CN101901641A - 优化的绞合线 - Google Patents

优化的绞合线 Download PDF

Info

Publication number
CN101901641A
CN101901641A CN2009101639666A CN200910163966A CN101901641A CN 101901641 A CN101901641 A CN 101901641A CN 2009101639666 A CN2009101639666 A CN 2009101639666A CN 200910163966 A CN200910163966 A CN 200910163966A CN 101901641 A CN101901641 A CN 101901641A
Authority
CN
China
Prior art keywords
cross
sectional area
strand
conducting cable
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009101639666A
Other languages
English (en)
Other versions
CN101901641B (zh
Inventor
阿图罗·西尔瓦
尼尔·盖尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flextronics International USA Inc
Original Assignee
Flextronics International USA Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flextronics International USA Inc filed Critical Flextronics International USA Inc
Priority to CN200910163966.6A priority Critical patent/CN101901641B/zh
Publication of CN101901641A publication Critical patent/CN101901641A/zh
Application granted granted Critical
Publication of CN101901641B publication Critical patent/CN101901641B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种用于降低元件如电感器和变压器中功率损耗的传导电缆。该传导电缆包括多根股线,每股包括内导体和外绝缘层。该传导电缆包括多根具有多个横截面积(多个尺寸)的股线,这样即可降低与集肤效应有关的功率损耗。该传导电缆的多股线的横截面积可根据它们要传输的电流的频率分量来选择。在PFC升压变换器的情况下,可以选择不同横截面积的股线来传输AC电源的谐波,以及由与PFC升压变换器有关的开关引起的较高频率的电流。

