New! View global litigation for patent families

CN101915989A - Electric field force-controlled liquid lens - Google Patents

Electric field force-controlled liquid lens Download PDF

Info

Publication number
CN101915989A
CN101915989A CN 201010239213 CN201010239213A CN101915989A CN 101915989 A CN101915989 A CN 101915989A CN 201010239213 CN201010239213 CN 201010239213 CN 201010239213 A CN201010239213 A CN 201010239213A CN 101915989 A CN101915989 A CN 101915989A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
liquid
lens
electrode
covered
force
Prior art date
Application number
CN 201010239213
Other languages
Chinese (zh)
Other versions
CN101915989B (en )
Inventor
夏军
姚晓寅
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses an electric field force-controlled liquid lens. In the liquid lens, a barrier wall (3) is manufactured on a second transparent substrate (4), a second electrode (8) is covered on the barrier wall (3), a first liquid (5) is injected into the second electrode (8), a second liquid (2) is covered on the first liquid (5), a first electrode (7) is covered on a first transparent substrate (1), and the first electrode (7) is covered on the second liquid (2). The liquid lens structure does not need insulation layers, can not cause electrochemical reactions and has the advantages of fixed lens axis, low drive voltage and simple structure.

Description

一种电场力控制的液体透镜 One kind of electric force controlling liquid lens

技术领域 FIELD

[0001] 本发明涉及一种液体透镜结构,尤其是涉及一种在电压控制下能有效改变液体形状从而改变焦距的介电泳液体透镜结构。 [0001] The present invention relates to a liquid lens structure, in particular, it relates to an effective change in liquid form so as to change the control voltage of the liquid lens structure dielectrophoretic focal length.

背景技术 Background technique

[0002] 液体透镜是由液体制成,模仿人眼晶状体的聚焦原理,通过控制液体发生形状变化从而引起折射率变化来实现聚焦和变焦。 [0002] Liquid lens is made of a liquid, to imitate the human eye lens focusing principle, by controlling the change in shape of the liquid occurs causing a refractive index change to achieve focusing and zooming. 与传统的透镜相比,液体透镜具有体积小、无需外部机械装置、反应速度快、无磨损、寿命长、成本低等特点。 Compared with the conventional lens, the liquid lens having a small volume, no external mechanical means, fast response, no wear, long life, and low cost. 液体透镜能在电压下可控地动态调节焦距,具有传统透镜不可比拟的优点。 Dynamically adjusting the focal length of the liquid lens can be controlled at a voltage having incomparable advantages over conventional lenses. 液体透镜已经开始逐渐走入市场,应用于手机,相机,内窥镜等数码摄影、医疗、工业、通信领域。 The liquid lens has begun into the market, used in mobile phones, cameras, endoscopes and other digital photography, medical, industrial, communications. 液体透镜主要有以下几种工作原理:1、 通过机械力改变透镜外形和体积;2、通过加电改变液晶分子排列;3、基于电润湿或介电泳的原理使液体发生形变。 Liquid lenses are the following works: 1, changing the shape and volume of the lens by mechanical force; 2, powered by changing the arrangement of liquid crystal molecules; 3, based on the principle of electrowetting or liquid dielectrophoresis deformed.

[0003] 电润湿现象可以用Young-Lippmann方程来描述: [0003] The electrowetting phenomenon can be described Young-Lippmann equation:

