygen saturation is calculated from the frequency domain and the use of the new formula to calculate a normalized value of the thus calculated is simpler and the random noise can be reduced, and thus a higher detection accuracy.

Description

一种血氧饱和度检测方法 One saturated oxygen detection method

技术领域 FIELD

[0001] 本发明涉及医疗器械技术领域,具体涉及血氧饱和度检测技术,特别涉及一种血氧饱和度检测方法。 [0001] The present invention relates to the field of medical devices, particularly relates to oximetry technology, particularly to a method for detecting blood oxygen saturation.

背景技术 Background technique

[0002] 无创血氧饱和度检测是基于动脉血液对光的吸收量随动脉波动而变化的原理。 [0002] Non-invasive blood oxygen saturation is detected with the principle artery fluctuations based on changes in light absorption of arterial blood. 透射式血氧饱和度检测中,当透光区域动脉血管搏动时,动脉血液对光的吸收量将随之变化,称为脉动分量或交流量(AC);而皮肤、肌肉、骨骼和静脉血等其他组织对光的吸收是恒定不变的,称为直流量(DC)。 A transmission oximetry, when the light-transmitting region arterial pulsation, arterial blood absorption of light will change, referred to the amount of the pulsating component or AC (the AC); and the skin, muscle, bone and blood other organizations isosbestic light is constant, it called the direct current (DC). 如果忽略由于散射、反射等因素造成的衰减。 If you ignore the attenuation due to scattering, reflection and other factors. 根据比尔-朗伯定律(Beer-LambertLaw)可以知道, According to Beer - Lambert law (Beer-LambertLaw) can know,

[0003] [0003]

Figure CN101933810BD00031

[0004] 其中,Iwt是光电探测器的输出电流,Iin是二极管的输入电流(对应不同的红光和红外光),C是血液的浓度,L是两个LED和探测器之间的距离,S是饱和度,0。 [0004] wherein, of Iwt photodetector output current, Iin is the input current of the diode (corresponding to a different red and infrared light), C is the concentration of the blood, L is the distance between two LED and detector, S is the saturation, 0. 和0 ^分别表示材料系数。 And 0 ^ denote coefficient material.

[0005] 血氧饱和度计算中常常先计算比率值R(RatioofRatios),再根据R来计算血氧饱和度,血氧饱和度测量的关键也就在于R值的计算。 [0005] The calculated value R calculated oxygen saturation ratio value is often calculated to R (RatioofRatios), then the key to calculate oxygen saturation, oxygen saturation measured according to wherein R will. 如果R值的计算精度得以提高,那么血氧饱和度的测量精度就相应的提高。 If the R value calculation accuracy is improved, then the measurement accuracy of the blood oxygen saturation increased correspondingly.

[0006] 目前,对R值的计算广泛使用的是峰-峰值法。 [0006] Currently, the R value calculated widely used peak - France. 在每个脉搏期间红光/红外光的波形具有一个最大值和最小值,分别为RH,其中,&对应的是心脏收缩时,即动脉血体积最大时的值;RH对应的是心脏舒张时,即动脉血体积最小时的值。 When RH corresponds to diastole; waveform red / infrared light during each pulse having a maximum and minimum, respectively, RH, wherein, when the corresponding & systole, i.e., the maximum value of arterial blood volume , i.e. the minimum value of the volume of arterial blood. 考虑到光通过均匀介质的延时系数,可以表示为: Taking into account the delay factor of light by a uniform medium, it can be expressed as:

[0007] [0007]

Figure CN101933810BD00032

[0008] 其中,I。 [0008] wherein, I. 表不入射光强度,a表不组织吸光率,a&表不动脉血吸光率,A!;表不吸光系数,d表示穿透距离,Ad表示心脏收缩和舒张造成的变化量。 Table no incident light intensity, a light absorption do not organize the table, a & table does arterial absorbance, A !; table does not extinction coefficient, d represents the penetration distance, Ad represents the systolic and diastolic variation caused.

[0009] 相似地, [0009] Similarly,

[0010 [0010

Figure CN101933810BD00033

[0011] 烙以h面个笺式作一个hk值,得到 [0011] In branded h a scratch pad for a face value hk, to give

[0012] [0012]

Figure CN101933810BD00034

[0013] 两边取对数,得到 [0013] Taking the logarithm of both sides, to give

[0014] [0014]

Figure CN101933810BD00035

[0015] 同样地,红外光可以得到 [0015] Similarly, the infrared light can be obtained

[0016] [0016]

Figure CN101933810BD00041

[0017] 其中,风表示红外光最小值;IRH表示红外光最大值。 [0017] where, the minimum wind represents infrared light; IRH represents the maximum value of infrared light.

[0018] 诵讨以h公式,可以得到 [0018] In recite discuss the formula h can be obtained

[0019] [0019]

Figure CN101933810BD00042

[0020] 从以上公式描述中可以看出,采用峰-峰值法计算的比率值仅与脉搏信号的峰值点和谷值点信号相关,因此这种算法的信噪比不高,比率值容易受到干扰信号的影响。 [0020] As can be seen from the description in the above formula, using the peak - peak ratio value is only points associated with the pulse signal and the valley signal calculating peak point method, the algorithm is not so high SNR, the value of the ratio of vulnerable effects of signal interference.

[0021] 为了提高信噪比,最近又出现了一种叫做微分法的方法,与峰-峰值法不同的是, 微分法并不选择峰值点和谷值点进行计算,而是在峰值和谷值之间选取一段样本点进行微分计算,即分别计算相邻两点之间红光/红外光交流量的差值与其直流值的比值,两个比值再求比值。 [0021] In order to improve the signal to noise ratio, and recently there has been a method called differential method, and peak - method is different is that differentiation does not choose the peak point and valley points are calculated, but the peaks and valleys select between the values ​​calculated by differentiating some sample points, i.e., the ratio of red / infrared DC value and its difference AC between adjacent points of light amount are calculated, and then seek the ratio of the two ratios. 最后,将得到的所有比率值平均后得到该段数据的平均比率值。 Finally, all ratios and the resulting average value of the ratio of the average value of the data segment. 微分法计算公式如下: Differentiation calculation formula is as follows:

[0022] [0022]

Figure CN101933810BD00043

[0023] 其中,Iwt是光电探测器的输出电流,Iin是二极管的输入电流(对应不同的红光和红外光),C是血液浓度,L是LED灯与探测器之间的距离,S是饱和度,0 ^和0 ^分别表示材料系数。 [0023] wherein, Iwt photodetector output current, Iin is the input current of the diode (corresponding to a different red and infrared light), C is the concentration of the blood, L is the distance between the LED lamp and the detector, S is saturation, and 0 ^ 0 ^ denote coefficient material.

[0024] 又由 [0024] and by the

Figure CN101933810BD00044

[0028] 将两个波形相除,即可得到比率 [0028] The divided two waveforms, a ratio can be obtained

[0029] [0029]

Figure CN101933810BD00045

[0030] 即 [0030] That is

[0031] [0031]

Figure CN101933810BD00051

[0032] 求平均后得到「00331 [0032] After averaged to obtain "00331

Figure CN101933810BD00052

[0034] 从以上微分法的计算公式中可以知道,比率值计算方式与选取的每个样本点的交流量相关,即通过增加样本点的方式,提高了算法的信噪比。 [0034] be understood from the above formula for calculating the differential method, the ratio of the calculated correlation value for each sample point and communication selection, i.e., by increasing the way the sample points, the algorithm improves the signal to noise ratio. 但是,由于微分法是选取脉搏波形中任意一段数据,这样的方式没有考虑到脉搏波形各段在计算血氧饱和度时所占的权重,降低了血氧饱和度计算的精度。 However, the differential method is to select any period of the pulse waveform data, in such a way the pulse waveform is not considered in the calculation of weight percentage of oxygen saturation paragraphs weight, reducing the accuracy of oxygen saturation calculations.

[0035] 此外,从人体采集到的脉搏信号,经前置通道进入处理器时,就伴随着各种各样的噪声和干扰,如工频干扰、基线漂移、运动干扰、低灌注等,这些都会影响到R值,最终影响血氧饱和度测量的准确性。 [0035] In addition, the body acquired from the pulse signal, when the through passage into the pre-processor, it is accompanied by a variety of noise and interference, such as frequency interference, baseline drift, motion artifacts, hypoperfusion, these It will affect the R-value, and ultimately affect the accuracy of oxygen saturation measurement.

[0036] 综上所述,目前为了能够提高血氧饱和度测量的精度,主要采用了峰-峰值法和微分法来计算比率值。 [0036] In summary, the current to be able to improve the accuracy of oxygen saturation measurement, using the main peak - and differential methods to calculate the ratio value. 对于峰-峰值法,当人体血氧饱和度低于80%时,峰-峰值法得到的血氧饱和度曲线峰值并不能够准确地表示血氧饱和度,因此并不能很好地解决低饱和度的问题。 For peak - peak method, when the body is less than 80% oxygen saturation, peak - oxygen saturation curve of the peak method does not accurately represent oxygen saturation, and therefore not a good solution and saturated low the degree of the problem. 对于微分法,由于通过计算每相邻两点之间的比率值来求得该段样本点的比率值,虽然可以降低噪声对信号的影响,但是由于其比率值与每相邻的样本点的比率值相关,当出现一个或一组噪声信号时,最后通过计算得到的平均比率值将受到很大的影响。 For differential method, since the calculated value of the ratio between each adjacent two of the segments to obtain the value of the ratio of sample points, though it may reduce the influence of noise on the signal, but because the ratio value with each adjacent sample points correlation value ratio, or when there is a set of noise signals, the final average value obtained by calculating the ratio will be greatly affected.

[0037] 其实现有技术还存在一个不那么引人注意的问题,那就是现有技术一般都是从时域计算R值,然后就根据R值计算出血氧饱和度。 [0037] In fact a problem in the prior art also is not so noticeable, that is, the prior art generally value R calculated from the time domain, and then calculates the oxygen saturation value of the R. 这就导致计算过程较为复杂,而且不能充分发挥时域和频域的优势,最终导致R值的计算结果不够精确。 This leads to the calculation process is complex, and can not take full advantage of the time and frequency domains, eventually leading to the results of the R value is not accurate enough. 所以,现有检测血氧饱和度的方法均存在检测精度不高的问题,需要改进。 Therefore, the conventional method of detecting oxygen saturation exist in the detection accuracy is not high, needs to be improved.

发明内容 SUMMARY

[0038] 本发明所要解决的技术问题是提供一种血氧饱和度检测方法,解决现有技术中血氧饱和度检测技术复杂而且精度不够高的问题。 [0038] The present invention solves the technical problem is to provide a method for detecting blood oxygen saturation, to solve the prior art oximetry technology is complex and the precision is not high enough problems.

[0039] 为解决上述技术问题,本发明采用如下技术方案: [0039] To solve the above problems, the present invention adopts the following technical solution:

[0040] 一种血氧饱和度检测方法,包括如下步骤: [0040] A method for detecting blood oxygen saturation, comprising the steps of:

[0041] S1)、信号采集,通过信号采集装置来采集携带血氧信号的红光检测信号Red和红外光检测信号Ir; [0041] S1), signal acquisition, the detection signal is acquired red and infrared light detection signal Red Ir oxygen carrying signal by the signal acquisition device;

[0042] S2)、预处理,即通过预处理装置去掉红光检测信号Red和红外光检测信号Ir中环境光和高频干扰; [0042] S2), the pretreatment, i.e., to remove the red and infrared light detection signal Red and Ir light detection signal high frequency interference environment by pre-processing means;

[0043]S3)、自适应归一化处理,主要是利用自适应归一化处理装置,对预处理后的检测数据进行归一化处理; [0043] S3), the adaptive normalization process, mainly using adaptive normalization processing means for detecting the pre-processed data normalization processing;

[0044] S4)、FFT处理,通过FFT装置将归一化后的数据VI和V2采用快速傅里叶变换,从时域变换到频域; [0044] S4), FFT processing by the FFT means VI and V2 data after normalization using the fast Fourier transform, from the time domain to the frequency domain;

[0045]S5)、R值计算,根据FFT处理处理后得到的频域归一化后的数据,计算出R值; [0045] S5), R value is calculated according to data obtained after the FFT frequency domain processing normalized value R is calculated;

[0046] S6)、血氧饱和度计算,利用R值的曲线,根据查表法得到对应的血氧饱和度值; [0046] S6), calculate the oxygen saturation using curve R value to obtain a value corresponding to the oxygen saturation in accordance with look-up table;

[0047] 步骤S3)中所述归一化处理时,分别计算红光的交流分量Ra。 When [0047] Step S3), the normalization process calculates Ra red AC component. 与直流分量Rd。 Rd and DC component. 和红外光的交流分量IRa。 And infrared light AC component IRa. 与直流分量IRd。 IRd DC component. ,然后通过如下公式得到归一化后的值VI和V2, And then normalized to give the value of VI and V2 of a by the following formula,

[0048] [0048]

Figure CN101933810BD00061

[0049] V2 =IRac, [0049] V2 = IRac,

[0050] 式中,Ra。 [0050] In the formula, Ra. 是红光的交流分量;Rd。 AC component is red; Rd. 是红光的直流分量;IRa。 DC component is red; IRa. 是红外光的交流分量; IRd。 AC component of infrared light; IRd. 是红外光的直流分量。 Is the DC component of the infrared light.

[0051] 本发明的有益效果是: [0051] Advantageous effects of the present invention are:

[0052] 采用了本发明技术方案的一种血氧饱和度检测方法,由于从红光和红外光的频域中计算血氧饱和度,相对于现有技术从时域计算血氧来讲更简单,而且可以减小随机干扰,因而检测精度更高。 [0052] The use of an oximetry method aspect of the present invention, since the oxygen saturation is calculated from the red and infrared light in the frequency domain with respect to the prior art in terms of oxygen is calculated from the time domain more simple and random interference can be reduced, and thus a higher detection accuracy. 实验证明,采用本发明基于频域的血氧估计法,能计算灌注强度为〇. 3%的脉搏信号,且血氧饱和度值在70% -100%能获得精度在1%以内的血氧饱和度值。 Experiments show that the method of the present invention is based on the estimated oxygen frequency domain, can be calculated perfusion intensity billion 3% of the pulse signal, and the oxygen saturation value of 70% -100% in accuracy can be obtained in less than 1% oxygen saturation value.

附图说明 BRIEF DESCRIPTION

[0053] 图1是本发明具体实施方式中血氧饱和度检测系统的组成原理示意框图。 [0053] FIG. 1 is a schematic block diagram of a specific embodiment of the principles described composition oximetry system of the invention.

[0054] 图2是本发明具体实施方式中血氧饱和度检测方法的流程图。 [0054] FIG 2 is a flowchart of a method of detecting oxygen saturation in a particular embodiment of the present invention embodiment.

[0055] 图3是本发明具体实施方式中检测信号经FFT后的幅度谱。 [0055] FIG. 3 is a detailed embodiment of the amplitude detection signal after the FFT spectrum of the present invention.

[0056] 下面将结合附图对本发明作进一步详述。 [0056] The following with reference to the present invention will be described in further detail.

具体实施方式 detailed description

[0057] 如图1所示,本具体实施方式提供的一种血氧饱和度检测系统,包括顺序连接的: 信号采集装置、陷波器、低通滤波器、自适应归一化装置、FFT(FastFourierTransform,快速傅氏变换)装置、R值计算装置、卡尔曼滤波装置和血氧饱和度计算装置;其中陷波器、低通滤波器可以合称前置处理装置。 [0057] As shown, the present embodiment provides a specific embodiment oximetry system 1, comprises a serially connected: a signal acquisition device, notch filter, low pass filter, an adaptive normalizer, an FFT (FastFourierTransform, fast Fourier transform) unit, R value calculating means, Kalman filter means and oxygen saturation computing means; wherein the notch filter, low pass filter may be collectively pre-processing means.

[0058] 如图2所示,本具体实施方式提供的一种血氧饱和度检测方法,包括如下步骤: [0058] 2 An oximetry method of the present embodiment DETAILED DESCRIPTION provided, comprising the steps of:

[0059] 1、信号采集,通过信号采集装置来采集携带血氧信号的红光检测信号Red和红外光检测信号Ir。 [0059] 1, signal acquisition, the detection signal is acquired red and infrared light detection signal Red Ir oxygen carrying signal by the signal acquisition device.

[0060] 2、预处理,即通过陷波器和低通滤波器,对红光检测信号Red和红外光检测信号Ir进行预处理,主要去掉环境光和高频干扰。 [0060] 2, pretreatment, i.e., red light and infrared light detection signal Red Ir detection signals pre-processed by notch filter and a low pass filter, to remove the main frequency ambient light interference.

[0061] 陷波器可以去掉检测信号中环境光的干扰,而低通滤波器可以去掉检测信号中的高频干扰。 [0061] The notch filter can remove the interference signal detected ambient light, while the low pass filter can remove high frequency interference detection signal. 如图1所示,Redl是经过陷波器滤波后的红光;Irl是经过陷波器滤波后的红外光;Red'是经过低通滤波器后的红光;Ir'是经过低通滤波器后的红外光。 1, Redl is through the red filter trap; is in Irl, after the notch filter filtering infrared light; Red 'after the low pass filter is red; Ir' is low-pass filtered after an infrared light.

[0062] 需要说明的是,由于一般只考虑脉搏信号的基波、二次谐波和三次谐波,所以对于带宽为0. 5HZ-5HZ的脉搏信号,一般使用截止频域为15HZ的低通滤波器即可达到满意效果。 [0062] Incidentally, since generally only consider the fundamental wave, second harmonic and third harmonic of the pulse signal, the pulse signal bandwidth for 0. 5HZ-5HZ generally used low-pass cutoff frequency domain of 15HZ filter to achieve satisfactory results. 当然,必要时还可以根据需要确定滤波器的阶数。 Of course, where necessary, the filter order may be determined according to need.

[0063] 3、自适应归一化处理,主要是利用自适应归一化处理装置,对预处理后的检测数据进行归一化处理得到VI和V2 ; [0063] 3, adaptive normalization process, mainly using adaptive normalization processing means for detecting the pre-processed data normalized to give VI and V2;

[0064] [0064]

Figure CN101933810BD00071

[0065]V2 =IRac(公式2) [0065] V2 = IRac (Equation 2)

[0066] 式中,Ra。 [0066] In the formula, Ra. 是红光的交流分量;Rd。 AC component is red; Rd. 是红光的直流分量;IRa。 DC component is red; IRa. 是红外光的交流分量; IRd。 AC component of infrared light; IRd. 是红外光的直流分量。 Is the DC component of the infrared light.

[0067] 4、FFT处理,通过FFT装置将归一化后的数据VI和V2采用快速傅里叶变换,从时域变换到频域。 [0067] 4, FFT processing by the FFT means VI and V2 data after normalization using the fast Fourier transform, from the time domain to the frequency domain.

[0068]FFT部分通过对VI和V2进行FFT变换,获得如图3所示VI和V2在频域的幅度谱。 [0068] FFT section VI and V2 by performing an FFT, VI and V2 is obtained as shown in FIG. 3 frequency domain amplitude spectrum.

[0069]VI和V2在FFT变换前可以进行加窗处理,如加矩形窗或布莱克曼窗等,而FFT变换的长度可以是1〇24、2048、4096等,这些参数根据需要而定。 [0069] VI and V2 may be performed before the FFT transform windowing, such as rectangular window, or Blackman, etc., and the length of the FFT may be 1〇24,2048,4096 etc. These parameters may be required.

[0070] 其中的VI和V2就是下面的两个表达式对应的变量,理论上直接用下面的比值公3 [0070] wherein the VI and V2 is a variable corresponding to the following expressions, in theory, with the following ratio of the direct well 3

Figure CN101933810BD00072

求R值,即分别对Rac;/Rd。 Find the R value, i.e. respectively Rac; / Rd. 和IRac;/IRd。 And IRac; / IRd. 进行FFT变换,然后根据它们在脉搏 Performing an FFT, then according to their pulse

Figure CN101933810BD00073

基波处的比值得到R值,但是很多处理器只能处理整数,用这个公式就不适合(因为Ra。/RdcXl,IRac;/IRdc;〈l),就可以将公式变珀比种情况下遇到的问题是,Rac*IRd。 R ratio value obtained at the fundamental wave, but many processors can handle integers, with this formula is not suitable (because Ra./RdcXl,IRac;/IRdc;<l), the formula may be the case variant Perot ratio problems encountered, Rac * IRd. 的乘积很大或IRac*Rd。 The product of large or IRac * Rd. 的乘积很大,导致®埋益》出,而解决它们的最好办法是将分别对 Great product, leading to buried ® benefits "out, and the best way to resolve them is to separately

Figure CN101933810BD00074

1与IRa。 1 and IRa. 进行FFT变换,再在它们的频域得到R比值,这种方法可以在更多的处理器上实现。 Performing an FFT, then the ratio R obtained in their frequency domain, this method may be implemented on more processors.

[0071] 5、R值计算,根据FFT处理处理后得到的频域检测数据,计算出R值。 [0071] 5, R value is calculated according to the frequency domain after FFT processing detection data obtained, to calculate the R value. R值计算属于现有技术,本文对此不再详述。 R value calculation belongs to the prior art, this will not be described herein. 本具体实施具体而言,可先在FV1和FV2 (FV1和FV2分别是VI和V2经过FFT变换后的信号)的频域各自选出最大的20个峰值,在这些峰值中查询信号的基波和谐波处FV1/FV2是否在某个很小的范围内,如果在某个很小的范围内则此处的基波为脉率,且此处的FV1/FV2就是R值。 Specifically this particular embodiment, the first in FV1 and FV2 (FV1 and FV2 are VI and V2 signal after the FFT) frequency domain each elect 20 largest peaks in the fundamental interrogation signal peaks and harmonics are within a small range, if the fundamental wave within a small range here is the pulse rate, and FV1 / FV2 where R is the value FV1 / FV2.

[0072] 6、卡尔曼滤波,可以防止随机噪声引起的干扰,防止信号发生突变,即对R值起到平滑的作用。 [0072] 6, Kalman filter, random noise can be prevented from interference caused by mutations preventing signal, i.e., functions as a smoothing effect on the R value.

[0073] 需要强调的是,在对R值进行卡尔曼滤波时,需要根据残差和信号质量指数FSQI 判断是否继续进行卡尔曼滤波,如果残差太大或信号质量指数小则放弃卡尔曼滤波,其中信号质量指数根据V2在频域的幅度谱确定,具体计算公式如下: [0073] It is emphasized that, when the R value Kalman filter needs to judge whether to continue the Kalman filter and the signal from the residual mass index FSQI, if the residual signal quality index is too small or is abandoned Kalman filter wherein the signal quality index V2 amplitude spectrum in the frequency domain determined according to the specific formula is as follows:

[0074] [0074]

Figure CN101933810BD00081

[0075] 其中,S是V2在频域脉率处的幅度,N1、N2…N512是V2在频域非直流的幅度。 [0075] where, S is the amplitude of the pulse rate V2 at the frequency domain, N1, N2 ... N512 V2 amplitude in the frequency domain is non-DC.

[0076] 7、血氧饱和度计算,利用R值的曲线,根据查表法得到对应的血氧饱和度值,该部分属于现有技术,本文不再详述。 [0076] 7, oxygen saturation is calculated using a graph of R values, obtained according to the look-up table corresponding to the oxygen saturation value, the portion belongs to the prior art, not described in detail herein.

[0077] 本具体实施方式的血氧饱和度计算系统,采用本具体实施方式的血氧饱和度检测方法,从红光和和红外光的频域中计算血氧饱和度,相对与现有技术从时域计算血氧来讲更简单,而且可以减小随机干扰。 [0077] The present oxygen saturation computing system specific embodiments, specific embodiments of the present oxygen saturation detecting method, the frequency domain is calculated from the red and infrared light, and oxygen saturation, as opposed to the prior art calculated from the time domain is simpler in terms of oxygen, and the random noise can be reduced. 实验证明,采用本发明基于频域的血氧估计法,能计算灌注强度为〇. 3%的脉搏信号,且血氧饱和度值在70% -100%能获得精度在1 %以内的血氧饱和度值。 Experiments show that the method of the present invention is based on the estimated oxygen frequency domain, can be calculated perfusion intensity billion 3% of the pulse signal, and the oxygen saturation value of 70% -100% in accuracy can be obtained in less than 1% oxygen saturation value.

[0078] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。 [0078] The above contents with the specific preferred embodiments of the present invention is further made to the detailed description, specific embodiments of the present invention should not be considered limited to these descriptions. 对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。 Those of ordinary skill in the art for the present invention, without departing from the spirit of the present invention, can make various simple deduction or replacement, should be deemed to belong to the scope of the present invention.

Claims (1)

1. 一种血氧饱和度检测方法,包括如下步骤: 51) 、信号采集,通过信号采集装置来采集携带血氧信号的红光检测信号Red和红外光检测信号Ir; 52) 、自适应归一化处理,利用自适应归一化处理装置,对预处理后的检测数据进行归一化处理; 53) 、FFT处理,通过FFT装置将归一化处理后的数据采用快速傅里叶变换,从时域变换到频域; 54) 、R值计算,根据FFT处理处理后得到的频域归一化后的数据,计算出R值; 55) 、血氧饱和度计算,利用所计算出的R值,根据查表法得到对应的血氧饱和度值; 步骤S2)中的归一化处理是分别计算红光的交流分量Ra。 An oximetry method, comprising the steps of: 51), signal acquisition, the detection signal is acquired red and infrared light detection signal Red Ir oxygen carrying signal by the signal acquisition device; 52), the adaptive normalization a process using an adaptive normalization processing means for detecting data of the pre-processed normalized; 53 is), FFT processing by the FFT data after the normalization process means using fast Fourier transform, from the time domain to the frequency domain; 54 is), R value calculated from the data obtained after the FFT frequency domain processing normalized value R is calculated; 55), oxygen saturation is calculated using the calculated R value, to obtain a value corresponding to the oxygen saturation in accordance with table lookup method; step S2), the normalization process calculates the AC component Ra is red. 与直流分量Rd。 Rd and DC component. 和红外光的交流分量IRa。 And infrared light AC component IRa. 与直流分量IRd。 IRd DC component. ,然后通过如下公式得到归一化后的值VI和V2, And then normalized to give the value of VI and V2 of a by the following formula,
Figure CN101933810BC00021
V2 =IRac, 式中,Ra。 V2 = IRac, wherein, Ra. 是红光的交流分量;Rd。 AC component is red; Rd. 是红光的直流分量;IRa。 DC component is red; IRa. 是红外光的交流分量;IRd。 AC component of infrared light; IRd. 是红外光的直流分量。 Is the DC component of the infrared light.
CN 201010272884 2010-09-03 2010-09-03 One saturated oxygen detection method CN101933810B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010272884 CN101933810B (en) 2010-09-03 2010-09-03 One saturated oxygen detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010272884 CN101933810B (en) 2010-09-03 2010-09-03 One saturated oxygen detection method

Publications (2)

Publication Number Publication Date
CN101933810A true CN101933810A (en) 2011-01-05
CN101933810B true CN101933810B (en) 2015-09-16

Family

ID=43387547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010272884 CN101933810B (en) 2010-09-03 2010-09-03 One saturated oxygen detection method

Country Status (1)

Country Link
CN (1) CN101933810B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101933811B (en) * 2010-09-03 2016-06-22 深圳市索莱瑞医疗技术有限公司 One kind oximetry method and system
CN104812294A (en) * 2012-11-21 2015-07-29 医学筛查公司 Method and apparatus for detection of insulin resistance, diabetes and cardiovascular disease
CN104224197B (en) * 2014-09-24 2017-02-15 天津大学 Dual wavelength arterial oxygen saturation photoelectric volume pulse wave feature amount calculating method
CN105147301B (en) * 2015-08-04 2017-09-05 成都云卫康医疗科技有限公司 Rapid implementation of discrete blood oxygen saturation conversion algorithm
CN105184111B (en) * 2015-11-06 2016-08-17 新疆天成鲁源电气工程有限公司 A system for personnel identification system results in failure of the DC transmission line
CN105310656A (en) * 2015-12-02 2016-02-10 王芳 Blood oxygen supply detector

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1142929A (en) * 1995-08-11 1997-02-19 任纯泽 Environmental portable physiological monitor
CN1168624A (en) * 1991-03-07 1997-12-24 马西默有限公司 Signal processing apparatus
US5924980A (en) * 1998-03-11 1999-07-20 Siemens Corporate Research, Inc. Method and apparatus for adaptively reducing the level of noise in an acquired signal
CN1441648A (en) * 2000-02-10 2003-09-10 美国西门子医疗解决公司 Method and apparatus for detecting physiological parameter
CN1531407A (en) * 2000-11-21 2004-09-22 美国西门子医疗解决公司 Method and apparatus for estimating physiological parameters from physiological signals
US7020507B2 (en) * 2002-01-31 2006-03-28 Dolphin Medical, Inc. Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
CN101103921A (en) * 2007-08-14 2008-01-16 北京麦邦光电仪器有限公司 Method and device for measuring blood oxygen saturation
CN101632588A (en) * 2009-08-04 2010-01-27 中国人民解放军第四军医大学 Measurement method of blood oxygen saturation for eliminating motion interference

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168624A (en) * 1991-03-07 1997-12-24 马西默有限公司 Signal processing apparatus
CN1142929A (en) * 1995-08-11 1997-02-19 任纯泽 Environmental portable physiological monitor
US5924980A (en) * 1998-03-11 1999-07-20 Siemens Corporate Research, Inc. Method and apparatus for adaptively reducing the level of noise in an acquired signal
CN1441648A (en) * 2000-02-10 2003-09-10 美国西门子医疗解决公司 Method and apparatus for detecting physiological parameter
CN1531407A (en) * 2000-11-21 2004-09-22 美国西门子医疗解决公司 Method and apparatus for estimating physiological parameters from physiological signals
US7020507B2 (en) * 2002-01-31 2006-03-28 Dolphin Medical, Inc. Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
CN101103921A (en) * 2007-08-14 2008-01-16 北京麦邦光电仪器有限公司 Method and device for measuring blood oxygen saturation
CN101632588A (en) * 2009-08-04 2010-01-27 中国人民解放军第四军医大学 Measurement method of blood oxygen saturation for eliminating motion interference

Also Published As

Publication number Publication date Type
CN101933810A (en) 2011-01-05 application

Similar Documents

Publication Publication Date Title
Shelley Photoplethysmography: beyond the calculation of arterial oxygen saturation and heart rate
US5862805A (en) Apparatus and method for measuring the variability of cardiovascular parameters
US6094592A (en) Methods and apparatus for estimating a physiological parameter using transforms
Stefanovska et al. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique
Rusch et al. Signal processing methods for pulse oximetry
US20030055324A1 (en) Signal processing method and device for signal-to-noise improvement
Suppappola et al. Nonlinear transforms of ECG signals for digital QRS detection: a quantitative analysis
US5971930A (en) Method and apparatus for removing artifact from physiological signals
US20090326395A1 (en) Systems and methods for detecting pulses
US20050004479A1 (en) Locating features in a photoplethysmograph signal
US4955379A (en) Motion artefact rejection system for pulse oximeters
US7087025B2 (en) Blood pressure determination based on delay times between points on a heartbeat pulse
Addison et al. A novel time–frequency-based 3D Lissajous figure method and its application to the determination of oxygen saturation from the photoplethysmogram
Keller et al. Ability of pleth variability index to detect hemodynamic changes induced by passive leg raising in spontaneously breathing volunteers
US8948835B2 (en) Systems and methods for determining blood oxygen saturation values using complex number encoding
JP2004202190A (en) Biological information measuring device
US20030225337A1 (en) Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
Millasseau et al. The vascular impact of aging andvasoactive drugs: comparison of two digital volume pulse measurements
US20080167564A1 (en) Techniques for accurately deriving physiologic parameters of a subject from photoplethysmographic measurements
Li et al. On an automatic delineator for arterial blood pressure waveforms
Lee et al. Design of filter to reject motion artifact of pulse oximetry
US20060064021A1 (en) Detection and correction of catheter line distortion in blood pressure measurements
Lázaro et al. Deriving respiration from photoplethysmographic pulse width
US20130172767A1 (en) Systems and methods for determining respiration information using phase locked loop
Iwasaki et al. Acute exposure to normobaric mild hypoxia alters dynamic relationships between blood pressure and cerebral blood flow at very low frequency

Legal Events

Date Code Title Description
C06 Publication
C41 Transfer of the right of patent application or the patent right
COR Bibliographic change or correction in the description

Free format text: CORRECT: ADDRESS; FROM: 518057 SHENZHEN, GUANGDONG PROVINCE TO: 518067 SHENZHEN, GUANGDONG PROVINCE

ASS Succession or assignment of patent right

Owner name: SHENZHEN SUOLAIRUI MEDICAL TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: SHENZHEN NEWTECH ELECTRONIC CO., LTD.

Effective date: 20130708

C10 Request of examination as to substance
C14 Granted