Description

优化的绞合线
技术领域
本发明涉及一种绞合线,更具体地说,涉及一种优化的绞合线。
背景技术
许多电子元件,例如整流器使用电线或电缆将电压和/或电流从电路中的一点传送到另一点。通常,这些电线由导电材料(例如铜)构成,该导电材料对电流具有一定的电阻,其能导致在电子元件中产生功率损耗(有时被称作“铜耗”)。因此,希望减小导体功率损耗以提供更加高效的元件。
通常,DC(0赫兹)时导体的电阻取决于它的横截面积。横截面积较大的导体具有比横截面积较小的导体更低的电阻。对于AC电流,已知的“集肤效应”现象使得电阻基本上随着电流频率的增加而增大。
集肤效应是AC电流在导体内部自我分配的一种趋势,从而使得导体表面附近的电流密度(即每单位横截面积上的电流)比中心部分的电流密度大的多。换句话说,电流倾向于在导体的“表面”流动。集肤效应是由于AC电流形成的涡流电流引起的。电流密度随着自表面的深度的衰减通常以距离导体表面的距离来量化,在此基础上电流密度衰减至其表面处值的l/e(或约37%)。该量度通常被称作“集肤深度”。
对于低频而言,集肤效应是可以忽略的。当AC电流的频率高的足以使集肤深度比导体的直径小时,集肤效应使得大多数导通发生在导体的表面。当频率足够高时,大导体的内部不再传输任何电流。例如在60Hz时,铜导线的集肤深度约为0.3英寸(8mm)。在60kHz时,铜的集肤深度约为0.01英寸(0.254mm)。在6MHz时,集肤深度约为0.001英寸(25.4μm)。可以理解是的,大于几个集肤深度的导体在它们的内轴附近基本不传导电流,从而使得材料无法有效利用。
当电流频率相当高时,如几千赫兹、几兆赫兹或更大,可以使用一种被称作束线或绞合线(来自德国钢绞线,编织线)的电缆来减轻集肤效应。图1所示为绞合线10的横截面图。绞合线10包括许多股按图案(例如扭绞、编织或类似)编织在一起的绝缘线15,因此整个磁场在所有股上基本相等,并且总电流在他们之间均匀分配。此外,对于特殊应用而言,可将单股半径选择为小于集肤深度,这样单股线就不再有集肤效应损耗。单股线通常包括外部绝缘层16以彼此之间电绝缘,从而使得一束中的各股在一起时不会短路。此外,整束股线15可包括一外部绝缘层25。
绞合线可以应用在高频变压器的线圈中,以通过减轻集肤效应和被称作“邻近效应”的另一现象来提高它们的效率,其中该邻近效应是由多个导体之间磁场的相互作而产生的。可以选择绞合线的编织方式或扭绞方式,从而使得单根电线之间在电缆的外侧保持短的间距,以及在电缆的内侧保持短的间距,这可以使绞合线的内部有助于提高电缆的传导率。
不理想地是,标准的绞合线会减小有效的铜面积(相对于固体导线),因为每个较小股电线的绝缘会消耗绞合线净截面面积的一大部分。此外,彼此相邻的尺寸相等的圆股线的封装使得相对很大比例的横截面积被空气间隔占据。因此,与具有相同横截面积的标准电线相比较,标准绞合线在该电线的横截面积上会产生相对较小的铜耗。
发明内容
通过与系统、工具以及方法相结合,来对本发明的以下实施例及其方面进行描述和说明,这些系统、工具以及方法只是示例和说明而已,并不是对范围的限制。在不同的实施例中,已经减小或消除了上面提到的一个或多个问题,并且其它的实施例旨在进行其它的改进。
根据第一个方面,提供一种可有效传输具有多个频率分量的电流的传导电缆。该传导电缆包括多根股线,每股包括一内导体和一外部绝缘层,其中多股导线中的至少一股具有与多股导线的其它股不同的横截面积。
根据第二个方面,披露了一种提供传导电缆的方法。该方法包括提供第一组包括内部导体和外部绝缘层的一股或多股导线,该内部导体具有第一横截面积,以及提供第二组包括内部导体和外部绝缘层的一股或多股导线,该内部导体具有不同于第一横截面积的第二横截面积。该方法还包括将第一组股线和第二组股线的端部耦接在一起以形成传导电缆。此外,第一和第二横截面积的尺寸可以有效地传输具有多个频率分量的电流。
根据第三个方面,提供磁性元件。该磁性元件包括芯,以及围绕该芯的至少一部分缠绕的传导电缆。该传导电缆包括多根股线,每股包括内导体和外部绝缘层,其中该多股中的至少一股具有不同于该多股中其它股的横截面积。
除了上面描述的示例方面和实施例以外,还可参考附图和分析以下描述来清楚地获知其它的方面和实施例。
附图说明
图1示出了现有技术中绞合线的横截视图;
图2示出了包括电感器的PFC升压变换器电路的实例,其中电感器可包括优化绞合线;
图3示出了当PFC升压变换器运行在连续导电模式(CCM)时,流经图2所示电感器L1的电流的时域和频域图;
图4示出了当PFC升压变换器运行在临界导电模式(CrCM)时,流经图2所示电感器L1的电流的时域和频域图;
图5示出了示例性优化的绞合线的横截面图;
图6示出了由具有不同尺寸的多股导线缠绕的绕线管的横截面图。
具体实施方式
虽然本发明允许不同的改变和替换形式,但是这里详细地描述并借助于附图中的实例示出了特定实施例。然而,应当理解的是,这并非是要将本发明限于公开的上述特定形式,相反,本发明要覆盖落入由权利要求所限定的本发明的范围和精神实质内的所有修改、等同方式和替代方式。