[0004] cos θ = cos θγ + U2 [0004] cos θ = cos θγ + U2

2ασ/ν 2ασ / ν

[0005] 其中,θ为施加电压之后的液固接触角,θ γ为无电压时的初始液固接触角,%为真空介电常数,为介质层的相对介电常数,d为介质层的厚度,Qlv为液体和空气接触的表面张力,U为施加的电压。 [0005] wherein, [theta] is the voltage applied to the liquid after the solid contact angle, θ γ is no initial voltage liquid-solid contact angle,% vacuum permittivity, the relative permittivity of the dielectric layer, d is the dielectric layer thickness, the surface tension of the liquid and air in contact Qlv, U is the applied voltage. 1995年Gorman等人第一次实现了基于电润湿原理的液体透镜。 In 1995 Gorman, who first realized the liquid lens based on electrowetting principles. 他们将液滴置于透明电极上,通过施加电压使液滴发生了形变[1]。 They liquid droplet is placed on the transparent electrode, the voltage applied to the liquid droplets by deformation occurred [1]. 2000年,Berge和Peseux在先前Gorman等人实验的基础上,在电极上覆盖了介质层。 In 2000, Berge and Peseux on the basis of previous experiments on Gorman et al., On the electrode covering the dielectric layer. 他们的问题在于如何将液滴中心固定在光轴上[2]。 Their problem is how to fix the center of the droplet on the optical axis [2]. 2004年Philips公司提出了流体聚焦技术,将导电水溶液和油灌注到圆柱体容器中,在底面和侧壁上施加电压,在液体表面发生形变的同时,确保形变液面固定在圆柱体轴线上[3]。 In 2004 Philips company put forward fluid focus techniques, and the oil is poured into an aqueous solution of a conductive cylindrical container, a voltage is applied on the bottom and side walls, while the deformed surface of the liquid, the liquid level to ensure that the deformation is fixed to the cylinder axis [ 3]. 随后,Varioptic公司将导电溶液和油封装在圆锥形容器中,使液体透镜在光轴稳定性上有了很大的提高[4]。 Subsequently, a conductive solution will Varioptic oil and encapsulated in a conical vessel, the liquid lens has been greatly improved stability on the optical axis [4]. 但电润湿液体透镜多选用导电性溶液作为其中一种液体,实验表明易发生电化学反应,若要克服电化学反映则需在电极上覆盖绝缘层,为实现较低的工作电压,通常需要很薄的绝缘层,这在工艺制备上具有一定难度。 However, multi-use electrowetting liquid lens wherein the conductive solution as a liquid, experiments show that the electrochemical reaction occurs easily, is required to overcome the electrochemical reflected on the insulating layer covering the electrode, to achieve a lower operating voltage, typically requires a thin insulating layer, which has a certain degree of difficulty in the preparation process.

[0006] 介电泳控制不导电液体也能运用到液体透镜当中。 [0006] dielectrophoretic control non-conductive liquid can be applied to the liquid lens them. Chih-Cheng Cheng和J. Andrew Yeh在上下基板为ITO玻璃的容器中灌入一种低介电常数液滴和同密度的高介电常数的液体,利用DEP原理,在电压0-200V范围内焦距从34mm变化到12mm,上升和下降时间分别为650ms和300ms[5] [6]。 Chih-Cheng Cheng and J. Andrew Yeh poured liquid droplet one low dielectric constant and a high dielectric constant with the density of the substrate is in the vertical ITO glass container, utilizing the principles of DEP, in the voltage range 0-200V change the focal length from 34mm to 12mm, rise and fall times are 650ms and 300ms [5] [6]. 但此结构下的透镜,液滴会在平板上移动,不能控制透镜的位置。 However, the lens in this configuration, the droplets on the plate moves, the position of the lens can not be controlled. Hongwen Ren和Shin-Tson Wu利用DEP力使液滴形成透镜阵列的同时改变焦距[7]。 Hongwen Ren and Shin-Tson Wu droplet formation using DEP force while changing the focal length of the lens array [7]. 这样利用电场控制液滴分开并形成透镜,不能控制每个液滴的大小,不利于实现工业生产的标准化。 Such droplets are separated using an electric field and controlling the lens is formed, the size of each droplet can not be controlled, it is not conducive to standard industrial production. Su Xu, Yeong-Jyh Lin和Shin-Tson Wu提出了碗型电极DEP微透镜阵列的制备[8], 但碗型电极制备困难,很容易因为各种原因导致电场分布不均勻,而使液体运动不能形成透镜效果。 Su Xu, Yeong-Jyh Lin and Shin-Tson Wu proposed preparation bowl DEP microlens array electrode [8], but the difficulty was prepared bowl electrodes, it is easy because all causes uneven distribution of the electric field, the motion of the liquid can not form a lens effect.

