CN101925169B - Power control method in cognitive network - Google Patents

Power control method in cognitive network Download PDF

Info

Publication number
CN101925169B
CN101925169B CN 201010272343 CN201010272343A CN101925169B CN 101925169 B CN101925169 B CN 101925169B CN 201010272343 CN201010272343 CN 201010272343 CN 201010272343 A CN201010272343 A CN 201010272343A CN 101925169 B CN101925169 B CN 101925169B
Authority
CN
China
Prior art keywords
cognitive
user
power
represents
pj
Prior art date
Application number
CN 201010272343
Other languages
Chinese (zh)
Other versions
CN101925169A (en
Inventor
刘健
隆克平
吴霜
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to CN 201010272343 priority Critical patent/CN101925169B/en
Publication of CN101925169A publication Critical patent/CN101925169A/en
Application granted granted Critical
Publication of CN101925169B publication Critical patent/CN101925169B/en

Links

Abstract

本发明公开了一种认知网络中的功率控制方法首先将主用户所能承受的最大干扰功率值Imax融入功率控制方法当中,使得干扰温度能够直接影响效用函数uj(pj,pj)中代价系数的变化,进而影响到整个效用函数uj(pj,pj),然后,通过迭代计算,得到各认知用户的功率,在一定程度上保证了认知用户的功率控制公平性。 The present invention discloses a power control method in a cognitive network first primary user can withstand the maximum value Imax interference power into power control methods, the interference temperature that can directly affect utility function uj (pj, pj) in consideration coefficient changes, thereby affecting the overall utility function uj (pj, pj), and then, through an iterative calculation, to give each user the cognitive power, guarantees a certain degree of power control fairness cognitive user.

Description

一种认知网络中的功率控制方法 The power control method of a cognitive network

技术领域 FIELD

[0001] 本发明属于认知无线电技术领域,更为具体地讲,涉及一种认知网络中的功率控制方法。 [0001] The present invention belongs to the field of cognitive radio technology, and more particularly, to a power control method in a cognitive network.

背景技术 Background technique

[0002] 近年来,不断增长的对于各种无线技术的依赖引发了对频谱带宽的巨大需求。 [0002] In recent years, a growing dependence on wireless technologies triggered a huge demand for spectrum bandwidth. 传统模式的无线网络按照一种固定的频谱分配方式将大部分频谱资源分配给主用户(Primary User),然而大部分的频谱利用率很低,甚至低至15 为此,人们提出了认知无线电的概念,其基本出发点就是:为了提高频谱利用率,具有认知功能的无线通信设备可以按照某种“伺机(Opportunistic Way) ”的方式工作在已授权的频段内。 The traditional model of wireless network in accordance with a fixed spectrum allocation spectrum resources allocated to most of the main user (Primary User), but most of the spectrum utilization is low, even as low as 15 this end, it is proposed cognitive radio the concept, which is the basic starting point: a wireless communication device in order to improve spectrum efficiency, with cognitive function can work within the authorized frequency bands in accordance with a kind of "opportunistic (opportunistic way)" approach. 这种在空域、时域和频域中出现的可以被利用的频谱资源被称为“频谱空洞”。 In this airspace, may be utilized spectrum resources occur time domain and frequency domain is called "spectrum holes." 认知无线电的核心思想就是使无线通信设备具有发现“频谱空洞”并合理利用的能力。 The core idea is to make the cognitive radio wireless communication devices have the ability to find "spectral hole" and rational use.

[0003] 功率控制是认知无线电的一项关键技术,对认知用户进行有效的功率控制不仅能降低认知用户之间的干扰,同时也能降低对主用户的干扰。 [0003] Power control is a key technology of cognitive radio, cognitive power effectively control the user can not only reduce interference between cognitive users, but also to reduce interference to the primary user. 研究表明,博弈论作为数学的一个分支,是处理无线环境中分布式资源最优分配的一个有力工具,而分布式功率控制可以建成一个非合作的博弈模型,也就是说模型中,每个用户都是理性和自私的。 Studies have shown that Game theory is a branch of mathematics, is a powerful tool for handling wireless environment optimal allocation of distributed resources, and distributed power control can be built as a non-cooperative game model, that model, each user They are rational and selfish.

[0004] 干扰是衡量无线传输过程的一个重要指标,近年来,FCC(美国联邦通信委员会)提出了一种新的模型来测量发生在接收端的干扰值,称之为干扰温度。 [0004] Interference is an important indicator of the radio transmission process, in recent years, the FCC (Federal Communications Commission) proposed a new model to measured interference values ​​occurring at the receiving end, called the interference temperature. 与传统方法不一样,干扰温度模型基于干扰门限值在主用户接收端对所有干扰进行管理限制,该门限值是主用户接收端所能承受的干扰总和。 Not the same as the conventional method, interference temperature model based on the received interference threshold in the master UE manages all limit the interference, the interference threshold value is the sum of the primary user of the receiving end can bear. 也就是说,干扰温度模型设定了一个干扰最大值,只要所有干扰的综合不超过这个最大值,认知用户就可以使用该频段。 In other words, the interference temperature model sets a maximum interference, as long as all interference does not exceed the maximum overall cognitive users can use the band.

发明内容 SUMMARY

[0005] 本发明目的在于提出一种认知网络中的功率控制方法,保证认证用户功率得到公平控制。 [0005] The object of the present invention is to provide a power control method for a cognitive network, user authentication to ensure a fair power control.

[0006] 为实现上述发明目的,本发明认知网络中的功率控制方法,其特征在于,包括以下步骤: [0006] In order to achieve the above object, a power control method of the present invention, the cognitive network, characterized by comprising the steps of:

[0007] (I)、定义效用函数 [0007] (I), the definition of the utility function

[0008] Uj(pJ,p_j) = \n(l +Zj)-CjPj = ln(l + 7y)-^e*(/'/o)/?; (I) [0008] Uj (pJ, p_j) = \ n (l + Zj) -CjPj = ln (l + 7y) - ^ e * (/ '/ o) / ?; (I)

[0009] 每一个认知用户自身的功率值构成功率向量p = [P1,P2,...,pN],其中,N为人知用户的数量,PJ表示向量P除去第j个认知用户功率值的剩余部分; [0009] Each user's own perception constituting a power value of a power vector p = [P1, P2, ..., pN], where, N-known number of users, PJ vector P represents the j cognitive users remove power the remaining portion of the value;

[0010] al、效用部分 [0010] al, utilities of

[0011] ln(l+Yj)为效用部分,表示认知用户j的得益; [0011] ln (l + Yj) is part of the utility, user j represents the cognitive benefit;

[0012] 效用部分的Y」表示认知用户j的SIR(Signal-to_Interference Ratio信干比),其定义如下:[0013] [0012] Utility moiety Y 'represents a cognitive user j SIR (Signal-to_Interference Ratio Signal to Interference Ratio), which is defined as follows: [0013]

Figure CN101925169BD00051

[0014] 其中,W表示可利用的频谱带宽,R是比特率,δ 2是在认知基站的高斯白噪声,Pj是认知用户j的功率,h表示认知用户j到基站的路径增益,,而A是一个常数,A=O. 097, dj表示认知用户j到基站的距离; [0014] where, W represents the available spectrum bandwidth, R is the bit rate, δ 2 is the white Gaussian noise of the base station cognitive, Pj is the power cognitive user j, h j represents the path gain cognitive users of the base station ,, and a is a constant, a = O 097, dj represents the cognitive users from the base station j.;

[0015] Σ'Α表示除第j个认知用户外,其他认知用户i功率与路径增益乘积之和; i*j [0015] Σ'Α j represents the addition of cognitive users, power and other cognitive user i and the path gain product; i * j

[0016] a2、代价部分 [0016] a2, part of the cost

[0017] CJy 为代价部分,表示认知用户j需要付出的代价,以限制认知用户j为了得到高的效用值而无限提高自身的发射功率,若只是考虑用户的自私性,整个系统的性能就会降低; [0017] CJy expense portion j represents the cognitive user needs to pay the price, in order to limit the cognitive user j to obtain high utility value infinitely increase its transmission power, if only the performance of the user selfish considerations, the entire system will be reduced;

[0018] 其中,Cy =々A(/_W为代价系数,λ是一个常系数,b是扩大因子,以扩大代价系数的 [0018] wherein, Cy = 々A (/ _ W expense factor, [lambda] is a constant coefficient, b is a scale factor to expand the cost coefficients

影响效果;Ιο是常数,I。 Effect effect; Ιο is a constant, I. = O. 9Imax是设定的一个干扰门限值,而Imax表示主用户所能承受的最大干扰功率值,也就是干扰温度; = O. 9Imax interference is a set threshold, and Imax represents the maximum value of interference power can withstand the primary user, that is, interference temperature;

[0019] [0019]

Figure CN101925169BD00052

巧表示所有认知用户对主用户干扰的总和,式中gj的作用和比类似,表示 Qiao cognitive users represents the sum of all interference to primary users, wherein gj than similar role and represents

认知用户j与主用户之间的路径增益,& ,1_表示认知用户到主用户的距离,在整个 Cognitive path gain between the user and the primary user j, &, cognitive 1_ represents the distance to the user's primary user, the entire

效用函数中,I会随着P」的增大而增大,越高的I会导致代价系数呈几何倍数增加,从而引起更高的代价。 Utility function, I will with increasing P "increases, the higher the cost will cause the I coefficients fold increase exponentially, resulting in a higher price.

[0020] (2)、迭代计算,得到各认知用户的功率 [0020] (2), the iterative calculation, the power of each user awareness

[0021] bl、设置迭代次数k = O时的初始功率,即: [0021] bl, provided the number of iterations k = O when the initial power, namely:

[0022] P (k = O) = [P1 (k = O) , p2 (k = O), · · · , pN (k = O) ] = [plmin, p2min,, pNmin],其中,Pimin,Panm,. . .,Pi«n为各认知用户功率取值空间中的最小值,同时定义精度值ε,ε > [0022] P (k = O) = [P1 (k = O), p2 (k = O), · · ·, pN (k = O)] = [plmin, p2min ,, pNmin], wherein, Pimin, Panm ,..., Pi «n is the power value of each user cognitive minimum space, while the definition of precision value ε, ε>

(); ();

[0023] b2、令迭代次数k = k+1,令: [0024] [0023] b2, so that the number of iterations k = k + 1, so that: [0024]

Figure CN101925169BD00053

[0025] 对于第j个认知用户,令: [0025] For the first j cognitive users, so that:

[0026] [0026]

Figure CN101925169BD00054

[0027] 然后通过以下公式不断更新功率的取值,获得认知用户j在该次迭代中新的功率值: [0027] and then keep power by the following formula value, access to cognitive user j new power value in this iteration:

[0028] [0028]

Figure CN101925169BD00055

[0029] b3、对于所有的认知用户,如果IP」(k) -Pj (k-1) I ( ε,那么化(k)就是需要得到的最优功率值,否则就返回步骤b2,继续进行下一次迭代过程。 [0029] b3, for all the cognitive users, if the IP "(k) -Pj (k-1) I (ε, then of the (k) is the optimal power value needs to be, otherwise it returns to step b2, continue under one iteration process.

[0030] 在本发明中,认知网络中的功率控制方法首先将主用户所能承受的最大干扰功率值Imax融入功率控制方法当中,使得干扰温度能够直接影响效用函数+ (Pp p_p中代价系数C7 =如吣㈦的变化,进而影响到整个效用函数Uj (Pj, p_j),然后,通过迭代计算,得到各认知用户的功率,在一定程度上保证了认知用户的功率控制公平性。 [0030] In the present invention, the power control method in a network Cognitive first primary users can withstand the maximum value Imax interference power into power control methods, the interference temperature that can directly affect utility function + (Pp p_p factor in the cost of (vii) C7 = Qin such changes, thereby affecting the overall utility function Uj (Pj, p_j), and then, through an iterative calculation, to give each user the cognitive power, guarantees a certain degree of power control fairness cognitive user.

附图说明 BRIEF DESCRIPTION

[0031] 图I是本发明认知网络示意图; [0031] FIG. I is a schematic view of the present invention, the cognitive network;

[0032] 图2是认知用户的功率值比较图; [0032] FIG. 2 is a cognitive power value comparing FIG user;

[0033] 图3是认知用户的效用函数值比较图; [0033] FIG. 3 is a cognitive user utility function value comparison graph;

[0034] 图4是认知用户的收敛过程图。 [0034] FIG. 4 is a cognitive user convergence FIG.

具体实施方式 Detailed ways

[0035] 下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。 [0035] DETAILED DESCRIPTION OF THE DRAWINGS Embodiment of the present invention will be described so that others skilled in the art better understand the present invention. 需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。 Need to remind noted that in the following description, when a detailed description of known functions and design may dilute the main content of the present invention, the description here will be ignored.

[0036] 图I是本发明认知网络示意图。 [0036] FIG. I is a schematic view of the present invention, the cognitive network.

[0037] 在本实施例中,如图2所示,认知网络有N个认知用户,一个认知基站和一个主用户。 [0037] In the present embodiment, as shown in FIG. 2, the cognitive network has N cognitive users, a base station and a primary user perception. 由于主用户与认知用户相互影响,因此,博弈论提供了一个分析这种行为的框架体系。 As the primary user interaction and cognitive user, therefore, game theory provides a framework for a system of analysis of this behavior.

[0038] 一、博弈模型的确定 [0038] determine a Game Model

[0039] 通用的非合作功率控制博弈模型定义如下: [0039] The generic non-cooperative power control game model is defined as follows:

[0040] G= [N, {Pj}, {uj ( · ) I ] (6) [0040] G = [N, {Pj}, {uj (·) I] (6)

[0041] 该博弈模型包括了三个要素: [0041] The game model consists of three elements:

[0042] I、参与者:je {1,2, · · ·,N},其中,j = 1,2, · · ·,N表示第j个认知用户; [0042] I, participants: je {1,2, · · ·, N}, wherein, j = 1,2, · · ·, N j represents the cognitive users;

[0043] 2、策略空间:P = P1XP2XPn表示所有的功率向量,其中乃=[0,乃读示第j个认知用户的取值空间,声,_表示第j个认知用户的最大传输功率值,每一个认知用户的功率值构成功率向量P = [P1, p2,...,pn] e P ; [0043] 2, strategy space: P = P1XP2XPn vector represents all the power, which is the = [0, is shown reading the j-th value of cognitive user space, sound, _ represents the j-th maximum transmission cognitive users power value, for each user a cognitive power value constituting a power vector P = [P1, p2, ..., pn] e P;

[0044] 3、效用函数:第j个认知用户的效用函数用Uj(P)来表示。 [0044] 3, the utility function: j-th cognitive user utility function denoted by Uj (P). 通常情况,我们也采用另外一种表示方式+ (Pppj,其中P。表示向量P除去第j个认知用户功率值的剩余部分。 Typically, we employ another representation + (Pppj, where P represents the vector P. removing the remaining portion of the j-th power value cognitive users.

[0045] 二、效用函数 [0045] Second, the utility function

[0046] 基于上述博弈模型,在本发明中,将干扰温度作为代价函数的一部分,即将最大干扰功率值Imax融入功率控制方法当中,使得干扰温度能够直接影响效用函数+ (PjjP^j)中代价系数c, 的变化,进而影响到整个效用函数。 [0046] The game model, in the present invention, the interference temperature as part of the cost function, i.e. the maximum interference power value Imax into a power control method which, so that the interference temperature can directly affect utility function + (PjjP ^ j) in consideration the coefficient C, changes, thereby affecting the overall utility function. 因为认知用户在传输过程中会对主用户产生干扰,所以,用户必须尽可能使用最小的传输功率并达到最好的传输效果。 Cognitive because users will interfere with primary users during transmission, the user must use a minimum transmission power and achieve the best possible transmission. 因此,在本发明中,效用函数定义如下: Accordingly, in the present invention, the utility function is defined as follows:

[0047] Uj{p _j) = \n(l +r^-CjPj = \n{\ +Yj)-Iebu^pj [0047] Uj {p _j) = \ n (l + r ^ -CjPj = \ n {\ + Yj) -Iebu ^ pj

[0048] 三、纳什均衡的存在性和唯一性证明 [0048] Third, the existence and uniqueness of Nash equilibrium of proof

[0049] 纳什均衡的定义:如果一个博弈模型G= [N, {Pj} , {Uj(·)}],对每一个用户,uj(Pj,Pj)彡Uj (P' j,Pj),并且P' je Pj,那么功率向量P = [P17P2,. ··,PN]就是该博弈模型的纳什均衡点。 [0049] The Nash Equilibrium is defined: If a Game Model G = [N, {Pj}, {Uj (·)}], for each user, uj (Pj, Pj) San Uj (P 'j, Pj), and P 'je Pj, then the power vector P = [P17P2 ,. ··, PN] Nash equilibrium is the game model. [0050] 纳什均衡是一个稳定状态,参与者通过竞争与自我优化达到一个均衡状态,而在这个状态下,没有任何用户愿意单方面的偏移,同时,在给定的其他用户的功率值的情况下,也没有任何用户能够通过单独改变自身的功率来提高效用值,这个功率值是对其他用户已选择功率的最优反应。 [0050] Nash equilibrium is a steady state, the participants through competition and self-optimization to reach an equilibrium state, and in this state, without any user willing to unilaterally offset, at the same time, the power given to other users of the value of case, there is no single user can change its power to improve the utility value, the power value is best response to other user has selected power.

[0051] 存在性: [0051] Existence of:

[0052] 纳什均衡存在定理:若对于所有用户都满足以下两个条件,则该博弈模型G = [N,{Pj}, 存在纳什均衡点: [0052] Nash equilibrium existence theorem: If the following two conditions are satisfied for all users, the game model G = [N, {Pj}, Nash equilibrium exists:

[0053] a. Pj是欧几里德空间中的一个非空的,凸性的紧致子集; . [0053] a Pj is a non-empty, the convexity compact subset Euclidean space;

[0054] b, Uj (P)在P上是连续的,并且关于P」具有拟凹性。 [0054] b, Uj (P) is continuous in P, and the on P "having a quasi-concavity.

[0055] 由于认知用户的功率都是定义在一个最大和最小功率之间的一个闭子集,所以的功率都在其中,因此,第一个条件就满足了,我们只需证明第二个条件满足即可。 [0055] Since the user's cognitive power is defined between a closed subset of a maximum and minimum power, the power in which, therefore, would meet the first condition, we only need to show a second conditions can be.

[0056] 我们对效用函数Uj (ρ」,ρ_」),求关于Pj的二阶导数: [0056] We utility function Uj (ρ ', ρ_ "), find the number on Pj second derivative:

[0057] [0057]

Figure CN101925169BD00071

[0058] 从以上公式我们容易得出,效用函数ΐ!」(ρ」,ρ_ρ的二阶导数恒小于0,即: [0058] It is easy to draw from the above formula, the utility function ΐ '(ρ ", the second derivative of ρ_ρ constant is less than 0, that is!:

[0059] [0059]

Figure CN101925169BD00072

[0060] 二阶导数恒小于O表明,效用函数关于P」是凹函数,因为凹函数一定是拟凹性的,因此,效用函数关于Pj是拟凹的,第二个条件得以证明。 [0060] O is less than the second derivative constant indicate the utility function of the P "is a concave function, because the function must be quasi-concave recess nature and, thus, the utility function is a quasi-concave on Pj, the second condition is proved.

[0061] 综上所述,本发明提出的效用函数Uj(Pj,p_j)能够满足纳什均衡存在定理的所有条件,因此,在这个博弈模型中至少存在一个纳什均衡点。 [0061] In summary, the utility function is Uj (Pj, p_j) proposed by the present invention can satisfy all the conditions of the Existence of Nash equilibrium, therefore, the presence of at least one game Nash equilibrium in this model.

[0062]唯一性: [0062] uniqueness:

[0063] 在博弈论中,效用函数的一阶导数也可以称之为反应函数,该函数的解被定义为纳什均衡点。 [0063] In game theory, the first derivative of the utility function may be a function called reaction, the solution is defined as a function of the Nash equilibrium. 因此,令效用函数的一阶导数等于0,即: Accordingly, a first derivative equal to zero so that the utility function, namely:

[0064] [0064]

Figure CN101925169BD00073

[0065] 所得到的结果也就是我们需要的纳什均衡值。 [0065] The results obtained Nash equilibrium value is what we need.

[0066] 我们将效用函数的一阶导数拆分为两部分: [0066] We will first derivative of the utility function is split into two parts:

[0067] [0067]

Figure CN101925169BD00074

[0068] [0068]

[0069] 那么对效用函数一阶导数的求解过程可以描述成以下形式: [0069] then the utility function of the number of the first derivative of the solution process may be described as the following form:

[0070] [0070]

Figure CN101925169BD00075

[0071] 容易证明公式(10)的一阶导数小于0,而公式(11)的一阶导数大 The first derivative [0071] easy to prove that the formula (10) is the first derivative is less than 0, the equation (11) a large number of

于O。 To O. 显然, Obviously,

Figure CN101925169BD00076

是关于Pj的严格的单调减函数,而 ν是关于Pj的严格的单调增函数,同时我们可以得到 Pj is on strict monotonically decreasing function, and ν is strictly monotonically increasing function with respect to Pj, and we can get

Figure CN101925169BD00081

以及 as well as

Figure CN101925169BD00082

结合之前已经ilE明了该博弈模型纳什均衡的存在性,可 Before unions have been ilE clear existence of Nash equilibrium of the game model, can

以得出方程(12)具有唯一解,也就是说效用函数μj(ρj,ρ-j)的纳什均衡点唯一。 To arrive at equation (12) has a unique solution, that is to say the utility function μj (ρj, ρj) Nash equilibrium is unique.

[0072] 实例 [0072] Examples

[0073] 在一个认知系统中,有8个认知用户和I个主用户,8个认知用户离认知基站的距离为d= [320 360 400 440 490 530 580 640]m,离主用户的距离为D = [342365 383 [0073] In one cognitive system, eight cognitive users and primary users I, from 8 cognitive cognitive users from the base station is d = [320 360 400 440 490 530 580 640] m, from the main user distance is D = [342365 383

408 436 468 502 544]m,其余的参数设定如表I所示: 408 436 468 502 544] m, the rest of the parameter settings as shown in Table I:

Figure CN101925169BD00083

[0075]表 I [0075] TABLE I

[0076] 图2是认知用户的功率值比较图、图3是认知用户的效用函数值比较图。 [0076] FIG. 2 is a user of the cognitive power value comparison, and FIG. 3 is a cognitive user utility function value comparison FIG.

[0077] 在图2和图3中,现有技术的曲线表示只有静态代价系数的效用函数的曲线图,该效用函数是Uj(PpPy) = In (1+Y P-CjPj,其中Cj为固定常数;本发明的曲线是指具有基于干扰温度的动态代价系数构成的效用函数的曲线。 [0077] In FIG. 2 and FIG. 3, the prior art curve graph utility function indicates that only static coefficient cost of the utility function is Uj (PpPy) = In (1 + Y P-CjPj, wherein Cj fixed constants; curve means the curve of the present invention have utility function is based on the cost coefficient of dynamic configuration of the interference temperature.

[0078] 图2比较的是两者的功率值,图中显示了纳什均衡状态下每个认知用户最终的功率取值情况,从图中可以直观的看出,本发明提出的博弈模型所得到的功率值较低,而且随着距离的变化,功率的变化较平缓。 [0078] Figure 2 compares the power values ​​of both, the final figure shows the case where the power value of each cognitive user Nash equilibrium, can be intuitively seen from the figure, game model proposed by the present invention lower power values ​​obtained, and with the change in the distance, the more gradual change in power.

[0079] 图3比较的是两者的效用值,结合图3的结果,我们可以得出,本发明提出的效用函数在较低功率的情况下,能得到较高的效用值。 [0079] FIG. 3 is a comparison of the utility values ​​of both, the results in conjunction with FIG. 3, we can conclude that the proposed utility function of the present invention with lower power, higher utility value can be obtained.

[0080] 综合图2和图3,容易得到,本发明提出的基于动态代价系数的功率控制方法具有明显的改善。 [0080] FIGS. 2 and 3 integrated, readily available, proposed by the invention has significantly improved the dynamic power control method based on the cost coefficient.

[0081] 图4是认知用户的收敛过程图。 [0081] FIG. 4 is a cognitive user convergence FIG. 表示的是发明提出的功率控制的收敛过程,从图4中可以看出,所有认知用户大都在迭代30次左右趋于平稳状态,虽然这个收敛速度并不是很快,但是动态代价系数在一定程度上保证了系统的公平性。 Represents the convergence process of the invention, the proposed power control, can be seen from Figure 4, all cognitive users mostly in about 30 times iteration stabilized state, although the convergence speed is not fast, but the cost of the dynamic coefficient of a certain to ensure the fairness of the system extent.

[0082] 本发明提供了一种认知无线系统中认知用户和主用户之间的功率控制方法,通过建立了新的博弈模型和具有基于干扰温度的动态代价系数的效用函数,对认知用户功率进行有效控制,保证各认知用户的公平性。 [0082] The present invention provides a power control method between the user and the primary user awareness in a cognitive radio system, by establishing a new utility function game model and dynamic coefficient based on the cost of interference temperature, cognitive user power for effective control to ensure the fairness of each cognitive user. [0083] 尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。 [0083] While on the face of specific embodiments illustrative of the present invention has been described in order to understand the present invention, the present technology leading in the art, it should be clear that the invention is not limited to the scope of particular embodiments of ordinary skill in the art speaking, within the spirit and scope of the invention as variations in the appended claims is defined and determined, and these changes will be apparent, all using the concepts of the present invention are inventions in the protection column.

Claims (1)

1. 一种认知网络中的功率控制方法,其特征在于,包括以下步骤: (1)、定义效用函数 A method for controlling power in a cognitive network, characterized by comprising the steps of: (1) definition of the utility function
Figure CN101925169BC00021
(I) 每ー个认知用户自身的功率值构成功率向量P = [Pi,P2,...,PN],其中,N为认知用户的数量,PJ表示向量P除去第j个认知用户功率值的剩余部分;al、效用部分ln(l+Yj)为效用部分,表示认知用户j的得益; 效用部分的Y j表示认知用户j的SIR(Signal-to_Interference Ratio信干比),其定义如下: (I) each ー cognitive users own power constituting a power value vector P = [Pi, P2, ..., PN], where N is the number of user awareness, PJ vector P represents the j-th cognitive removed the remaining part of the user power value; Al, utilities of ln (l + Yj) is part of the utility, user j represents the cognitive benefit; the Y j represents the cognitive part of the utility of user j SIR (Signal-to_Interference ratio SIR ), defined as follows:
Figure CN101925169BC00022
其中,W表示可利用的频谱带宽,R是比特率,5 2是在认知基站的高斯白噪声,Pj是认知用户j的功率,hj表示认知用户j到基站的路径增益,〜=A/d),而A是ー个常数,A =.0. 097,dj表不认知用户j到基站的距尚; 表示除第j个认知用户外,其他认知用户i功率与路径增益乘积之和; a2、代价部分り巧巧为代价部分,表示认知用户j需要付出的代价,以限制认知用户j为了得到高的效用值而无限提高自身的发射功率,若只是考虑用户的自私性,整个系统的性能就会降低; 其中,り=ル丨、)为代价系数,入是ー个常系数,b是扩大因子,以扩大代价系数的影响效果do是常数,Itl = 0. 91_是设定的一个干扰门限值,而Imax表示主用户所能承受的最大干扰功率值,也就是干扰温度; Wherein, W represents the available spectral bandwidth, R is the bit rate, 52 is a white Gaussian noise of the base station cognitive, cognitive user j Pj of power, HJ cognitive user j represents the path gain of the base station, ~ = a / d), and a is a constant ー, a = .0 097, dj table is not yet cognitive user j to the base station from the;. j represents addition of cognitive users, the power of user i and other cognitive path and the gain product; A2, part of the cost of the cost of part Qiaoqiao ri, j indicates cognitive users need to pay the cost to limit cognitive user j in order to obtain a high utility value infinitely increase their transmit power, if only consider the user selfishness, overall system performance will be reduced; wherein ri = Hikaru Shu,) the cost coefficients, the constant coefficients a ー a, b is a scale factor, so as to expand the cost effect do is a constant coefficient, Itl = 0 . 91_ interference is a set threshold, and Imax represents the maximum value of interference power can withstand the primary user, that is, interference temperature;
Figure CN101925169BC00023
表示所有认知用户对主用户干扰的总和,式中的作用和比类似,表示认知用户j与主用户之间的路径增益,め=^/KA表示认知用户到主用户的距离,在整个效用函数中,I会随着h的增大而増大,越高的I会导致代价系数呈几何倍数増加,从而引起更高的代价; (2)、迭代计算,得到各认知用户的功率bl、设置迭代次数k = 0时的初始功率,即: p(k = 0) = [pj(k = 0),p2(k = 0),…,pN(k = 0)] = [plmin, p2min,…,pNmin],其中,Plmin,P2min,. . .,PNmin为各认知用户功率取值空间中的最小值,同时定义精度值e,e > 0 ;b2、令迭代次数k = k+1,令: Represents the sum of all primary users cognitive user interference, and wherein the ratio of similar role, cognitive represents the path gain between user and the primary user j, Circular = ^ / KA represents primary user from the user's knowledge, the throughout the utility function, as will I h increases zo large, the higher the cost factor I will lead to increase in multiples exponentially, resulting in a higher price; (2), the iterative calculation, the power of each user awareness BL, setting the number of iterations k = initial power 0, that is: p (k = 0) = [pj (k = 0), p2 (k = 0), ..., pN (k = 0)] = [plmin, p2min, ..., pNmin], wherein, Plmin, P2min ,., PNmin is the minimum power value of each of the cognitive user space, also define precision value e, e> 0;.. b2, so that the number of iterations k = k +1, so that:
Figure CN101925169BC00024
对于第j个认知用户,令: For the first j cognitive users, so that:
Figure CN101925169BC00031
然后通过以下公式不断更新功率的取值,获得认知用户j在该次迭代中新的功率值: Then keep power by the following formula value, access to cognitive user j new power value in this iteration:
Figure CN101925169BC00032
b3、对于所有的认知用户,如果|pdk)-pjk-l) I ≤z,那么pjk)就是需要得到的最优功率值,否则就返回步骤b2,继续进行下一次迭代过程。 b3, for all the cognitive users, if | pdk) -pjk-l) I ≤z, then pjk) is the optimal power value needs to be, otherwise it returns to step b2, proceed with the next iteration.
CN 201010272343 2010-09-03 2010-09-03 Power control method in cognitive network CN101925169B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010272343 CN101925169B (en) 2010-09-03 2010-09-03 Power control method in cognitive network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010272343 CN101925169B (en) 2010-09-03 2010-09-03 Power control method in cognitive network

Publications (2)

Publication Number Publication Date
CN101925169A CN101925169A (en) 2010-12-22
CN101925169B true CN101925169B (en) 2012-12-05

Family

ID=43339712

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010272343 CN101925169B (en) 2010-09-03 2010-09-03 Power control method in cognitive network

Country Status (1)

Country Link
CN (1) CN101925169B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215076B (en) * 2011-06-09 2016-05-18 电信科学技术研究院 Trigger and carry out method, system and the equipment of frequency spectrum perception
CN102497643B (en) * 2011-12-13 2014-08-06 东南大学 Cognitive ratio power control method
CN103024750B (en) * 2012-12-31 2015-09-23 上海师范大学 A kind of centralized cognition wireless network spectrum allocation may in cobasis station and Poewr control method
CN103269513B (en) * 2013-05-05 2016-04-06 清华大学 The tail time in cellular network is utilized to carry out the method for transfer of data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359941A (en) 2008-09-12 2009-02-04 南京邮电大学 Power control method based on normalized betting model in cognitive radio technology
CN101626260A (en) 2008-07-08 2010-01-13 电子科技大学 Utility function based distributed type power control method for cognitive radio system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101626260A (en) 2008-07-08 2010-01-13 电子科技大学 Utility function based distributed type power control method for cognitive radio system
CN101359941A (en) 2008-09-12 2009-02-04 南京邮电大学 Power control method based on normalized betting model in cognitive radio technology

Also Published As

Publication number Publication date
CN101925169A (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP5475197B2 (en) How to make broadband transmission coexist
Chen et al. Aggregate interference modeling in cognitive radio networks with power and contention control
JP5766887B2 (en) Adaptive flexible bandwidth radio system
JP2014535248A5 (en)
Vannithamby et al. Towards 5G: Applications, requirements and candidate technologies
Atapattu et al. Unified analysis of low-SNR energy detection and threshold selection
CN101577564A (en) Self-adaptive signal frequency spectrum sensing and detection method based on decision threshold
Zheng et al. Cross-layered design of spectrum sensing and MAC for opportunistic spectrum access
CN101286752B (en) An ultra-wideband quadrature pulse shaping implemented method
CN101359941A (en) Power control method based on normalized betting model in cognitive radio technology
CN101951274A (en) Cooperative spectrum sensing method of low complexity
CN101047399A (en) Method and device for downlink wave beam shaping
CN101848046B (en) Method for increasing detection probability of frequency spectrum perception
CN101651653B (en) Peak clipping method for multi-carrier frequency hopping communication system
Shi et al. Dynamic threshold-setting for RF-powered cognitive radio networks in non-Gaussian noise
JP2016502368A (en) Method and base station for selecting an operating remote radio device for a user equipment
CN102291186A (en) A method for spectrum sensing based on the estimated direction of arrival of the signal
CN101931478A (en) Relay transmission-based cognitive network spectrum sensing method
CN101453249A (en) Wireless communication module integrated with Bluetooth receiving function
Mineo et al. Runtime tunable transmitting power technique in mm-wave WiNoC architectures
CN103220052A (en) Method for detecting frequency spectrum hole in cognitive radio
Jiang et al. On minimum sensing error with spectrum sensing using counting rule in cognitive radio networks
Zhang et al. Impact of transmit power on throughput performance in wireless ad hoc networks with variable rate control
CN1394015A (en) Reverse permission control method
CN102710345A (en) Cognition radio frequency spectrum sensing method based on multi-antenna Friedman inspection

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model