在以下的讨论中,探讨了用于提供优化绞合线的系统和方法。第一,参照附图2-4,描述了使用这里描述的特征的PFC升压变换器。应当理解的是,该特定应用的讨论只用于示例的目的,且用于提供优化绞合线的上述系统和方法还可被用在其它应用中。其次,参照附图5-6,描述了优化绞合线的示例实施例。
电子装置,例如笔记本电脑、台式电脑、监视器等通常从AC电源接收电力。然而,在大多数情况下,这些设备需要DC电来运行,因此从AC电源接收的电力必须被转换为DC电。完成该转换的最简单的方法是通过二极管整流电路。在这种电路中,二极管被布置成使得AC电流沿着一个方向流动,从而使得整流器的输出端保持非负电压。该方法通常是成本最低的AC-DC转换方案,但是它也在AC电网中产生了最多的噪声或“污染”。这是因为当功率变换器耦接到非纯阻性的负载时(例如包括电容器和电感器的无功负载),从AC电源输出的电流可能与AC电压异相,这会导致谐波增加。因此,如果大量使用,使用该方法的设备将会极大地影响AC电源线路的质量。此外,无功负载使得功率变换器的效率下降。无功负载中储存的能量导致电流波形和电压波形之间产生时差。该存储能量返回至电源并且无法在负载做功,因此电路的“有功功率”比“视在功率”要小。有功功率与视在功率的比率通常被称为电路的功率因数。可以理解的是,功率因数低的电路要比功率因数高的电路需要汲取更大的电流来传输规定量的有功功率,这将转化为配电系统损耗的增加和能量成本的增加。因此,通常希望提供不具有这些缺陷的AC-DC功率转换。
为了实现该目的,可以使用包括功率因数校正(PFC)电路的功率变换器。通常,PFC电路具有保持AC电流与AC电压基本同相的功能,以使得该功率变换器类似于AC电源的纯阻性负载,这减小AC电源线的污染并增加功率变换器的效率。一种类型的PFC电路通常被称作无源PFC电路。无源PFC电路只用无源元件,即电感器和电容器就可执行功率因数校正。无源PFC电路通常是稳健的的和行之有效的,但是它经常难以将失真降至可接受的水平。此外,由于无源PFC电路运行在相当低的线路频率(例如通常的AC电源运行在50Hz或60Hz),因此需要的电感器和电容器的尺寸可能会很大并且成本会很高。
另一类型的PFC电路通常称作有源PFC电路。有源PFC电路通常具有至少一个开关。最常用的有源PFC电路基于升压变换器,其被包括在图2所示PFC电路50内。PFC电路50对输入电流进行整形从而获得低的失真水平。与无源PFC电路相比,由于使用了相对较高的开关频率(如50kHz-300kHz),因而所需的相关无源元件的尺寸显著减小。
现在参照附图2来描述有源PFC电路50的结构。如图所示,AC电源52跨接在全波桥式整流器D3的输入端子64、66上。该整流桥D3的第一输出端子经节点58耦接到电感器L1的第一端子。电感器L1的第二端子耦接到晶体管开关Q1的漏极和二极管D1的正极。二极管D1的阴极耦接到大容量电容器C3的第一端子,其构成PFC输出节点56,该节点可进一步耦接到负载(如DC-DC变换器)。如所示,整流桥D3的第二输出端子、晶体管开关Q1的源极以及电容器C3的第二端子可以耦接到地。此外,PFC控制电路54可通过节点60耦接到晶体管开关Q1的门极,从而控制晶体管开关Q1导通(即开关闭合)或关断(即开关打开)。此外,PFC控制电路54可以检测功率变换器的各种电压和电流。例如,PFC控制电路54可通过节点62连接到分压电路(即电阻器R1和R2)。
在运行过程中,电流自整流桥D3流经电感器L1,并且当开关Q1关闭时,电流也流经开关Q1。在这种情况下,二极管D1被电容C3(即PFC输出节点56)上的电压反向偏置。流经电感器L1的电流以电磁场的形式储存能量。当开关Q1打开时,储存的能量通过流经二极管D1的电流传送给所述大容量电容器C3,该二极管D1在这种情况下是正向偏置的。大容量电容器C3的能量保持PFC输出节点56上的电压,并用于驱动负载(例如另一电源能级)。可以理解的是,从AC电源52传输到电容器C3的能量比率取决于晶体管开关Q1的占空比。因此,使用反馈电压和电流信号,PFC控制电路54可以控制晶体管开关Q1开关的时间,从而使得AC电流和AC电压基本同相,并且使得PFC输出节点56的电压基本保持在恒定的DC水平。作为实例,晶体管开关Q1的开关频率可以在10kHz、50kHz、250kHz等的范围内。
PFC变换器电感器L1可以传输谐波源很大的二次谐波频率分量(如分别是50Hz和60HzAC电源的100Hz或120Hz),但是也可传输相对较高的开关谐波的主要分量(如20kHz-400kHz或更高)。图3和4示出了连续导电模式PFC变换器(图3)和临界导电模式PFC变换器(图4)的典型的PFC升压电感电流(时域和频域)。图3示出了流经电感器L1的电流的时域图80和频域图85(例如时域图80所示电感电流82)。如标记88和90所示,流经PFC电感器L1的大部分电流为低频,如100Hz和200Hz(或者对于60Hz AC电源而言是120Hz和240Hz)。然而,在PFC升压电感器L1中仍然有相当高比例的开关频率电流(如50kHz-500kHz),用附图标记92高亮表示。