[0007] 为了克服现有液体透镜的不足,本发明提供一种介电泳液体透镜结构,采用两种不导电液体,避免了电化学反应,免去了介质层的制备。 [0007] In order to overcome the disadvantages of the conventional liquid lens, the present invention provides a dielectrophoretic liquid lens structure using two non-conductive liquids, avoiding the electrochemical reaction, eliminating the need for preparation of dielectric layers. 壁电极的加入使电场的场强分布集中在障壁周围,液体界面处恰好能获得较高的场强,从而能在较低的电压使液体运动。 Was added to make the wall electrode electric field intensity distribution concentrated around the barrier, liquid interface happens to obtain a higher field strength, so that the movement of liquid can be at a lower voltage. 壁电极还能控制液体位置不发生移动,并且液体界面离开壁电极后不再向中间运动。 Wall electrode can control the position of a liquid does not move, and after leaving the liquid interface to the intermediate wall electrode is no longer moving. 本发明使用的两种不导电且不相混容的液体,其表面自由能和介电常数与现有介电泳液体透镜相比也有所不同,使透镜的控制电压,透镜效果有一定区别。 The present invention uses two kinds of non-conductive and not receiving mixed liquid, the surface free energy and also different dielectric constant compared to conventional dielectrophoretic liquid lens, the lens control voltage, there is a certain difference between the lens effect.

[0008] 参考文献: [0008] References:

[0009] [1]Christopher B. Gorman, Hans A. Biebuyck, George Μ. ffhitesides. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer. Langmuir,1995,11 (6), 2242-2246. [0009] [1] Christopher B. Gorman, Hans A. Biebuyck, George Μ. Ffhitesides. Control of the Shape of Liquid Lenses on a Modified Gold Surface Using an Applied Electrical Potential across a Self-Assembled Monolayer. Langmuir, 1995,11 (6), 2242-2246.

[0010] [2]B.Berge and J. Peseux. Variable focal lens controlled by an external voltage :An application of electrowetting. Eur. Phys. J. E,2000,3,159-163. . [0010] [2] B.Berge and J. Peseux Variable focal lens controlled by an external voltage:... An application of electrowetting Eur Phys J. E, 2000,3,159-163.

[0011] [3]BHW Hendriks, S. Kuiper, MAJ Van Aa, CA Renders and TW Tukker. Electrowetting-Based Variable-Focus Lens for Miniature Systems. OPTICAL REVIEW, 2005,12(3) ,255-259. [0011] [3] BHW Hendriks, S. Kuiper, MAJ Van Aa, CA Renders and TW Tukker. Electrowetting-Based Variable-Focus Lens for Miniature Systems. OPTICAL REVIEW, 2005,12 (3), 255-259.

[0012] [4] Lisa Saurei, Jerome Peseux, Frederic Laune and Bruno Berge. Tunable liquid lens based on electrowetting technology :principle, properties and applications.l_3Sept 2004, presented at the 10th Annual Micro-optics Conference, Jena, Germany. [0012] [4] Lisa Saurei, Jerome Peseux, Frederic Laune and Bruno Berge Tunable liquid lens based on electrowetting technology:. Principle, properties and applications.l_3Sept 2004, presented at the 10th Annual Micro-optics Conference, Jena, Germany.

[0013] [5]Chih-Cheng Cheng, C. Alex Chang and J. Andrew Yeh. Variable focus dielectric liquid droplet lens.OPTICS EXPRESS,2006,14(9),4101-4106. [0013] [5] Chih-Cheng Cheng, C. Alex Chang and J. Andrew Yeh. Variable focus dielectric liquid droplet lens.OPTICS EXPRESS, 2006,14 (9), 4101-4106.

[0014] [6]Chih-Cheng Cheng and J. Andrew Yeh. Dielectrically actuated liquid lens. OPTICSEXPRESS,2007,15(12),7140-7145. [0014] [6] Chih-Cheng Cheng and J. Andrew Yeh. Dielectrically actuated liquid lens. OPTICSEXPRESS, 2007,15 (12), 7140-7145.

[0015] [7]Hongwen Ren and Shin-Tson ffu. Tunable-focus liquid microlens array using dielectrophoretic effect. OPTICS EXPRESS,2008,16(4),2646-2652. [0015] [7] Hongwen Ren and Shin-Tson ffu. Tunable-focus liquid microlens array using dielectrophoretic effect. OPTICS EXPRESS, 2008,16 (4), 2646-2652.

[0016] [8]Su Xu, Yeong-Jyh Lin, and Shin-Tson ffu. Dielectric liquid microlens with well-shaped Electrode. OPTICS EXPRESS,2009,17(13),10499-10505. [0016] [8] Su Xu, Yeong-Jyh Lin, and Shin-Tson ffu. Dielectric liquid microlens with well-shaped Electrode. OPTICS EXPRESS, 2009,17 (13), 10499-10505.

发明内容 SUMMARY

[0017] 技术问题:为了克服电润湿液体透镜易击穿,介质层制备困难,及现有介电泳液体透镜结构难以固定液体位置等问题,本发明提供一种介电泳液体透镜结构,该结构不易击穿,无需介质层,能有效固定液体位置,实现动态控制焦距。 [0017] Technical Problem: In order to overcome the breakdown electrowetting liquid lens is easy, the preparation of the dielectric layer is difficult, and a conventional liquid lens structure dielectrophoretic liquid is difficult to fix the problem location, the present invention provides a dielectrophoretic liquid lens structure, which easy breakdown, without the dielectric layer, the liquid can be effectively fixed positions, dynamic control of the focal length.

[0018] 技术方案:本发明解决其技术问题所采用的技术方案是:该结构由纵横排列的液体透镜单元组成,每个液体透镜单元的组成为:在第二透明基板上制作障壁,在障壁上覆盖第二电极,在第二电极之间灌注第一液体,第二液体覆盖在第一液体上,第一透明基板上覆盖第一电极,第一电极位于第二液体上。 [0018] Technical Solution: aspect of the present invention to solve the technical problem is that: the structure of the liquid lens unit arranged in a matrix composition, the composition of each liquid lens unit is: fabricating a barrier on the second transparent substrate, the barrier a second electrode on the cover, filling the first liquid between a second electrode, overlying the first liquid a second liquid, covering the first electrode on the first transparent substrate, a first electrode positioned on the second liquid.

[0019] 在本发明优选技术方案中,第二电极上覆盖有疏水层。 [0019] In a preferred aspect of the present invention, the hydrophobic layer is covered with the second electrode.

[0020] 在本发明优选技术方案中,在第一电极上增加薄膜晶体管阵列,每个液体透镜单元内第一液体和第二液体的交界面可以单独调整,即液体透镜单元的焦距可单独调整。 [0020] In a preferred aspect of the present invention, an increase in the thin film transistor array on the first electrode, the liquid interface within each lens cell of the first and second liquids can be adjusted individually, i.e., the focal length of the liquid lens unit can be adjusted individually .

4[0021] 在本发明优选技术方案中,液体透镜单元为旋转对称结构,排列方式可以是行列矩阵式排列、或品字状排列、或蜂窝状排列。 4 [0021] In a preferred aspect of the present invention, the liquid lens unit is a rotational symmetrical structure, arrangement may be arranged in a matrix row, are arranged or shaped article, or a honeycomb arrangement.

[0022] 有益效果:本发明的有益效果是,与传统电润湿透镜相比,第一液体和第二液体与第一电极和第二电极之间无需绝缘层,工作电压低,不易击穿,第一电极位于中间隔断上, 有利于固定透镜光轴位置,结构简单。 [0022] Advantageous Effects: Advantageous effect of the invention is, without an insulating layer between the compared with the conventional electrowetting lens, the first and second liquids and the first and second electrodes, low operating voltage, easy breakdown a first electrode located on the intermediate partition, is conducive to the fixed lens optical axis position, a simple structure.

附图说明 BRIEF DESCRIPTION

[0023] 图1是本发明优选实施例结构图; [0023] FIG. 1 is a block diagram of a preferred embodiment of the present invention;

[0024] 以上的图中有:1、第一透明基板,2、第二液体,3、障壁,4、第二透明基板,5、第一液体,6、第一液面,7、第一电极,8、第二电极。 [0024] FIG above are: 1, a first transparent substrate 2, the second liquid, 3, barrier ribs 4, a second transparent substrate 5, a first liquid, 6, a first level, 7, a first electrode 8, the second electrode.

