CN101927130B - Method for removing sulfur-containing compounds from oil by utilizing membrane process - Google Patents

Method for removing sulfur-containing compounds from oil by utilizing membrane process Download PDF

Info

Publication number
CN101927130B
CN101927130B CN 200910020663 CN200910020663A CN101927130B CN 101927130 B CN101927130 B CN 101927130B CN 200910020663 CN200910020663 CN 200910020663 CN 200910020663 A CN200910020663 A CN 200910020663A CN 101927130 B CN101927130 B CN 101927130B
Authority
CN
China
Prior art keywords
oil
membrane
sulfur
module
Prior art date
Application number
CN 200910020663
Other languages
Chinese (zh)
Other versions
CN101927130A (en
Inventor
张成如
冯绪胜
Original Assignee
济南开发区星火科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南开发区星火科学技术研究院 filed Critical 济南开发区星火科学技术研究院
Priority to CN 200910020663 priority Critical patent/CN101927130B/en
Publication of CN101927130A publication Critical patent/CN101927130A/en
Application granted granted Critical
Publication of CN101927130B publication Critical patent/CN101927130B/en

Links

Abstract

The invention discloses a method for removing sulfur-containing compounds from oil by utilizing the membrane separation process, and belongs to the technical field of membrane separation. In the sulfur removing method, an organic/inorganic composite membrane formed by adsorbing high-hydrophilic chitosan on a high-hydrophilic synthesized hydrotalcite-like compound with a lamellar structure is taken as a pervaporation membrane separation module; the sulfur-containing compounds in an oil phase are concentrated on a side near the membrane module by utilizing the high affinity of the composite membrane to the sulfur-containing compounds in the oil, rapidly and selectively penetrate the membrane module by high concentration difference with a vapor phase side of the membrane module, and enter the vapor phase side of a penetrant so as to separate the sulfur-containing compounds from the oil. The adopted membrane separation module can adopt a one-stage, two-stage, three-stage or multistage combined membrane module system. The one-stage membrane module is adopted for removing sulfur, the residual sulfur content is 90 to 110 ppm and the sulfur removal rate is 93 to 96 percent; and the three-stage combined membrane module is adopted for removing sulfur, so the residual sulfur content is less than 15 ppm.

Description

一种利用膜过程脱除油品中含硫化合物的方法 A method for removing membrane process using sulfur-containing compounds in oil

技术领域: FIELD:

[0001] 本发明属于膜分离技术领域,具体地说是一种利用膜渗透蒸发过程脱除油品中含硫化合物的方法。 [0001] The present invention belongs to the field of membrane separation technology, in particular to a method using a membrane pervaporation process for removing sulfur compounds in oil.

背景技术: Background technique:

[0002] 汽油中含硫化合物燃烧后会产生大量的SO2气体,将其排入大气中会造成环境污染,严重危害人类的生存环境和身体健康,也是自然界形成酸雨的主要原因,为了减少这种危害,人们开发出各种新技术以脱除汽油中的硫,国内外目前常用化学精制、催化加氢、催化吸附、溶剂萃取、生物脱硫技术,其中化学精制是传统的方法,有酸精制和碱精制两种,由于酸碱精制方法对于有机含硫化物脱除效果不好,而且容易产生液沫夹带,甚至严重的乳化问题,过程中分离出的酸渣或碱渣处理起来困难,油品损失较大;加氢精制需要在高温高压条件下进行,设备投资费用高,另外也受到氢源的限制。 [0002] The gasoline sulfur compounds will produce large amounts of SO2 combustion gas, into the atmosphere which can cause environmental pollution and seriously endanger the living environment and the human health, is the main reason of acid rain formation in nature, in order to reduce this hazards, new technologies have been developed to remove sulfur in gasoline, commonly used domestic and chemical refining, catalytic hydrogenation, catalytic adsorption, solvent extraction, Microbial desulfurization, wherein the chemical is a conventional purification methods, purification and an acid two kinds of alkaline refining, since the organic acid purification method for the removal of sulfide-containing ineffective, and prone to entrainment fluid, even serious emulsion problems, the process of separating the acid sludge or Waste Disposal are difficult, oil greater losses; hydrorefining be carried out under conditions of high temperature and high pressure equipment, high investment costs, additional hydrogen source is also limited. Merox碱抽提法脱除汽油中的硫醇,可氧化回收硫和部分碱液,但存在用于氧化含硫化合物的催化剂容易发生聚集而失去活性,氧化硫醇的同分异构体较为困难,生成的二硫化物易带入油品中,排放废液中含有毒性催化剂。 Removal alkali extraction Merox gasoline mercaptan, sulfur and an oxidizable portion lye recovery, but the presence of the catalyst for oxidation of sulfur-containing compounds susceptible to aggregation and loss of activity, oxidation of mercaptans isomers difficult generating disulfide easily into the oil, the discharge toxic waste contained in the catalyst. Mericat™金属纤维膜技术用于除去汽油中的含硫化合物可达90%以上,但由于该技术采用油和碱的水溶液直接接触方式,也存在液沫夹带和发浑问题,该方法对各介质的洁净度要求很高,每种介质都必须经过滤器过滤,设备清洗也相当困难。 Mericat ™ technology metal fiber membrane for removing sulfur-containing compounds in gasoline up to 90%, but because of the direct contact technology uses aqueous alkali and oil, there was muddy and entrainment problems, the method for each medium high cleanliness requirements, each media must be filtered through the filter, the cleaning device is also very difficult.

[0003] 近年来,国内外对C5、C6烃类异构化生产高辛烷值汽油组分给予极大的关注,但含硫轻石脑油不能作为催化异构化的原料,采用膜分离技术降低石脑油中的硫醇的含量,可以替代昂贵的加氢处理技术,会促进异构化技术的广泛应用。 [0003] Recent years, for the C5, C6 isomerization of hydrocarbons to produce high octane gasoline components given great attention, but can not be used as sulfur-containing light naphtha feedstock catalytic isomerization, membrane separation technology to reduce the mercaptan content in the naphtha, hydrotreating alternative to more expensive technologies, will promote the isomerization technology is widely used. 另外,(:3、(;组分的催化异构化及生产甲基叔丁基醚的原料-轻质油品脱酸、脱硫等都可以采用膜分离技术加以实现。 Further, (: 3, (; isomerization catalytic components and production of MTBE feedstock - deacidification of light oil, and so on may be implemented desulfurization membrane separation technology.

[0004]目前,国内采取膜分离技术脱除油品中的含硫化合物的方法主要采用渗透一萃取,渗透一蒸发技术。 [0004] At present, the approach taken membrane separation technology to remove sulfur compounds in the oil is extracted mainly a permeate, a permeation evaporation techniques.

[0005]《膜科学与技术》公开了清华大学陈翠仙等人采用PDMS膜渗透-蒸发脱除汽油模拟组分正辛烷中所含的噻吩硫。 [0005] "Membrane Science and Technology" discloses the use of Tsinghua University Chen et al Cuixian PDMS membrane permeation - thiophenic sulfur removed by evaporation model gasoline component contained in the n-octane.

[0006]《膜科学与技术》公开了李继定等人利用聚二甲基硅氧烷(PDMS)/聚丙烯腈(PAN)复合膜作为渗透一蒸发膜脱除汽油中的芳香性含硫化合物噻吩及烷基取代噻吩。 [0006] "Membrane Science and Technology," given Li et al discloses the use of polydimethylsiloxane (PDMS) / polyacrylonitrile (PAN) composite film as aromatic sulfur containing compound thiophen a pervaporation membrane to remove gasoline permeation and alkyl-substituted thiophene.

[0007] 中国专利200610090982. 4公开了一种高亲水性纤维素聚合物膜渗透-萃取脱除石油油品中含硫化合物的方法。 [0007] Chinese patent 200610090982.4 discloses a highly hydrophilic cellulose polymer membrane permeation - Extraction Method for removing sulfur compounds in petroleum oils. 聚合物膜模块将油品与含硫化合物萃取液分隔在膜两侧,油品中的含硫化合物,自膜模板的油品一侧渗透过多孔膜到达膜的另一侧,并于萃取液分子在界面上发生反应,生成物迅速自界面扩散到萃取液体相中,流动的萃取液将生成物带走,膜萃取过程对油品中的含硫化合物有高的选择性,就是这种高选择性使得含硫化合物得以萃取脱除,对于烃类化合物基本上不产生影响,但受萃取液对含硫化合物的选择性的局限。 The oil and polymer film module extracts were separated sulfur-containing compound across the membrane, the sulfur compounds in the oil, the oil from the permeate side of the membrane a porous membrane template reach the other side of the membrane, and to extract the reaction molecules at the interface, the resultant rapidly diffused from the interface into the liquid phase was extracted, the extract product will flow away, membrane extraction process has a high selectivity for sulfur compounds in the oil, which is high selective removal of such sulfur-containing compounds to be extracted, does not substantially affect the hydrocarbon compounds, but subject to the limitations of selectivity to extract sulfur compounds.

[0008] 由于受到渗透膜材料本身和应用技术的限制,现有的膜分离技术脱硫方法都不够理想,特别是脱除噻吩类含硫化合物的困难较大,现有的脱硫方法,无法使汽油中的硫含量降低到小于120ppm的水平。 [0008] Due to limited penetration of the membrane material itself and application technology, conventional membrane separation technology are enough for desulfurization process, in particular the removal of sulfur-containing thiophene more difficult thiophene compound, a conventional desulfurization process can not make gasoline reduction in the sulfur content to a level of less than 120ppm.

发明内容: SUMMARY:

[0009] 为了获得更好的脱硫效果,本发明提供了利用膜渗透蒸发分离技术脱除汽油中含硫化合物的方法。 [0009] For better desulfurization effect, the present invention provides a method of using a pervaporation membrane separation technology to remove sulfur compounds in gasoline. 膜渗透蒸发分离技术是一个高效传质过程,分离过程中油相和渗透蒸发物的汽相分别处于膜模块的两侧,膜模块中存在大量的微细小孔为待分离的渗透物迅速渗透经过膜模块到达汽相一侧提供了巨大的传质面积。 Pervaporation membrane separation technology is a highly efficient mass transfer process, separation of the oil phase and vapor phase pervaporation through the membrane was respectively in the both sides of the membrane module in membrane module for the large number of tiny holes to be separated permeate rapidly penetrate the block reaches the vapor side provides a great mass transfer area. 与膜渗透-萃取法相比,省去了大量的萃取液,工艺简单,方式多样,能耗低,分离效率高,工艺条件易于控制。 Membrane permeation and - compared to extraction, eliminating a large number of extracts, the process is simple, diverse, low energy consumption, high separation efficiency, the process conditions easy to control.

[0010] 本发明提供了一种利用膜渗透-蒸发方法脱除油品中含硫化合物的技术方案。 [0010] The present invention provides a method using a membrane permeation - aspect evaporation process for removing sulfur-containing compounds in the oil.

[0011] 本发明所述的油品脱硫方法为:采用将高亲水性壳聚糖吸附在具有层状结构的强亲水性合成类水滑石颗粒表面上形成的有机/无机复合渗透膜膜作为膜分离模块的主要功能模件,利用渗透膜对油品中的含硫化合物具有强的亲和作用,使油相中含硫化合物富集在靠近膜模块一侧,依靠与膜模块汽相一侧存在的高的浓度差,快速的选择性的透过膜·模块,进入渗透物蒸汽相一侧,从而使油品与含硫化合物分离,达到脱硫的目的。 [0011] The oil desulfurization process of the present invention are: the use of a highly hydrophilic chitosan adsorbed organic / inorganic composite membrane permeable film formed on the surface of hydrotalcite particles having a strongly hydrophilic synthetic lamellar structure the main function of the module as the membrane separation module, the use of permeable membrane has a strong effect on affinity and sulfur compounds in the oil, the oil phase is enriched in sulfur-containing compound film side close to the module, and the membrane module relies vapor high concentrations of and difference between fast-selective permeable membrane module into the permeate side of the vapor phase, so that the separation of the oil and a sulfur-containing compound, to achieve the purpose of desulfurization.

[0012] 上述用于膜分离的膜模块,可以是平板膜、管式膜以及多级平板膜的组合、多级管式膜的组合。 [0012] The membranes used in the membrane separation module, may be a flat film, a tubular membrane and a combination of a flat film multistage multistage tubular membrane.

[0013] 根据脱硫质量需要,可以采用单级膜模板方式进行,也可以采用二级、三级或多级组合膜模板方式进行。 [0013] The quality of desulfurization desired film pattern may be a single-stage manner, can also be used two, three or more stages film composition template manner.

[0014] 单级渗透膜模块的脱硫过程如附图I所示: [0014] Single-stage desulfurization process osmosis membrane module as shown in figures I:

[0015] 原料油品在较高的压力下,自油品进口送入膜分离模板油品液相一侧,膜的另一侦牝即富硫化合物渗透物蒸汽相一侧,保持真空或者较低的压力,由于复合渗透膜物质对极性有机化合物的强亲和作用,使油品中的含硫化合物在靠近膜模块附近富集,在膜两侧蒸汽压差的推动下,渗透通过膜,以蒸汽状态从膜渗透物一侧移去,脱硫后的油品自油品出口回收。 [0015] In the oil feedstock under high pressure, is fed from the oil inlet side of the membrane separation template oil phase, i.e., the film further investigation female sulfur compound-rich vapor phase permeate side, a vacuum or kept relatively a low pressure, due to the strong affinity of the composite material of the permeable membrane of polar organic compounds, sulfur-containing compounds to make the oil in the near vicinity of the enrichment membrane module, driven by vapor pressure difference across the membrane, the permeate through the membrane , removed from the vapor state to the permeate side of the membrane, the oil from the oil outlet desulfurized recovered.

[0016] 单级渗透膜模块脱硫的主要工艺条件如下: [0016] Single stage membrane module main desulfurization process conditions were as follows:

[0017] 待处理油品进料压力(I〜3. 3) X IO5Pa [0017] The feed pressure oil to be treated (I~3. 3) X IO5Pa

[0018] 待处理油品流量 115〜125L/min. [0018] The flow rate of the oil to be treated 115~125L / min.

[0019] 膜渗透物一侧真空度(7. 5〜8) X IO3Pa [0019] The permeate side of the membrane a degree of vacuum (7. 5~8) X IO3Pa

[0020] 渗透物蒸汽冷凝温度25〜30°C [0020] The permeate vapor condensation temperature of 25~30 ° C

[0021] 脱硫效果:残留硫含量90〜IlOppm硫脱除率93〜96%。 [0021] desulfurization: 90~IlOppm residual sulfur content of the sulfur removal rate of 93~96%.

[0022] 三级组合渗透膜模块的脱硫过程如附图2所示: [0022] Desulfurization three compositions osmosis membrane module as shown in Figure 2:

[0023] 原料油品首先进入第一级膜模块液相油品一侧,膜的渗透物一侧保持真空或者较低的压力,油品中的含硫化合物在膜两侧蒸汽压差的推动下,渗透通过膜,以蒸汽状态从膜渗透物一侧移去。 [0023] First, a raw material oil into the oil phase of the first stage membrane module side, permeate the membrane to maintain a vacuum or low pressure side, the difference in oil sulfur compounds to promote vapor pressure across the membrane , the permeation through the membrane, was removed from the vapor state to the permeate side of the membrane.

[0024] 经一级脱硫的低硫含量的油品再进入第二级膜分离模板的液相油品一侧,重复第一级模板的含硫化合物的分离过程,使液相油品中的硫含量进一步降低。 [0024] a low sulfur content oil was desulfurized liquid oil reentry side of the second membrane separation stage templates, repeated separation of sulfur compounds in a first stage template, the oil in the liquid phase to further reduce the sulfur content.

[0025] 经二级脱硫的油品,相继再进入第三级膜分离模板的液态油品一侧,再将其中的含硫化合物进行一次渗透分离,最后在液相油品一侧得到超低硫油品。 [0025] The desulfurized oil by two, and then enters the third stage sequentially oil liquid side of the membrane separation template, wherein the sulfur-containing compound and then once osmosis separation, the oil in the liquid finally obtained ultra-low side sulfur oil.

[0026] 三级渗透膜模块脱硫的主要工艺条件如下:[0027] 待处理油品进料压力(I〜3. 3) X IO5Pa [0026] The three main osmosis membrane module desulfurization process conditions were as follows: [0027] a feed pressure oil to be treated (I~3 3.) X IO5Pa

[0028] 待处理油品流量 115〜125L/min. [0028] The flow rate of the oil to be treated 115~125L / min.

[0029] 膜渗透物一侧真空度(I〜12) X IO3Pa [0029] The permeate side of the membrane a degree of vacuum (I~12) X IO3Pa

[0030] 渗透物蒸汽冷凝温度25〜30°C [0030] The permeate vapor condensation temperature of 25~30 ° C

[0031] 脱硫效果:残留硫含量< 15ppm [0031] desulfurization: residual sulfur content <15ppm

[0032] 为了获得优异的脱硫效果,选择性能优异的渗透膜是技术关键。 [0032] In order to obtain an excellent desulfurization effect, the permeable membrane having excellent selectivity is the key technology.

[0033] 本发明人在分析研究现有渗透膜的基础上,研制成功了一种壳聚糖/合成类水滑石复合渗透膜。 [0033] The present invention is based on the analysis of conventional permeable membrane, the successful development of a chitosan / synthetic hydrotalcite-like composite permeable membrane.

[0034] 本发明所采用的渗透膜的原料包括壳聚糖、合成类水滑石、丁二醛和合成纤维;壳聚糖与合成类水滑石形成的复合膜层有吸附浓集油品中极性含硫化合物并控制其在膜中渗透扩散过程,是主要的功能模件;丁二醛为交联材料,合成纤维素为膜材料的支撑层; [0034] The permeable membranes employed in the present invention include chitosan material, synthetic hydrotalcite, synthetic fibers and succinaldehyde; chitosan and composite film formed of synthetic hydrotalcite adsorption in a very concentrated oil sulfur-containing compounds and controls the diffusion in the membrane permeation, the main function modules; succinic dialdehyde crosslinked materials, synthetic cellulose material as the support layer film;

[0035] 渗透膜各原料组分用量的重量份数为:壳聚糖2〜10份,合成类水滑石70〜80份,丁二醛0. 2〜0. 9份,合成纤维17. 8〜19. I份。 [0035] parts by weight of component amounts of the raw materials for the permeable membrane: chitosan 2~10 parts of 70~80 parts of synthetic hydrotalcite, succinaldehyde 2~0 0. 9 parts of synthetic 17.8. ~19. I copies.

[0036] 其中,所选用的壳聚糖为脱乙酰度为75-85%,分子量为8000-15000的低分子的 [0036] wherein the selected degree of deacetylation of chitosan is 75-85%, the molecular weight of a low molecular weight 8000-15000

壳聚糖; Chitosan;

[0037] 所选用的骨架材料合成类水滑石是用MgCl2 • 6H20、AlCl3 • 6H20与FeCl3 • 6H20为原料,按(0.5〜0.9) : (3〜I) : (I〜3)的摩尔比合成制备的代表性分子式为Fea87Mg2 6tl[Al (OH)ltl 2Clci 6]的六边型层状结晶颗粒的层状类水滑石化合物。 [0037] The reinforcing material of choice is the synthesis of hydrotalcite MgCl2 • 6H20, AlCl3 • 6H20 and FeCl3 • 6H20 for a starting material (0.5~0.9): (3~I): molar ratio (I~3) Synthesis of representative of the formula is prepared Fea87Mg2 6tl [Al (OH) ltl 2Clci 6] of the hexagonal layered crystal particles of hydrotalcite-like layered compound. 粒径分布在60〜202nm,层状结晶的平均厚度30〜40nm,层间距0. 70〜0. 83nm,层间通道高度为0. 30〜0. 7nm,比表面积1200〜1820m2/g,零电荷点10. 35〜11. 25,等电点11. 2〜12. I。 Particle size distribution 60~202nm, the average thickness of the lamellar crystals 30~40nm, layer spacing 0. 70~0. 83nm, the inter-layer channel height 0. 30~0. 7nm, a specific surface area 1200~1820m2 / g, zero charge point 10. 35~11. 25, isoelectric point 11. 2~12. I. X射线分析证明其具有类水滑石晶体结构:其特征衍射角2 0分别为10.2(° ) ;22.5(° );34. 6 (。) ;59. 8 (。);特征峰d 值分别为0. 776nm ;0. 387nm ;0. 258nm ;0. 232nm。 X-ray analysis proved having hydrotalcite crystal structure: characterized in the diffraction angle 20 were 10.2 (°); 22.5 (°); 34 6; 59 8; characteristic peaks d values ​​were. (.). (.) 0. 776nm; 0 387nm;. 0 258nm;. 0 232nm..

[0038] 本发明所述油品脱硫方法中所采用的壳聚糖/合成类水滑石复合渗透膜的制备方法如下:将2〜10重量份的壳聚糖溶解在3wt%醋酸水溶液中,在不断搅拌下加入70〜80重量份的合成类水滑石细粉,搅拌2小时;在室温下加0. 8〜3. 6重量份的25被%丁二醛溶液,使壳聚糖发生交联反应,得到表面涂有交联壳聚糖膜的合成类水滑石悬浮液;将15%的合成纤维素溶液涂在玻璃基片表面上,在100°C下烘干,得到15-32i!m的支撑膜;再将制备好的壳聚糖/合成类水滑石的悬浮液旋涂在合成纤维支持膜上,60°C下烘干,得到总膜厚度为25-62um的膜,从玻璃基片表面上剥离下来,即为本脱硫方法所采用的渗透蒸发分离膜。 [0038] Chitosan oil desulfurization method of the present invention is employed in / synthetic method for preparing a composite hydrotalcite-permeable membrane is as follows: 2~10 parts by weight of chitosan were dissolved in 3wt% aqueous acetic acid, at synthetic hydrotalcite powder were added under constant stirring 70~80 parts by weight, and stirred for 2 hours; plus 0. 6 parts by weight of 8~3 are 25% succinic dialdehyde solution at room temperature, cross-linked chitosan. the reaction to obtain surface-coated with crosslinked synthetic hydrotalcite suspensions; 15% of synthetic cellulose solution was coated on a glass substrate surface, dried at 100 ° C, to give 15-32i m! the support film; then prepared chitosan / synthetic hydrotalcite suspension was spin-coated on a glass substrate from a synthetic film support, drying at 60 ° C, to give a total film thickness of a film of 25-62um, peeled on the sheet surface, i.e. the permeate this desulfurization method employed separation evaporated.

[0039] 本发明用于油品脱硫的复合膜中的壳聚糖分子可以插层到类水滑石的层间,膜表面和层间通道对水分子和极性有机化合物有强亲合能力,所谓强亲水性是其对水分子或极性有机化合物的强亲和力,这种强亲和作用源自壳聚糖分子中含有的大量的羟基和酰胺基以及合成类水滑石结构中的氢氧基团,这种强亲水性复合膜对汽油中的极性含硫化合物具有强亲和作用,有利于其在膜模块附近区域的浓集,膜模块中的合成类水滑石是一种具有一定刚性层状结构的无机材料,具有很大的比表面积。 [0039] The present invention is a composite film of chitosan oil desulfurization can be intercalated between the layers of hydrotalcite, between the film surface and the channel layer of water molecules and polar organic compound have a strong affinity capability, It is called strongly hydrophilic molecules whose strong affinity for water or polar organic compound, and the effect of this strong affinity from a large number of hydroxyl groups and amide groups as well as synthetic hydrotalcite-like structure contained in chitosan molecules hydroxide group, which strongly hydrophilic composite film having a strong affinity and a polar effect on gasoline sulfur compounds, it is advantageous to concentrate in the vicinity of the membrane modules, the membrane module is a synthetic hydrotalcite having certain inorganic material of rigid laminar structure, having a large surface area. 体系具有很大的传质界面和高的传质效率,该膜模块具有高的机械强度和较长的使用期限。 System having a large interfacial mass transfer and high mass transfer efficiency, the membrane module having a high mechanical strength and long life. 由于渗透膜中壳聚糖分子是分子水平的分布在合成类水滑石的表面上,再与丁二醛反应发生交联成网状结构,自由体积大,使膜具有高的渗透通量,对含硫化合物具有强的选择性透过能力。 Since chitosan is a permeable membrane of molecular level distribution in the surface of the synthetic hydrotalcite, and then reacted with succinic dialdehyde crosslinking into a network structure, a large free volume, the membrane having a high permeation flux, to sulfur-containing compounds having a selective permeability is strong. [0040] 本发明用于油品脱硫的复合膜渗透通量为120〜136kg/m2 *h,分离系数为56. 3〜62. 2。 [0040] The present invention is a composite film of oil desulfurization permeation flux was 120~136kg / m2 * h, the separation factor of 56. 3~62. 2.

[0041] 本发明用于膜分离的复合膜分离性能与现有技术对比如下: [0041] The composite membrane separation performance comparison with the prior art for the membrane separation of the present invention are as follows:

[0042] [0042]

Figure CN101927130BD00071

[0043] 对比文件: [0043] comparative file:

[0044] 〔 I〕、赵长伟、李继定等,《膜科学与技术》2006,26 (5),72 [0044] [I], Zhaochang Wei, given Li et al., "Membrane Science and Technology" 2006,26 (5), 72

[0045] (2) > HD Wang, LY Chu, et. al, ((J. of Membrane Sci)) 2007, 297, 262 [0045] (2)> HD Wang, LY Chu, et. Al, ((J. of Membrane Sci)) 2007, 297, 262

[0046] (3) > XL Fenjuan, ff. Wang, et. al, ((J. of Membrane Sci)) 2008, 311, 23 [0046] (3)> XL Fenjuan, ff. Wang, et. Al, ((J. of Membrane Sci)) 2008, 311, 23

[0047] (4), B. Li, D. XU, et. al, ((J. of Membrane Sci》2008,322,293 [0047] (4), B. Li, D. XU, et. Al, ((J. of Membrane Sci "2008,322,293

[0048] 本发明所述渗透蒸发分离脱硫方法,可用于各类油品中的所含的多种含硫化合物的分离。 [0048] The present invention pervaporation separation desulfurization process, can be used to separate the various sulfur compounds contained in various types of oil. 所述的原料油品可以是轻质石脑油、催化裂化轻汽油、催化裂化重质汽油和/或焦化液态烃类混合物。 The feedstock oil may be a light naphtha, FCC light gasoline, FCC heavy gasoline and / or coking of liquid hydrocarbon mixtures. 所述含硫化合物可以是硫醇类、硫化氢、硫醚类和/或噻吩类硫化物。 The sulfur-containing compound may be thiols, hydrogen sulfide, thioethers, and / or thiophenes sulfides.

附图说明: BRIEF DESCRIPTION OF:

[0049] 图I为使用单级渗透膜脱硫示意图 [0049] Figure I is a schematic diagram of a single stage desulfurization permeable membrane

[0050] 图2为使用三级渗透膜脱硫示意图[0051 ] 图3为-合成类水滑石X射线衍射图 [0050] FIG. 2 is a schematic three-permeable membrane used desulfurizing [0051] FIG. 3 is a - synthetic hydrotalcite-like X-ray diffraction

[0052] 其中图3中003峰d值为0. 776nm [0052] Figure 3 wherein d is 0. 776nm peak 003

[0053] 006 峰d 值为0. 387nm [0053] d 006 peak value of 0. 387nm

[0054] 009 峰d 值为0. 258nm [0054] d 009 peak value of 0. 258nm

[0055] 015 峰d 值为0. 232nm [0055] d 015 peak value of 0. 232nm

[0056] 具体实施方式: [0056] DETAILED DESCRIPTION:

[0057] 实施例I.单级渗透膜脱硫过程 EXAMPLE I. Single stage membrane desulfurization process [0057] Embodiment

[0058] 待处理原料油来自焦化轻油馏分,含硫化合物主要为噻吩、苯并噻吩,其硫含量为1590ppm.。 [0058] Pending coker gas oil fraction from the feedstock oil, a sulfur compound mainly thiophene, benzothiophene, sulfur content is 1590ppm .. 米用2重量份壳聚糖、80重量份合成类水滑石、0. 2重量份丁二醒和17. 8重量份醋酸纤维素制成的单级渗透膜模块。 Single stage membrane modules with 2 parts by weight of chitosan m, made of 80 parts by weight of a synthetic hydrotalcite, 0.2 parts by weight of butadiene and 17.8 parts by weight of wake cellulose acetate. 将待处理原料油在3. 3 X IO5Pa压力下,以120升/min的体积流量进入膜分离系统中,膜模块为单级平板膜,模板厚度62 um,膜模块渗透物汽相一侧的真空压力保持在7. 5X IO3Pa下,膜体系中的富硫渗透物蒸汽用26°C的急冷器凝结。 Oil feedstock to be treated at 3. 3 X IO5Pa pressure, a volume flow rate of 120 l / min into the membrane separation system, a single stage membrane module flat membrane, the thickness of the template 62 um, the membrane module the permeate side of the vapor phase vacuum pressure was maintained at 7. 5X IO3Pa, the membrane system of the sulfur-rich permeate vapor with a 26 ° C quench coagulating. 所得脱硫后产品油含硫为llOppm。 The resulting sulfur-containing oil is desulfurized product llOppm. 含硫化合物脱除率为93. 25%。 Sulfur-containing compound removal was 93.25%.

[0059] 实施例2.单级渗透膜脱硫过程 Example 2. Single stage membrane desulfurization process [0059] Embodiment

[0060] 待处理原料油来自催化裂化轻质石脑油,含硫化合物主要为硫醇类和噻吩,其硫含量为1590ppm.。 [0060] The feedstock to be treated from the catalytic cracking of light naphtha oil, a sulfur compound mainly mercaptans and thiophenes, sulfur content is 1590ppm .. 米用6重量份壳聚糖、74重量份合成类水滑石、0. 5重量份丁二醒和19. 5重量份醋酸纤维素制成的单级渗透膜模块。 Single stage membrane module meters with 6 parts by weight of chitosan, 74 parts by weight made of synthetic hydrotalcite, 0.5 parts by weight of butadiene and 19.5 parts by weight of wake cellulose acetate. 将待处理原料油在常压下,以115升/min的体积流量进入膜分离系统中,膜模块为单级平板膜,模板厚度56 um,膜模块渗透物汽相一侧的真空压力保持在SXlO3Pa下,膜体系中的富硫渗透物蒸汽用28°C的急冷器凝结。 Oil feedstock to be treated under atmospheric pressure, a volume flow rate of 115 l / min into the membrane separation system, the membrane module is maintained in a single stage flat membrane, the thickness of the template UM, the membrane module the permeate side vacuum pressure vapor phase 56 under SXlO3Pa, the membrane system of the sulfur-rich permeate vapor with a 28 ° C quench coagulating. 所得脱硫后广品油含硫为90ppm。 The resulting desulfurization wide product sulfur oil is 90ppm. 含硫化合物脱除率为95. 7*%。 Sulfur-containing compound removal was 95.7% *.

[0061 ] 实施例3.三级组合膜模块渗透-蒸发脱硫过程 [0061] Example 3. The three compositions permeation membrane module - evaporation desulfurization

[0062] 待处理原料油为催化裂化轻质石脑油,含硫化合物主要为硫醇类、噻吩类,其硫含量为1925ppm。 [0062] The feedstock to be treated is a catalytic cracking of light naphtha oil, a sulfur compound mainly mercaptans, thiophenes, sulfur content is 1925ppm. 米用10重量份壳聚糖、70重量份合成类水滑石、0. 9重量份丁二醒和19. I重量份醋酸纤维素制成级组合膜,模板厚度36 um,脱硫装置为三级渗透膜模块系统。 M with 10 parts by weight of chitosan, 70 parts by weight of synthetic hydrotalcite, 0.9 parts by weight of butylene and 19. I woke parts by weight of cellulose acetate grade composition formed a film, the thickness of the template 36 um, for the three desulfurization apparatus osmosis membrane module system. 将待处理原料油在I. IX IO5Pa下,流量125L/min下进入第一级膜模板高硫含量一侧,膜渗透物一侧保持11.9kPa的真空度。 Oil feedstock to be treated in I. IX IO5Pa, the flow rate of 125L / min into the template sulfur content side of the first stage membrane, the permeate side of the membrane to maintain a degree of vacuum of 11.9kPa. 渗透物汽相用26°C的急冷器冷凝。 Permeate vapor is condensed by a chiller 26 ° C. 经一级膜渗透分离后,贫硫渗透物的硫含量降低到425ppm,然后在I. IX IO5Pa,流量125L/min下进入第二级膜模板的较低硫含量油一侧。 After a membrane permeation separation, the sulfur content of the sulfur-depleted permeate is reduced to 425 ppm, the sulfur content of the oil and then into the lower template side of second stage membrane under I. IX IO5Pa, flow rate of 125L / min. 在渗透物一侧保持6. 6kPa的真空度。 6. 6kPa side holding the degree of vacuum in the permeate. 渗透物蒸汽用26°C的急冷器冷凝。 Permeate vapor is condensed by a chiller 26 ° C. 经第二级膜分离后,贫硫渗透物的硫含量降低到109ppm。 After the second stage membrane separation, the sulfur content of the sulfur-depleted permeate is reduced to 109ppm. 然后再进入第三级膜板分离进入压力为2. IX IO5Pa,流量95L/min渗透物一侧保持I. 3kPa的真空,渗透物蒸汽用26°C的急冷器冷凝。 Then enters the third stage membrane separation plate holder into the pressure quench I. 3kPa vacuum condensate, the permeate vapor with one side of 26 ° C 2. IX IO5Pa, flow rate 95L / min of permeate. 经第三级膜板分离后,产物汽油的硫含量为小于15ppm。 After the third stage membrane separation plate, the sulfur content of the product gas is less than 15ppm.

Claims (7)

1. ー种利用膜分离过程脱除油品中含硫化合物的方法,其特征在于采用将高亲水性壳聚糖吸附在具有层状结构的强亲水性合成类水滑石颗粒表面上形成的有机/无机复合渗透膜作为膜分离模块的主要功能模件,利用滲透膜对油品中的含硫化合物具有强的亲和作用,使油相中含硫化合物富集在靠近膜模块ー侧,依靠与膜模块汽相ー侧存在的高的浓度差,快速的选择性的透过膜模块,进入滲透膜蒸汽相ー侧,从而使油品与含硫化合物分离;所说的复合滲透膜由壳聚糖、合成类水滑石、丁ニ醛和醋酸纤维素制成,各组分用量的重量份数为:壳聚糖2〜10份,合成类水滑石70〜80份,丁ニ醛0. 2〜0. 9份,醋酸纤维素.17. 8〜19. I份;复合渗透膜的制备方法为:将壳聚糖溶解在3 wt%醋酸水溶液中,在不断搅拌下加入合成类水滑石细粉,搅拌2小时;在室温下加入25wt%丁 1. ー seed oil using a membrane separation method for removing sulfur-containing compounds, characterized in that a high hydrophilic chitosan is adsorbed on the surface of hydrotalcite particles strongly hydrophilic synthetic having a layered structure is formed the organic / inorganic composite osmosis membrane module as the main function of the membrane separation module, the use of permeable membrane has a strong effect on affinity and sulfur compounds in the oil, the oil phase is enriched in sulfur containing compound near the side of the membrane module ー, rely on high concentrations of the vapor-phase membrane module side ー difference exists, rapid selective permeable membrane module into the permeate side of the membrane ー vapor phase, thereby separating the oil with a sulfur containing compound; said composite permeable membrane made of a synthetic hydrotalcite chitosan, and cellulose acetate butyrate ni aldehyde, parts by weight of the amount of each component is: chitosan 2~10 parts of 70~80 parts of synthetic hydrotalcite, butyl aldehyde ni ... 2~0 0. 9 parts of cellulose acetate .17 8~19 I parts; a composite permeable membrane prepared as follows: chitosan is dissolved in 3 wt% aqueous acetic acid was added under constant stirring synthetic hydrotalcite powder, stirred for 2 hours; 25wt% butyrate was added at room temperature 醛溶液,使壳聚糖发生交联反应,得到表面涂有交联壳聚糖膜的合成类水滑石悬浮液;将15%的醋酸纤维素溶液涂在玻璃基片表面上,在100°C下烘干,得到15-32i!m的支撑膜;再将制备好的壳聚糖/合成类水滑石的悬浮液旋涂在醋酸纤维素支撑膜上,60°C下烘干,得到总膜厚度为.25-62 um的膜,从玻璃基片表面上剥离下来,即为所采用的复合渗透膜。 Aldehyde solution, chitosan crosslinking reaction, to give surface-coated with Crosslinked synthetic hydrotalcite suspensions; 15% cellulose acetate solution was coated on a glass substrate surface, at 100 ° C and dried at to give 15-32i m of the support film;! then prepared chitosan / synthetic hydrotalcite suspension was spin-coated in a cellulose acetate film support, 60 ° C and drying, to give a total film .25-62 um thick film peeled off from the glass substrate surface, the composite permeable membrane that is employed.
2.如权利要求I所述的利用膜分离过程脱除油品中含硫化合物的方法,其特征在于油品脱硫过程的エ艺条件如下: 原料油品进料压力(1〜3. 3) X IO5Pa 原料油品流量 115〜125L/min 膜渗透物ー侧真空度(1〜12) X IO3Pa 渗透物蒸汽冷凝温度25〜30°C。 2. I claim the method using a membrane separation process for removing sulfur compounds in the oil, wherein the process conditions Ester oil desulfurization process are as follows: feed pressure oil feedstock (~ 3 3.) X IO5Pa feedstock oil flow rate 115~125L / min ー permeate side of the membrane a vacuum of (1~12) X IO3Pa permeate vapor condensation temperature of 25~30 ° C.
3.如权利要求I所述的利用膜分离过程脱除油品中含硫化合物的方法,其特征在于所述的膜分离模块采用ー级、ニ级或三级组合膜模块系统。 I 3. The use as claimed in claim membrane separation method for removing sulfur compounds in the oil, wherein said membrane separator modules ー stages, three stages or a combination of Ni membrane module system.
4.如权利要求3所述的利用膜分离过程脱除油品中含硫化合物的方法,其特征在于ー级模块滲透脱硫过程为: 待处理油品在压カ下,自油品进ロ送入膜分离模块油品液相ー侧,膜的另ー侧,即富硫化合物渗透物蒸汽相ー侧,保持真空或者较低的压カ,油品中的含硫化合物在复合渗透膜的强亲和力作用下,向油相中靠近膜模块ー侧富集,在膜两侧蒸汽压差的推动下,滲透通过膜,以蒸汽状态从膜滲透物ー侧移去,脱硫后的油品自油品出口回收; 一级渗透膜模块脱硫的主要エ艺条件如下: 待处理油品进料压力(1〜3. 3) X IO5Pa 待处理油品流量115〜125L/min 膜渗透物ー侧真空度0. 5〜8) X IO3Pa 渗透物蒸汽冷凝温度25〜30°C。 4. The process of using a membrane separation method according to claim 3 in the desulfurization of oil, wherein the permeate module ー stage desulfurization process is: under the pressure of oil to be processed grades, since the oil feed into the ro membrane separation module into the oil phase ー side, the other side of the membrane ー, i.e., the sulfur compound-rich vapor phase ー permeate side, a vacuum or a low pressure holding ka strong sulfur-containing compounds in the oil the composite permeable membrane under the action of affinity, close to the oil phase enrichment membrane module ー side, driven by vapor pressure differential across the membrane of permeation through the membrane to the permeate from the membrane in a vapor state to the lateral ー, oil from an oil desulfurized recovering product outlet; a primary desulfurization osmosis membrane module Ester process conditions are as follows: feed pressure oil to be treated (1~3 3.) X IO5Pa flow rate of the oil to be treated 115~125L / min membrane permeate side of the vacuum degree ー0. 5~8) X IO3Pa permeate vapor condensation temperature of 25~30 ° C.
5.如权利要求3所述的利用膜分离过程脱除油品中含硫化合物的方法,其特征在于三级组合膜模块的脱硫过程为: 待处理油品首先进入第一级膜分离模块液相油品ー侧,膜的滲透物ー侧保持真空或者较低的压カ,油品中的含硫化合物在膜两侧蒸汽压差的推动下,滲透通过膜以蒸汽状态从膜渗透物一侧移去; 经ー级脱硫的低硫含量的油品再进入第二级膜分离模块的液相油品ー侧,重复第一级模块的含硫化合物的分离过程,使液相油品中的硫含量进ー步降低;经ニ级脱硫的油品,相继再进入第三级膜分离模块的液态油品ー侧,再将其中的含硫化合物进行一次滲透分离,最后在液相油品一侧得到超低硫油品; 三级组合膜模块脱硫的主要エ艺条件如下: 待处理油品进料压力(I〜3. 3) X IO5Pa 待处理油品流量115〜125L/min 膜渗透物ー侧真空度(I〜12) X IO3Pa 渗透 5. The process of using a membrane separation method according to claim 3 in the desulfurization of oil, the desulfurization process wherein the membrane module is a combination of three: First, the oil to be treated entering the first stage separation membrane module wasー oil phase side, the permeate side of the membrane ー maintain a vacuum or low pressure ka, oil sulfur compounds driven by vapor pressure differential across the membrane of permeation through the membrane in a vapor state from the membrane a permeate to sway; oil by a low sulfur content ー desulfurization stage into the liquid phase and then the oil ー second stage membrane separation module side, the separation process is repeated sulfur-containing compounds in a first stage module, the oil in the liquid phase the sulfur content of the feed to further reduce ー; ni oil level by desulfurization, into the liquid and then successively ー third stage of oil separation membrane module side, wherein the sulfur-containing compound and then once osmosis separation, the oil in the liquid phase and finally side of the ultra-low sulfur oil obtained; composite membrane modules three main Ester desulfurization process conditions are as follows: feed pressure oil to be treated (I~3 3.) X IO5Pa flow rate of the oil to be treated 115~125L / min membrane permeationー object side of the vacuum degree (I~12) X IO3Pa permeation 蒸汽冷凝温度25〜30°C。 Steam condensing temperature 25~30 ° C.
6.如权利要求I所述的利用膜分离过程脱除油品中含硫化合物的方法,其特征在于所采用的复合渗透膜中所选用的壳聚糖为脱こ酰度为75-85%,分子量为8000-15000的低分子的壳聚糖;所选用的合成类水滑石为层状结晶的类水滑石化合物,粒径分布60〜202nm,层状结晶平均厚度30〜40nm,层间距0. 70〜0. 83nm,层间通道高度0. 30〜0. 7nm,比表面积1200〜1820m2/g,零电荷点10. 35〜11. 25,等电点11. 2〜12. I。 6. I claim the method using a membrane separation process for removing sulfur compounds in the oil, characterized in that the composite permeable membranes employed in the chitosan is selected degree of de-acyl ko 75-85% molecular weight of the low molecular chitosan 8000-15000; chosen synthetic layered crystalline hydrotalcite hydrotalcite compound, the particle size distribution 60~202nm, the average thickness of the layered crystal 30~40nm, interlayer spacing 0 . 70~0. 83nm, the inter-layer channel height 0. 30~0. 7nm, a specific surface area 1200~1820m2 / g, 10. The point of zero charge 35~11. 25, isoelectric point 11. 2~12. I.
7.如权利要求I所述的利用膜分离过程脱除油品中含硫化合物的方法,其特征在于可用于各类油品中所含的多种含硫化合物的分离;所述的油品是轻质石脑油、催化裂化轻汽油、催化裂化重质汽油和/或焦化液态烃类混合物;所述含硫化合物是硫醇类、硫化氢、硫醚类和/或噻吩类硫化物。 Said oil; separation using a membrane as claimed in claim I during the method of removing sulfur compounds in the oil, characterized in that the sulfur may be used to separate a variety of various types of oil contained in the compound is light naphtha, FCC light gasoline, FCC heavy gasoline and / or coking liquid hydrocarbon mixture; said sulfur-containing compounds are thiols, hydrogen sulfide, thioethers, and / or thiophenes sulfides.
CN 200910020663 2009-04-16 2009-04-16 Method for removing sulfur-containing compounds from oil by utilizing membrane process CN101927130B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910020663 CN101927130B (en) 2009-04-16 2009-04-16 Method for removing sulfur-containing compounds from oil by utilizing membrane process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910020663 CN101927130B (en) 2009-04-16 2009-04-16 Method for removing sulfur-containing compounds from oil by utilizing membrane process

Publications (2)

Publication Number Publication Date
CN101927130A CN101927130A (en) 2010-12-29
CN101927130B true CN101927130B (en) 2012-11-28

Family

ID=43366717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910020663 CN101927130B (en) 2009-04-16 2009-04-16 Method for removing sulfur-containing compounds from oil by utilizing membrane process

Country Status (1)

Country Link
CN (1) CN101927130B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011079647A1 (en) * 2011-07-22 2013-01-24 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Membrane module for organophilic pervaporation
CN104629097B (en) * 2013-11-13 2017-02-08 中国科学院海洋研究所 Carboxymethyl chitosan-hydrotalcite nanocomposite hydrogel film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041212B2 (en) 2001-02-16 2006-05-09 W.R. Grace & Co. - Conn. Membrane separation for sulfur reduction
CN1974729A (en) 2006-11-23 2007-06-06 中国石油化工股份有限公司 Prepn process of membrane material for desulfurizing FCC gasoline
CN101100613A (en) 2006-07-06 2008-01-09 中国科学院大连化学物理研究所 Oil product desulfurization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041212B2 (en) 2001-02-16 2006-05-09 W.R. Grace & Co. - Conn. Membrane separation for sulfur reduction
CN101100613A (en) 2006-07-06 2008-01-09 中国科学院大连化学物理研究所 Oil product desulfurization method
CN1974729A (en) 2006-11-23 2007-06-06 中国石油化工股份有限公司 Prepn process of membrane material for desulfurizing FCC gasoline

Also Published As

Publication number Publication date
CN101927130A (en) 2010-12-29

Similar Documents

Publication Publication Date Title
Srivastava An evaluation of desulfurization technologies for sulfur removal from liquid fuels
CA2400629C (en) Process for removing mercury from hydrocarbons
RU2536989C2 (en) Sorbent
Padaki et al. Membrane technology enhancement in oil–water separation. A review
JP5373962B2 (en) Polymer membranes derived from aromatic polyimide membranes.
Yi et al. The influence of important factors on ultrafiltration of oil/water emulsion using PVDF membrane modified by nano-sized TiO2/Al2O3
JP5981989B2 (en) Polyimide gas separation membrane
Li et al. Pervaporation performance of PDMS-Ni2+ Y zeolite hybrid membranes in the desulfurization of gasoline
AU2003276161A1 (en) Method of purifying fischer-tropsch derived water
JP5607721B2 (en) High performance crosslinked polybenzoxazole and polybenzothiazole polymer films
SU1531842A3 (en) Method of removing sulfur combinations from gas
WO2003106353A1 (en) Method of purifying fischer-tropsch derived water
ES2572941T3 (en) Separation Process
Qader et al. Kinetics of the hydroremoval of sulfur, oxygen, and nitrogen from a low temperature coal tar
JP5750109B2 (en) Method for improving the selectivity of polybenzoxazole membranes
US7758751B1 (en) UV-cross-linked membranes from polymers of intrinsic microporosity for liquid separations
Lin et al. Recent advances in sulfur removal from gasoline by pervaporation
JP2008045060A (en) Method for recovering and purifying methane from biofermented gas by using adsorbent
Monash et al. Effect of TiO2 addition on the fabrication of ceramic membrane supports: A study on the separation of oil droplets and bovine serum albumin (BSA) from its solution
CN1422326A (en) Process for purifying a liquid hydrocarbon fuel
WO2011002745A1 (en) Membrane desulfurization of liquid hydrocarbons using an extractive liquid membrane contactor system and method
EP0325486B1 (en) Method of removing mercury from hydrocarbon oils
EP2644268A1 (en) Process and catalyst for desulfurization of hydrocarbonaceous oil stream
AU2008231735B2 (en) Method for reducing the mercury content of natural gas condensate and natural gas processing plant
WO1997040903A1 (en) Oil/water/biocatalyst three phase separation process

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
TR01 Transfer of patent right

Effective date of registration: 20160310

Address after: North Qilihe Road, Licheng District, Shandong city of Ji'nan Province, No. 2 250100

Patentee after: Shandong Taide New Energy Co., Ltd.

Address before: Xinluo Avenue high tech Zone of Ji'nan City, Shandong province 250100 No. 786 Room 201

Patentee before: Xinghuo Sci. & Tech. Research Inst., Jinan Dev. Zone

Effective date of registration: 20160310

Address after: North Qilihe Road, Licheng District, Shandong city of Ji'nan Province, No. 2 250100

Patentee after: Shandong Taide New Energy Co., Ltd.

Address before: Xinluo Avenue high tech Zone of Ji'nan City, Shandong province 250100 No. 786 Room 201

Patentee before: Xinghuo Sci. & Tech. Research Inst., Jinan Dev. Zone

C41 Transfer of patent application or patent right or utility model
PP01 Preservation of patent right

Effective date of registration: 20191017

Granted publication date: 20121128

PP01 Preservation of patent right