类似地,附图4示出了流经电感器L1的电流的时域图100和频域图110(例如时域图100中所示的电感器电路102)。如附图标记112和114所示,流经PFC电感器L1的大部分电流为低频,如100Hz和200Hz(或对于60Hz AC电源而言为120Hz和240Hz)。然而,在PFC升压电感器L1中仍然存在相当高比例的开关频率电流(如50kHz-500kHz),用附图标记116高亮表示
图5示出了可用于PFC电感器(如电感器L1)的线圈或可传输多次谐波的其它应用中的优化绞合线130的横截面。电线130可包括位于中央相对较大的导电股线134以及围绕该较大导电股线134设置的多根股线136和138。导电股线134、136和138中的任一个可包括由任何合适的导电材料(例如铜、银或类似材料)制成的内导体。此外,每根单股线通过外绝缘层(例如外绝缘层142)彼此之间电绝缘,外绝缘层可由任意合适的材料构成,如尼龙、玻璃纤维、陶瓷、塑料等。此外,整个线130可包括外部绝缘层132。可以理解的是,由于各种股线(例如股线134、136和138)都具有圆形横截面,绞合线130的整个横截面可包括多个空隙140。
通过使用具有不同横截面积(或尺寸)的多根股线,每个尺寸的电线可被设计和选定来传输PFC电感电流的一个或多个特定的谐波电流。从这一点上,不同尺寸的电线会使得单根绞合线束的数量显著减少,并由此相对于电线130的整体横截面积而言具有较少的绝缘。该结构还可增加包括导体的电线130的横截面积的比例。此外,通过降低电线130横截面内的空气间隔(如空隙140)的值,不同的电线尺寸利用横截面积的效果要好于均等电线尺寸的情况。
在图5所示的示例实施例中,位于中央的大导电线束134可传输二次谐波的AC源频率电流(对于50Hz和60Hz电源而言通常分别为100Hz或120Hz),距离电线130的外侧较近的中等股线138可传输AC源电流的较高频率谐波(例如4次谐波、6次谐波等),位于绞合线130外边缘的最小尺寸的股线136可传输开关频率的电流(例如大约50kHz-500kHz)。此外,通过使用不同尺寸的电线,导体可以利用导线130更多的横截面积,这使得电线130能够比使用与单一尺寸电线的尺寸相当的绞合线传输更大的电流。作为示例,导体可占绞合线130的整体横截面积的80%以上、90%以上或更高比例。可以理解的是,电线130各股线的所选尺寸取决于所要应用的电流的频率和量级。在一个实施例中,中心股线134可占电线130的导体总横截面积的至少50%。此外,要理解到,可使用其它数量的不同尺寸的电线(例如两种不同尺寸的电线,4种不同尺寸的电线等)。
此外,多股不同尺寸的电线可以排列成适当型式。例如,股线134、136和138可以各种方式扭绞在一起(例如每英尺12捻)。此外,也可以使用其它方式,例如编织。
图6示出了包括主轴部分152和边缘部分154和156的绕线管150的横截面图。该绕线管150可与芯(如EE芯)一起构成磁性元件,例如电感器或变压器。在这个实施例中,具有多种横截面积(不同尺寸)的三根线束158、160和162绕着绕线管150的主轴缠绕。每根线束158、160和162的端部耦接在一起,从而使得这多根线束彼此之间平行排列。从这一点上,较小直径的电线162可用于传输较高频率的谐波(例如开关频率电流),而较大直径的160和158可分别用于传输中等频率和较低频率的谐波(如AC源频率谐波)。可选择地,绝缘层164、166可设置在线束158、160和162之间以提供进一步的电隔离效果。
在图6所示的例子中,主轴152和绕线管150的边缘154、156构成一个“窗口”(该面积由箭头A和B表示),用于缠绕线圈。应当理解的是,通过使用具有不同尺寸的多种线束,用来传输各种频率电流的所述窗口部分可在之前设计的基础上加以改进,所述的之前设计使用相同尺寸的多根线。此外,一般而言,此处描述的特征通过减小具有非常低的电流密度(由于集肤效应)的导体部分,通过减小不同尺寸的多根股线之间的间隙以及通过减小单股线的绝缘层所占总横截面积的比例来降低损耗。应当理解的是,此处描述的特征也可具有其它优点。
虽然根据附图和在前描述已经对本发明进行了详细的说明和描述,这些说明和描述应被看作是示例性的,而并非是限制性的特征。例如,上文描述的特定实施例可以与其它描述的实施例结合,和/或以其它方式排列(例如过程元件可以按其它顺序布置)。因此,应当知道的是,这里仅示出和描述了优选的实施例和变体,凡是落入本发明精神实质范围内的所有变化和变形都将会得到保护。
相关申请的交叉引用
本申请要求按照35U.S.C119于2008年5月28日提交的美国临时申请号为No.61/056706、名称为“功率转换技术”的专利申请的优先权,其内容在这里被全文结合引入。