具体实施方式 detailed description

[0025] 图1所示为本发明优选实施例结构图,主要包括:第二透明基板4,可采用玻璃、透明树脂等材料,在第二透明基板4上制作障壁3,可以在第二透明基板4上直接印制金属网孔形成障壁3,障壁3可以直接作为第二电极8,例如银、铁、铜网孔等,或者利用SU-8等材料经紫外曝光形成此障壁3,再在障壁3上镀上导电膜形成第二电极8。 [0025] FIG. 1 structure as shown in FIG preferred embodiment of the present invention, including: a second transparent substrate 4, may be used glass, a transparent resin material, a barrier 3 made on the second transparent substrate 4, may be the second transparent directly on printed circuit board 4 forming a barrier metal mesh 3, the barrier 3 can be used directly as the second electrode 8, for example, silver, iron, copper mesh, etc., or this barrier rib 3 is formed by exposure and the like SU-8 material is UV, then the a second electrode coated with the conductive film 8 is formed on the barrier rib 3. 障壁3可以制成矩形、梯形等形状,也可以是没有尖角的圆弧形。 Barrier 3 may be made of a rectangular or trapezoidal shape, without sharp corners may be rounded. 在障壁3之间灌注第一液体5,第一液体5选用介电常数小、表面自由能小的液体,例如二甲基硅氧烷、正己烷、异辛烷、十六烷、正癸醇等,第二液体2覆盖在第一液体5上,第二液体2选用介电常数大、表面自由能大的液体,例如丙三醇、乙二醇等,也可以第一液体5选用介电常数大、表面自由能大的液体,而第二液体2选用介电常数小、表面自由能小的液体。 Perfusion liquid 5 between the first barrier rib 3, a first liquid 5 use a small dielectric constant and small surface free energy of liquids, such as dimethyl siloxane, n-hexane, isooctane, hexadecane, n-decanol and the like, the second liquid 2 overlying the first liquid 5, a large selection of dielectric constant of the second liquid 2, a large liquid surface free energy, such as glycerin, glycol, etc., may be the first choice of the dielectric liquid 5 constant is large, a large surface free energy of the liquid, the liquid 2 and the second low dielectric constant selected, small surface free energy of the liquid. 第一透明基板1同第二透明基板4 一样,可采用玻璃、透明树脂等材料。 As the first transparent substrate 1 with a second transparent substrate 4, may be used glass, a transparent resin material. 第一透明基板1上需要镀上导电膜,形成第一电极7,也可以选用具有导电性的基板,例如ITO玻璃等。 A first transparent substrate coated with a conductive film need to form the first electrode 7, may choose a substrate having conductivity, such as ITO glass and the like. 将第一电极7盖在第二液体2上,形成单透镜结构。 The first electrode 7 on the second liquid lid 2, forming a single lens structure. 在第二电极8上还可以覆盖疏水层,例如,聚四氟乙烯,cytop等材料,以减小液体界面运动的迟滞性。 On the second electrode layer 8 may also be coated with hydrophobic, e.g., polytetrafluoroethylene, Cytop and other materials to reduce the hysteresis of the liquid interface movement. 但是与电润湿器件不同,此处疏水层无需完整包覆第二电极8,当在第一电极7 和第二电极8之间施加电压时,第一液面6会发生移动,从而实现透镜动态调节焦距,例如第一电极7接地,第二电极8接正电压,第一电极7和第二电极8之间产生非均勻电场,第一液体5和第二液体2在非均勻电场下产生介电泳力,介电泳力作用介电常数大的液体,如第一液体5,向场强梯度大的地方流动,同时第一液面6发生形变,即在第二电极8的表面发生移动。 However, different electrowetting device, where the hydrophobic layer without complete coating of the second electrode 8, when a voltage is applied between the first electrode 7 and the second electrode 8, a first mobile level 6 occurs, in order to achieve the lens dynamically adjust the focus, for example, the first electrode 7 is grounded, a positive voltage is connected to the second electrode 8, non-uniform electric field between the second electrode 7 and the first electrode 8, a first liquid and a second liquid 5 2 nonuniform electric field generated at the dielectrophoretic force, large dielectric liquid dielectrophoretic force, as in the first liquid 5, to place a large field gradient flow, while the first level 6 is deformed, i.e., moved on the surface of the second electrode 8. 由于电场强度集中第二电极8周围,液体界面处恰好能获得较高的场强,从而在较低的电压下液体就能运动。 Since the electric field strength concentrated around the second electrode 8, liquid interface happens to obtain a higher field strength, so that the liquid can be moved in a lower voltage.

[0026] 图1中液体单透镜单元为旋转对称结构,液体透镜阵列排列方式可以是行列矩阵式排列、或品字状排列、或蜂窝状排列。 [0026] FIG. 1 is a liquid single-lens unit rotationally symmetric structure, the arrangement of the liquid lens array may be arranged in a matrix row, are arranged or shaped article, or a honeycomb arrangement. 另外,在第一电极7上增加薄膜晶体管阵列,每个液体透镜单元内第一液体和第二液体的交界面可以单独调整,即液体透镜单元的焦距可单独调整。 Further, the first electrode 7 increases in the thin film transistor array, the liquid interface within each lens cell of the first and second liquids can be adjusted individually, i.e., the focal length of the liquid lens unit can be individually adjusted.

Claims (4)

  1. 一种电场力控制的液体透镜,包括第一透明基板(1)、第二透明基板(4)、第一电极(7)、第二电极(8)、第一液体(5)以及第二液体(6),其特征是:在所述的第二透明基板(4)上制作有障壁(3),在所述的障壁(3)上覆盖所述的第二电极(8),在第二电极(8)之间灌注所述的第一液体(5),所述的第二液体(2)覆盖在所述的第一液体(5)上,在所述的第一透明基板(1)上覆盖所述的第一电极(7),该第一电极(7)位于所述的第二液体(2)上。 One kind of electric force controlling liquid lens, comprising a first transparent substrate (1), a second transparent substrate (4), a first electrode (7), a second electrode (8), a first liquid (5) and a second liquid (6), characterized in that: on said second transparent substrate (4) made with a barrier (3), (3) covering the second electrode (8) on the barrier ribs, the second a first liquid (5) between the electrodes of the filling (8), said second liquid (2) overlying the first liquid (5), said first transparent substrate (1) a first electrode on the cover (7), wherein the first electrode (7) is located on the second liquid (2) above.
  2. 2.根据权利要求1所述的一种电场力控制的液体透镜,其特征是:第二电极(8)上覆盖疏水层。 The liquid lens according to claim one kind of electric force control according to claim 1, characterized in that: the second electrode (8) covered with a hydrophobic layer.
  3. 3.根据权利要求1所述的一种电场力控制的液体透镜,其特征是:在第一电极(7)上增加薄膜晶体管阵列。 The liquid lens according to claim one kind of electric force control according to claim 1, characterized in that: a thin film transistor array increases over the first electrode (7).
  4. 4.根据权利要求1所述的一种电场力控制的液体透镜,其特征是:液体透镜单元为旋转对称结构,排列方式可以是行列矩阵式排列、或品字状排列、或蜂窝状排列。 The liquid to a lens electric force control according to claim 1, characterized in that: the liquid lens unit is a rotational symmetrical structure, arrangement may be arranged in a matrix row, are arranged or shaped article, or a honeycomb arrangement. 2 2
CN 201010239213 2010-07-28 2010-07-28 Electric field force-controlled liquid lens CN101915989B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010239213 CN101915989B (en) 2010-07-28 2010-07-28 Electric field force-controlled liquid lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010239213 CN101915989B (en) 2010-07-28 2010-07-28 Electric field force-controlled liquid lens

Publications (2)

Publication Number Publication Date
CN101915989A true true CN101915989A (en) 2010-12-15
CN101915989B CN101915989B (en) 2011-12-14

Family

ID=43323540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010239213 CN101915989B (en) 2010-07-28 2010-07-28 Electric field force-controlled liquid lens

Country Status (1)

Country Link
CN (1) CN101915989B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617742A (en) * 2015-02-28 2015-05-13 朱蕾 Power-driven fluid paraboloid generation device for astronomical telescope

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947044A (en) * 2004-04-24 2007-04-11 皇家飞利浦电子股份有限公司 Liquid-based optical device, method for controlling such a device and electronic device
CN1947037A (en) * 2004-04-02 2007-04-11 皇家飞利浦电子股份有限公司 Colour correction in a variable focus lens
WO2007058451A1 (en) * 2005-11-15 2007-05-24 Bnp Science Liquid lens and a method for producing the same
WO2008062067A1 (en) * 2006-11-24 2008-05-29 Varioptic Optical lens with variable focal length
WO2008084822A1 (en) * 2007-01-10 2008-07-17 Sony Corporation Liquid device, liquid device manufacturing apparatus and method, and image display device
US20080170299A1 (en) * 2007-01-15 2008-07-17 Sony Corporation Imaging device and an imaging apparatus including the imaging device
JP2008172682A (en) * 2007-01-15 2008-07-24 Sony Corp Imaging device and imaging apparatus including the imaging device
CN101482627A (en) * 2009-02-17 2009-07-15 东南大学 Microlens array with small aberration
JP2009186666A (en) * 2008-02-05 2009-08-20 Sony Corp Liquid optical element
CN100557466C (en) * 2008-03-25 2009-11-04 东南大学 Thin liquid lens array

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1947037A (en) * 2004-04-02 2007-04-11 皇家飞利浦电子股份有限公司 Colour correction in a variable focus lens
CN1947044A (en) * 2004-04-24 2007-04-11 皇家飞利浦电子股份有限公司 Liquid-based optical device, method for controlling such a device and electronic device
WO2007058451A1 (en) * 2005-11-15 2007-05-24 Bnp Science Liquid lens and a method for producing the same
WO2008062067A1 (en) * 2006-11-24 2008-05-29 Varioptic Optical lens with variable focal length
WO2008084822A1 (en) * 2007-01-10 2008-07-17 Sony Corporation Liquid device, liquid device manufacturing apparatus and method, and image display device
US20080170299A1 (en) * 2007-01-15 2008-07-17 Sony Corporation Imaging device and an imaging apparatus including the imaging device
JP2008172682A (en) * 2007-01-15 2008-07-24 Sony Corp Imaging device and imaging apparatus including the imaging device
JP2009186666A (en) * 2008-02-05 2009-08-20 Sony Corp Liquid optical element
CN100557466C (en) * 2008-03-25 2009-11-04 东南大学 Thin liquid lens array
CN101482627A (en) * 2009-02-17 2009-07-15 东南大学 Microlens array with small aberration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617742A (en) * 2015-02-28 2015-05-13 朱蕾 Power-driven fluid paraboloid generation device for astronomical telescope
CN104617742B (en) * 2015-02-28 2017-08-08 海门市大德知识产权服务有限公司 Fluid may be used telescope driven power generating apparatus parabolic

Also Published As

Publication number Publication date Type
CN101915989B (en) 2011-12-14 grant

Similar Documents

Publication Publication Date Title
Sato Liquid-crystal lens-cells with variable focal length
US7580195B2 (en) Optical lens and method of manufacturing the same
Grilli et al. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates
US20060028734A1 (en) Zoom Lens
Ren et al. Adaptive dielectric liquid lens
US20070229754A1 (en) Method and apparatus for spatially modulated electric field generation and electro-optical tuning using liquid crystals
Cheng et al. Variable focus dielectric liquid droplet lens
Krogmann et al. A MEMS-based variable micro-lens system
US20110316764A1 (en) Display with light concentrating substrate
Shamai et al. Water, electricity, and between… On electrowetting and its applications
US20060279848A1 (en) Variable lens
Agarwal et al. Polymer-based variable focal length microlens system
Ren et al. Tunable-focus liquid microlens array using dielectrophoretic effect
Li et al. Electrowetting-driven variable-focus microlens on flexible surfaces
Kim et al. Electrowetting on paper for electronic paper display
US20060050402A1 (en) Variable-focus lens and image taking apparatus
US20060044448A1 (en) Optical element and image taking apparatus
JP2008203360A (en) Liquid crystal optical device
Tsai et al. Circular dielectric liquid iris
US20090257111A1 (en) Tunable Optical Array Device Comprising Liquid Cells
US20070047119A1 (en) Optical element
WO2007141218A1 (en) Optical apparatus
Xu et al. Dielectric liquid microlens with well-shaped electrode
Kuiper et al. Variable-focus liquid lens for portable applications
Zhu et al. Tunable-focus microlens arrays on curved surfaces

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model