Claims (20)

1.一种可有效传导具有多个频率分量的电流的传导电缆,该传导电缆包括:
多根股线,每根股线都包括内导体和外绝缘层,其中所述多根股线中的至少一根具有不同于所述多根股线中其它股线的横截面积。
2.根据权利要求1的传导电缆,其中只有一根股线具有大于所述多根股线中其它股线的横截面积,所述其它股线彼此之间具有相同的横截面积。
3.根据权利要求2的传导电缆,其中所述一根股线设置在所述传导电缆的中心附近,以及其中所述多根股线中的所述其它股线远离所述传导电缆的中心布置。
4.根据权利要求2的传导电缆,其中所述一根股线的横截面积至少是所述传导电缆总横截面积的50%。
5.根据权利要求2的传导电缆,其中所述多根股线中所述其它股线的横截面积被选定为围绕所述一根股线的股线的整数倍。
6.根据权利要求1的传导电缆,其中所述内导体的横截面积的总和大于所述传导电缆总横截面积的85%。
7.根据权利要求1的传导电缆,其中所述多根股线包括三种不同横截面积的股线。
8.根据权利要求7的传导电缆,其中所述传导电缆包括相同数量的具有第一横截面积和第二横截面积的股线,其中所述第一横截面积和所述第二横截面积不同。
9.一种用于提供传导电缆的方法,该方法包括如下步骤:
提供第一组包括内导体和外绝缘层的一根或多根股线,该内导体具有第一横截面积;
提供第二组包括内导体和外绝缘层的一根或多根股线,该内导体具有不同于所述第一横截面积的第二横截面积;以及
将所述第一组股线的端部与所述第二组股线的端部耦合在一起以形成传导电缆;
其中所述第一和第二横截面积的尺寸被设计成可以有效地传导具有多个频率分量的电流。
10.根据权利要求9的方法,其中所述第一组股线只包括一根股线,其中该一根股线的横截面积大于第二组股线的横截面积,所述第二组股线全部具有相同的横截面积。
11.根据权利要求10的方法,其中所述第一组股线的所述一根股线位于所述传导电缆的中心附近,其中所述第二组股线的股线远离所述传导电缆的中心布置。
12.根据权利要求10的方法,其中所述第一组股线的所述一根股线的横截面积为该传导电缆总横截面积的至少50%。
13.根据权利要求9的方法,还包括:
围绕至少一部分或一芯部缠绕所述所述传导电缆以形成磁性元件。
14.根据权利要求9的方法,其中所有内导体横截面积的总和大于所述传导电缆总横截面积的85%。
15.根据权利要求9的方法,进一步包括:
提供第三组由内导体和外绝缘层构成的一根或多根股线,所述内导体具有不同于所述第一和第二横截面积的第三横截面积;以及
将第一组股线、第二组股线和第三组股线的端部耦接在一起以形成所述传导电缆,
其中所述第一、二和三横截面积的尺寸被设计为能够有效地传输具有多个频率分量的电流。
16.根据权利要求15的方法,其中所述第一组股线与第二和三组股线中的至少一个具有相等数量的股线。
17.一种磁性元件包括:
芯部;和
绕着芯部的至少一部分缠绕的传导电缆,该传导电缆包括多根股线,每股包括内导体和外绝缘层,其中所述多根股线中的至少一股的横截面积具有不同于所述多根股线中其它股横截面积的横截面积。
18.根据权利要求17的磁性元件,其中只有一股的横截面积大于所述多根股线中的所述其它股,而所述其它股的横截面积都相等。
19.根据权利要求17的磁性元件,其中该磁性元件为变压器或电感器。
20.根据权利要求19的磁性元件,其中该磁性元件为功率变换器电路的一部分。
CN200910163966.6A 2009-05-31 2009-05-31 优化的绞合线 Active CN101901641B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910163966.6A CN101901641B (zh) 2009-05-31 2009-05-31 优化的绞合线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910163966.6A CN101901641B (zh) 2009-05-31 2009-05-31 优化的绞合线

Publications (2)

Publication Number Publication Date
CN101901641A true CN101901641A (zh) 2010-12-01
CN101901641B CN101901641B (zh) 2015-02-04

Family

ID=43227112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910163966.6A Active CN101901641B (zh) 2009-05-31 2009-05-31 优化的绞合线

Country Status (1)

Country Link
CN (1) CN101901641B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545035A (zh) * 2012-07-09 2014-01-29 株式会社Kanzacc 电线
CN107154286A (zh) * 2017-05-22 2017-09-12 淮南文峰航天电缆有限公司 一种抗压、抗拉、高耐磨特种超柔光电综合通讯电缆
CN112334998A (zh) * 2018-06-07 2021-02-05 安能科技控股有限公司 电容型电力传输电缆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2092848U (zh) * 1991-07-10 1992-01-08 霍俊 一种改进型电子镇流器
US5864094A (en) * 1996-12-19 1999-01-26 Griffin; Michael D. Power cable
IL125144A (en) * 1998-06-30 2003-11-23 Israel Electric Corp Ltd Electric cable with low external magnetic field and method for designing same
CN2650300Y (zh) * 2003-10-17 2004-10-20 永琨有限公司 一种新型结构的音视频信号线

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545035A (zh) * 2012-07-09 2014-01-29 株式会社Kanzacc 电线
CN107154286A (zh) * 2017-05-22 2017-09-12 淮南文峰航天电缆有限公司 一种抗压、抗拉、高耐磨特种超柔光电综合通讯电缆
CN112334998A (zh) * 2018-06-07 2021-02-05 安能科技控股有限公司 电容型电力传输电缆

Also Published As

Publication number Publication date
CN101901641B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
US8975523B2 (en) Optimized litz wire
JP2011124129A (ja) 高周波用の電線
CN100561616C (zh) 变压器
US9013260B2 (en) Cable and electromagnetic device comprising the same
US20110155417A1 (en) Conducting wire structure and method of manufacturing a conducting wire core
CN101901641B (zh) 优化的绞合线
CN101145702A (zh) 对电梯轿厢的非接触式馈电装置
CN113346635A (zh) 线圈、无线充电发射、接收装置及移动终端
CN101329928A (zh) 一种架空电缆
CN206179579U (zh) 一种中高频变压器用利兹线
CN1571075A (zh) 一种电磁感应装置用双绕组电缆
Abdi et al. Winding considerations on the high frequency transformers
CN113364144A (zh) 线圈、无线充电发射、接收装置及移动终端
CN204792148U (zh) 一种高速传输数据线
JP7146449B2 (ja) 高周波コイル用電線及びコイル
CN210378709U (zh) 一种低趋肤效应电子变压器
CN206098109U (zh) 一种电抗器绕组线圈的换位线
CN214377750U (zh) 一种低损耗交流陆地电缆
CN103208329A (zh) 一种耐高压光电混合抗拉型扁电缆
CN208126884U (zh) 一种便于绕制线圈的高频线缆
CN207663835U (zh) 高导电性能高压电缆
CN105914014A (zh) 一种单相大功率磁集成高频变压器
CN113971331A (zh) 变压器磁芯设计方法以及变压器
CN2638202Y (zh) 一种电气设备的引接线
WO2016202686A1 (en) A method of manufacturing a cable for a winding of an electromagnetic induction device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant