CN101890622B - 电液锤锤杆的制造方法 - Google Patents

电液锤锤杆的制造方法 Download PDF

Info

Publication number
CN101890622B
CN101890622B CN2010102559500A CN201010255950A CN101890622B CN 101890622 B CN101890622 B CN 101890622B CN 2010102559500 A CN2010102559500 A CN 2010102559500A CN 201010255950 A CN201010255950 A CN 201010255950A CN 101890622 B CN101890622 B CN 101890622B
Authority
CN
China
Prior art keywords
hammer
hours
forging
temperature
hammer stem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102559500A
Other languages
English (en)
Other versions
CN101890622A (zh
Inventor
刘英贵
郑兴东
赖辉
罗耀义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Changzheng Heavy Industry Co Ltd
Original Assignee
Chongqing Changzheng Heavy Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Changzheng Heavy Industry Co Ltd filed Critical Chongqing Changzheng Heavy Industry Co Ltd
Priority to CN2010102559500A priority Critical patent/CN101890622B/zh
Publication of CN101890622A publication Critical patent/CN101890622A/zh
Application granted granted Critical
Publication of CN101890622B publication Critical patent/CN101890622B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种电液锤锤杆的制造方法,其特征在于包括以下步骤:选材、加热、锻造、锻后正火处理、粗加工、探伤并作相应的调质处理、半精加工、精磨、氮化处理、抛光等步骤,尤其是采用二阶段气体氮化工艺,这对提高锤杆寿命的提高起到关键性的作用。本发明能够使电液锤锤杆的使用寿命大幅度提高,在其他条件不变的情况下,平均锤击次数由原来的6.5万次提高到120万次,提高了近18倍。

Description

电液锤锤杆的制造方法
技术领域
本发明属于锻压设备技术领域,特别是涉及一种电液锤锤杆的制造方法。
背景技术
电液锤是近年来发展起来的取代蒸汽锤的新一代节能设备。由于其具有节能降耗、不污染环境的优点,已经被国内外许多专业锻造厂家使用。但电液锤(特别是自由锻锤)有一个致命的弱点,就是锤杆使用寿命大大低于蒸汽锤锤杆的使用寿命。
由于电液锤是利用柔性锻造的原理,将锤杆直径设计的比较细(一般在φ70~90mm左右),比原蒸汽锤粗锤杆直径小一倍,重量减轻2/3左右。原设计者初衷的想法是让锤杆变细,减少杆件的刚性,增加它的柔性(即外强内韧),选择了价格昂贵的高强度材料(如12Cr2Ni4MoV、34CrNi3Mo)制作。即使这样在锻造使用过程中仍然发生频繁折断现象,严重影响了生产。
就锤杆的破坏形式而言,疲劳破坏是电液锤锤杆主要失效形式。生产过程中,受非对称循环应力作用的锤杆(如偏心打击)或重击时锤杆产生侧向弯曲,垂直应力和水平应力将同时作用在锤杆内部。虽然受力的最大值小于材料的强度极限,但锤杆表面的加工缺陷或内部的非金属夹杂物将导致金属表面或内部产生应力集中,出现局部屈服或滑移,形成三种形式的疲劳裂纹源:表面疲劳裂纹、内部疲劳裂纹以及危险截面疲劳裂纹。这三种疲劳裂纹发展的最终
结果是使锤杆断裂失效。断裂多发生在锤头上方与电液锤联接板根部这段锤杆的中间部位。就其原因而言,由于锤杆在工作过程中,受力情况比较复杂,应力变化剧烈,特别是在锤头加速下落冲击金属使其变形,在使金属变形的同时,锤杆自身受到极大的反作用力,工作中锤杆沿轴向连续地往复运动,承受着周期性的冲击载荷,当锤杆落到下使点时锤杆受力最大,杆身挠度e也为最大。
因此,要求电液锤杆力学性能均匀,内在质量优良,并且具有较好的热强性。连续往复垂直运动中的锤杆,不但承受极大的压应力,并且还受到几乎与压应力等值的拉应力。在锤击阶段,应力波峰值的大小主要取决于冲击速度和锻件和锻件被击瞬间的力学特性,以及锤杆锤头(模锻)的几何尺寸和物理力学性质。
传统制造锤杆的工艺流程为:下料—加热—自由锻拔长—热处理(正火+调质处理)—机加工出成品,选用12Cr2Ni4MoV或34CrNi3Mo为材料,以上工艺得到的锤杆平均打击次数不足6.5万次就发生疲劳断裂。
发明内容
本发明的目的是提供一种能够显著提高电液锤锤杆使用寿命的的电液锤锤杆制造方法。
为达到上述目的,本发明的技术方案是:设计的电液锤锤杆的制造方法,其特征在于包括以下步骤:
(1)选材,选用电渣钢冶炼制得的锻材作为锻件毛坯,对该锻件毛坯的表面进行剥皮后再进行探伤,此步骤能够很好的保证优质的锻件毛坯进入下一步骤。
(2)加热,将锻件毛坯放入加热炉中进行加热,加热温度为1200±10℃,此温度能够保证锻件毛坯不会过热、过烧;
(3)锻造,在自由锻锤上将加热后的锻件毛坯锻压成规定形状和尺寸的半成品,保证总锻造比≥3,始锻温度为1180±10℃,终锻温度≥850℃,锻后进行三镦三拔,采用三镦三拔工艺后,合金的粗大晶粒通过晶粒内部的滑移、孪生,晶粒转动等机制变得细小均匀;
(4)锻后热处理,正火处理,在锻后热处理炉中加热至880±10℃,并保温3.5~4小时后出炉空冷,正火处理后使得锻件毛坯晶粒细化和碳化物分布均匀化;
(5)粗加工并保证锤杆表面粗造度Ra3.2,在装配密封件处的活塞外圆上加工符合尺寸的凹槽,然后将活塞头加热到350~400℃,保温2小时后对凹槽进行堆焊锡青铜,焊平为止;
传统的一般是先堆焊铜合金(锡青铜Sn-Cu),再划线加工密封槽沟,该堆焊工艺浪费大量昂贵的铜焊丝。经分析铜合金层在活塞表面仅为1mm,它在锤杆工件中起保护液压缸,防止内表面的磨损。而上述锤杆活塞加工方法:将锤杆活塞外圆(即在装配密封件的沟槽位置)加工深为3mm左右的沟槽,然后将活塞头预热(加热到350~400℃,保温2小时)进行堆焊锡青铜,焊平为止,由此生产成本降低10%。
(6)探伤并作相应的调质处理,如果探伤发现超标缺陷,采用油淬调质,使表面硬度为36~40HRC;如果探伤后符合要求,则采用水淬加K油冷却,中温回火加快冷,后去应力回火。淬火后应及时回火,回火时间间隔≤2小时,使表面硬度为36~40HRC;调质中锤杆的机械性能要求:Rm≥900Mpa,Rel≥785
MPa,A5≥14%,Z≥40%,Ak≥55J。
(7)半精加工,按规格在未堆焊锡青铜的活塞外圆上加工凹槽;
(8)精磨,将锤杆精磨到图纸尺寸并留出氮化层量;
(9)氮化处理,去除精磨后的锤杆表面的油迹,首先将该锤杆装入气氛氮化炉中并在温度为200±10℃炉温中保温4小时,然后加热至510~520℃,并在该温度区间保温50~60小时,最后升温至560~570℃进行退氮处理,即在560~570℃之间保温3小时后炉冷<180℃后再进行空冷,使氮化层深≥0.3mm;
(10)抛光,使氮化处理后的锤杆消除表面应力,同时能够使锤杆表面粗糙度降低,以获得光亮、平整表面。
作为优选:步骤(6)中当探伤符合要求时,淬火加热温度为850~860℃,在850~860℃温度中保温3.5~4小时,然后预冷1~2分钟再水冷6分钟后转入K油冷却,然后进行回火加热,升温至460~490℃,在460~490℃温度区间保温5.5小时,再进行水冷5分钟,最后进行去应力处理:加热至280~300℃,保温5小时后进行空冷。
作为优选:步骤(9)中气氛氮化炉炉温从200±10℃到510~520℃的升温阶段,氮分解率控制在零的范围内。
作为优选:步骤(9)中气氛氮化炉炉温在510~520℃之间保温50~60小时,由强渗和扩散两个阶段组成,其中在强渗阶段保温15~20小时,氮分解率控制在18~25%之间,在扩散阶段保温35~40小时,氮分解率控制在35~40%之间,以上特别是采用二阶段气体氮化工艺,这对锤杆寿命的提高起到关键性的作用,这种处理方式能够使锤杆具有更加优异的耐磨性、耐疲劳性、耐蚀性及耐高温性能。
氮化工艺对锤杆的强化作用分析:
气体氮化能有效提高工件的表面硬度、疲劳强度和红硬性。氮化机理:将氮渗入钢件表面的过程称为钢的氮化。主要在钢件表面形成致密而化学稳定性较高的化合物层。其主要组织是α相以及和它共格联系或独立的氮化物。
氮化物层的性能:
1)表面的高硬度和耐磨性。其高硬度是由于合金氮化物的弥散硬化作用所致。氮化物本身具有很高硬度,并且晶格常数比基体α-Fe大得多,因此,当它与母相保持共格联系时,会使母相晶格产生很大的弹性畸变。由于与母相共格的氮化物颗粒周围的弹性畸变应力场的作用,使位错运动受阻,从而产生显著的强化效果。
2)疲劳强度。由于析出比容较大的氮化物相,使氮化层产生较大的残余压应力。表层残余压应力的存在,能部分地抵消在疲劳载荷下产生的拉应力,延缓疲劳破坏过程,使疲劳强度显著提高。同时氮化还使工件的缺口敏感性降低。氮化处理提高疲劳强度的效果随着氮化层的加深而升高,但是过厚的氮化层表面出现大量脆性ε相,反而引起疲劳强度降低。
本发明的效果:电液锤锤杆的使用寿命大幅度提高,在其他条件不变的情况下,平均锤击次数由原来的6.5万次提高到120万次,提高了近18倍。
附图说明
图1为本发明的工艺流程图。
具体实施方式:
下面结合附图对本发明作进一步的说明。
以三根双3t锤杆为例,按照以下三个实施方式分别进行制造:
实施例1:
按照如图1所示的流程,其制造过程如下:
(1)选材,选用电渣钢冶炼制得的锻材作为锻件毛坯,对该锻件毛坯的表面进行剥皮后再进行探伤,其中电渣钢冶炼制得的锻材材质为42CrMo,选用该材料主要有如下优势:一个是材料成本大约降低3/4,另外一个是该材料强度、淬透性高,韧性好,淬火时变形小,高温时有较高的蠕变强度和持久强度;探伤后应保证锻件毛坯内部及表面不允许有任何影响强度的裂纹缺陷,且表面不允许有划伤,其超声波探伤缺陷当量应≤Ф2。选材原则是根据设备的吨位及工艺操作特点,并适当考虑制造质量和成本,在设计部门的指导下按照上述要求做出最优化的选择。
(2)加热,将锻件毛坯放入加热炉中进行加热,加热温度为1170℃,要求锻件毛坯不得过热、过烧;
(3)锻造,在自由锻锤上将加热后的锻件毛坯锻压成规定形状和尺寸的半成品,保证总锻造比为3,始锻温度为1140℃,终锻温度850℃,锻后进行三镦三拔;
(4)锻后正火处理,将锻件毛坯装入250KW井炉中,在250KW井炉中加热至870℃,并保温3.5小时后出炉空冷;
(5)粗加工,在装配密封件处的锤杆活塞外圆上加工符合尺寸的凹槽,即将粗加工后的活塞外圆(即在装配密封件的沟槽位置)加工深为3mm左右的沟槽,粗加工后精度为Ra3.2μm,然后将活塞头加热到350℃,保温2小时后对凹槽进行堆焊锡青铜,焊平为止。
(6)探伤并作相应的调质处理,采用MT+UT的探伤方式,即先进行磁粉检测(Magnetic Particle Testing,缩写符号为MT),然后进行超声检测(UT);如果探伤发现超标缺陷,采用油淬调质,使表面硬度为36~40HRC,如果探伤后符合要求,则采用水淬加K油冷却,中温回火加快冷去应力回火处理。淬火后应及时回火,回火时间间隔为0小时,使表面硬度为36~40HRC;调质后,表面不允许出现游离铁素体,心部游离铁素体量不能超过5%,以保证心部强度。如游离铁素体存在较多,氮化时易形成针状氮化物,使氮化层脆性增大,容易剥落。当探伤符合要求时,具体是这样操作的:淬火加热温度为850℃,在850℃温度中保温3.5小时,然后进行预冷1分钟再水冷6分钟后转入K油冷却,然后进行回火加热至460℃,在460℃温度保温5.5小时,再进行水冷5分钟,最后进行去应力加热至280℃,保温5小时后进行空冷。
(7)半精加工,按规格在未堆焊锡青铜的锤杆活塞外圆上加工凹槽,半精加工后留出0.08mm的磨削余量;
(8)精磨,将锤杆精磨到图纸尺寸并留出氮化层量;
(9)氮化处理,去除精磨后的锤杆表面的油迹,首先将该锤杆装入气氛氮化炉中并在温度为190℃炉温中保温4小时,然后加热至510℃,气氛氮化炉炉温从190℃到510℃的升温阶段,氮分解率控制在零的范围内,并在该510℃保温50小时,最后加热至560℃进行退氮处理,即在560℃保温3小时后炉
冷温度<180℃后再进行空冷,使氮化层深0.3mm;其中气氛氮化炉炉温在510℃之间保温50小时由强渗阶段和扩散阶段两个阶段组成,其中在强渗阶段保温15小时,氮分解率控制在18~25%之间,在扩散阶段保温35小时,氮分解率控制在35~40%之间。采用二段气体氮化工艺,这对锤杆寿命的提高起到关键性的作用。最后检测氮化后的锤杆表面呈银灰色,氮化层表面硬度的控制HV430~470范围内,因为锤杆使用过程中承受一定的冲击载荷,氮化硬度过高不利于锤杆的使用。氮化层脆性的控制:≤2级;氮化后金相组织要求:氮化层组织:索氏体+氮化物,心部组织:细索氏体+少量铁素体(≤5%),不允许粗大组织和大块铁素体存在。
(10)抛光,使氮化处理后的锤杆消除表面应力。
经过以上步骤制造的双3t锤杆,其锤击次数达到110万次。
实施例2:
按照如图1所示的流程,其制造过程如下:
(1)选材,选用电渣钢冶炼制得的锻材作为锻件毛坯,对该锻件毛坯的表面进行剥皮后再进行探伤,其中电渣钢冶炼制得的锻材材质为42CrMo,选用该材料主要有如下优势:一个是材料成本大约降低3/4,另外一个是该材料强度、淬透性高,韧性好,淬火时变形小,高温时有较高的蠕变强度和持久强度;探伤后应保证锻件毛坯内部及表面不允许有任何影响强度的裂纹缺陷,且表面不允许有划伤,其超声波探伤缺陷当量应≤Ф2。选材原则是根据设备的吨位及工艺操作特点,并适当考虑制造质量和成本,在设计部门的指导下按照上述要求做出最优化的选择。
(2)加热,将锻件毛坯放入加热炉中进行加热,加热温度为1180℃,要求锻件毛坯不得过热、过烧;
(3)锻造,在自由锻锤上将加热后的锻件毛坯锻压成规定形状和尺寸的半成品,保证总锻造比为5,始锻温度为1150℃,终锻温度900℃,锻后进行三镦三拔;
(4)锻后正火处理,将锻件毛坯装入250KW井炉,在250KW井炉中加热至880℃,并保温3.7小时后出炉空冷;
(5)粗加工,在装配密封件处的锤杆活塞外圆上加工符合尺寸的凹槽,即将粗加工后的活塞外圆(即在装配密封件的沟槽位置)加工深为3mm左右的沟槽,粗加工后精度为Ra3.2μm,然后将活塞头加热到375℃,保温2小时后对凹槽进行堆焊锡青铜,焊平为止。
(6)探伤并作相应的调质处理,采用MT+UT的探伤方式,即先进行磁粉检测(Magnetic Particle Testing,缩写符号为MT),然后进行超声检测(UT);如果探伤发现超标缺陷,采用油淬调质,使表面硬度为36~40HRC,如果探伤后符合要求,则采用水淬加K油冷却,中温回火加快冷去应力回火进行调质,淬火后应及时回火,回火时间间隔为1小时,使表面硬度为36~40HRC;调质后,表面不允许出现游离铁素体,心部游离铁素体量不能超过5%,以保证心部强度。如游离铁素体存在较多,氮化时易形成针状氮化物,使氮化层脆性增大,容易剥落。当探伤符合要求时,具体是这样操作的:淬火加热温度为855℃,在855℃温度中保温3.7小时,然后进行预冷1.5分钟再水冷6分钟后转入K油冷却,然后进行回火加热475℃,在475℃温度中保温5.5小时,再进行水冷5分钟,最后进行去应力加热至290℃,保温5小时后进行空冷。
(7)半精加工,按规格在未堆焊锡青铜的锤杆活塞外圆上加工凹槽,半精加工后留出0.09mm的磨削余量;
(8)精磨,将锤杆精磨到图纸尺寸并留出氮化层量;
(9)氮化处理,去除精磨后的锤杆表面的油迹,首先将该锤杆装入气氛氮化炉中并在温度为200℃炉温中保温4小时,然后加热至515℃,气氛氮化炉炉温从200℃到515℃的升温阶段,氮分解率控制在零的范围内,并在515℃保温55小时,最后加热至565℃进行退氮处理,即在565℃保温3小时后炉冷温度<180℃后再进行空冷,使氮化层深度0.45mm;其中气氛氮化炉炉温在515℃之间保温55小时由强渗和扩散两个阶段组成,其中在强渗阶段保温17小时,氮分解率控制在18~25%之间,在扩散阶段保温38小时,氮分解率控制在35~40%之间。采用二段气体氮化工艺,这对提高锤杆寿命的提高起到关键性的作用。最后检测氮化后的锤杆表面呈银灰色,氮化层表面硬度的控制HV430~470范围内,因为锤杆使用过程中承受一定的冲击载荷,氮化硬度过高不利于锤杆的使用。氮化层脆性的控制:≤2级,氮化后金相组织要求:氮化层组织:索氏体+氮化物,心部组织:细索氏体+少量铁素体(≤5%),不允许粗大组织和大块铁素体存在。
(10)抛光,使氮化处理后的锤杆消除表面应力。
经过以上步骤制造的双3t锤杆,其锤击次数达到130万次。
实施例3:
按照如图1所示的流程,其制造过程如下:
(1)选材,选用电渣钢冶炼制得的锻材作为锻件毛坯,对该锻件毛坯的表面进行剥皮后再进行探伤,其中电渣钢冶炼制得的锻材材质为42CrMo,选用该材料主要有如下优势:一个是材料成本大约降低3/4,另外一个是该材料强度、淬透性高,韧性好,淬火时变形小,高温时有高的蠕变强度和持久强度;探伤后应保证锻件毛坯内部及表面不允许有任何影响强度的裂纹缺陷,且表面不允许有划伤,其超声波探伤缺陷当量应≤Ф2。选材原则是根据设备的吨位及工艺操作特点,并适当考虑制造质量和成本,在设计部门的指导下按照上述要求做出最优化的选择。
(2)加热,将锻件毛坯放入加热炉中进行加热,加热温度为1190℃,要求锻件毛坯不得过热、过烧;
(3)锻造,在自由锻锤上将加热后的锻件毛坯锻压成规定形状和尺寸的半成品,保证总锻造比为7,始锻温度为1160℃,终锻温度950℃,锻后进行三镦三拔;
(4)锻后正火处理,将锻件毛坯装入250KW井炉,在250KW井炉中加热至890℃,并保温4小时后出炉空冷;
(5)粗加工,在装配密封件处的锤杆活塞外圆上加工符合尺寸的凹槽,即将粗加工后的活塞外圆(即在装配密封件的沟槽位置)加工深为3mm左右的沟槽,粗加工后精度为Ra3.2μm,然后将活塞头加热到400℃,保温2小时后对凹槽进行堆焊锡青铜,焊平为止。
(6)探伤并作相应的调质处理,采用MT+UT的探伤方式,即先进行磁粉检测(Magnetic Particle Testing,缩写符号为MT),然后进行超声检测(UT);如果探伤发现超标缺陷,采用油淬调质,使表面硬度为36~40HRC,如果探伤后符合要求,则采用水淬加K油冷却,中温回火加快冷去应力回火进行调质,淬火后应及时回火,时间间隔为2小时,使表面硬度为36~40HRC;调质后,表面不允许出现游离铁素体,心部游离铁素体量不能超过5%,以保证心部强度。如游离铁素体存在较多,氮化时易形成针状氮化物,使氮化层脆性增大,容易剥落。当探伤符合要求时,具体是这样操作的:淬火加热温度为860℃,在860℃温度中保温4小时,然后预冷2分钟再水冷6分钟后转入K油冷却,然后进行回火加热至490℃,在490℃温度中保温5.5小时,再进行水冷5分钟,最后进行去应力加热至300℃,保温5小时后进行空冷。
(7)半精加工,按规格在未堆焊锡青铜的锤杆活塞外圆上加工凹槽,半精加工后留出0.1mm的磨削余量;
(8)精磨,将锤杆精磨到图纸尺寸并留出氮化层量;
(9)氮化处理,去除精磨后的锤杆表面的油迹,首先将该锤杆装入气氛氮化炉中并在温度为210℃炉温中保温4小时,然后加热至520℃,气氛氮化炉炉温从210℃到520℃的升温阶段,氮分解率控制在零的范围内,并在该520℃保温60小时,最后加热至570℃进行退氮处理,即在570℃保温3小时后炉冷温度<180℃后再进行空冷,使氮化层深0.6mm;其中气氛氮化炉炉温在520℃之间保温60小时由强渗和扩散两个阶段组成,其中在强渗阶段保温20小时,氮分解率控制在18~25%之间,在扩散阶段保温40小时,氮分解率控制在35~40%之间。采用二段气体氮化工艺,这对提高锤杆寿命的提高起到关键性的作用。最后检测氮化后的锤杆表面呈银灰色,氮化层表面硬度的控制HV430~470范围内,因为锤杆使用过程中承受一定的冲击载荷,氮化硬度过高不利于锤杆的使用,氮化层脆性的控制:≤2级,氮化后金相组织要求:氮化层组织:索氏体+氮化物,心部组织:细索氏体+少量铁素体(≤5%),不允许粗大组织和大块铁素体存在。
(10)抛光,使氮化处理后的锤杆消除表面应力。
经过以上步骤制造的双3t锤杆,其锤击次数达到120万次。
以上所述仅为本发明的较佳实施范例而已,并不以本发明为限制,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种电液锤锤杆的制造方法,其特征在于包括以下步骤:
(1)选材,选用电渣钢冶炼制得的锻材作为锻件毛坯,对该锻件毛坯的表面进行剥皮后再进行探伤;
(2)加热,将锻件毛坯放入加热炉中进行加热,加热温度为1200±10℃;
(3)锻造,在自由锻锤上将加热后的锻件毛坯锻压成规定形状和尺寸的半成品,保证总锻造比≥3,始锻温度为1180±10℃,终锻温度≥850℃,锻后进行三镦三拔;
(4)锻后正火处理,在锻后热处理炉中加热至880±10℃,并保温3.5~4小时后出炉空冷;
(5)粗加工并保证锤杆表面粗造度Ra3.2,在装配密封件处的锤杆活塞外圆上加工符合尺寸的凹槽,然后将活塞头加热到350~400℃,保温2小时后对凹槽进行堆焊锡青铜,焊平为止;
(6)探伤并作相应的调质处理,如果探伤发现超标缺陷,采用油淬调质,使表面硬度为36~40HRC,如果探伤后符合要求,则采用水淬加K油冷却,中温回火加快冷,去应力回火,淬火后应及时回火,回火时间间隔≤2小时,使表面硬度为36~40HRC;
(7)半精加工,按规格在未堆焊锡青铜的活塞外圆上加工凹槽;
(8)精磨,将锤杆精磨到图纸尺寸并留出氮化层量;
(9)氮化处理,去除精磨后的锤杆表面的油迹,首先将该锤杆装入气氛氮化炉中并在温度为200±10℃炉温中保温4小时,然后加热至510~520℃,并在该温度区间保温50~60小时,最后升温至560~570℃进行退氮处理,即在560~570℃之间保温3小时后炉冷<180℃后再进行空冷,使氮化层深≥0.3mm;
(10)抛光,消除氮化处理后的锤杆表面应力。
2.根据权利要求1所述的电液锤锤杆的制造方法,其特征在于:步骤(6)中当探伤符合要求时,淬火加热温度为850~860℃,在850~860℃温度中保温3.5~4小时,然后预冷1~2分钟再水冷6分钟后转入K油冷却,然后进行回火加热,升温至460~490℃,在460~490℃温度区间保温5.5小时,再进行水冷5分钟,最后进行去应力处理:加热至280~300℃,保温5小时后空冷。
3.根据权利要求1所述的电液锤锤杆的制造方法,其特征在于:步骤(9)中气氛氮化炉炉温从200±10℃到510~520℃的升温阶段,氮分解率控制在零的范围内。
4.根据权利要求1所述的电液锤锤杆的制造方法,其特征在于:步骤(9)中气氛氮化炉炉温在510~520℃之间保温50~60小时,由强渗和扩散两个阶段组成,其中在强渗阶段保温15~20小时,氮分解率控制在18~25%之间,在扩散阶段保温35~40小时,氮分解率控制在35~40%之间。
CN2010102559500A 2010-08-18 2010-08-18 电液锤锤杆的制造方法 Active CN101890622B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102559500A CN101890622B (zh) 2010-08-18 2010-08-18 电液锤锤杆的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102559500A CN101890622B (zh) 2010-08-18 2010-08-18 电液锤锤杆的制造方法

Publications (2)

Publication Number Publication Date
CN101890622A CN101890622A (zh) 2010-11-24
CN101890622B true CN101890622B (zh) 2011-07-27

Family

ID=43100051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102559500A Active CN101890622B (zh) 2010-08-18 2010-08-18 电液锤锤杆的制造方法

Country Status (1)

Country Link
CN (1) CN101890622B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343505B (zh) * 2011-08-10 2013-09-04 周建军 一种双金属螺杆的制作方法
CN102886916B (zh) * 2012-09-17 2015-05-06 北京奥科瑞丰新能源股份有限公司 用于生物质成型装置中的压轮及其加工方法
CN102936645A (zh) * 2012-10-19 2013-02-20 洛阳高登回转支承有限公司 一种蜗杆的热处理工艺
CN103276176A (zh) * 2013-04-09 2013-09-04 康力电梯股份有限公司 回转链热处理工艺
CN103350173B (zh) * 2013-06-24 2016-04-27 钢铁研究总院 一种奥氏体不锈钢异形整体大锻件的生产方法
CN103305673B (zh) * 2013-07-01 2015-05-13 江阴市恒业锻造有限公司 细晶粒35CrNi3MoV钢大型锻坯的制造方法
CN103642996A (zh) * 2013-12-20 2014-03-19 太原重工股份有限公司 一种合金钢锻件的制造方法和热处理方法
CN104313253A (zh) * 2014-10-08 2015-01-28 柳州科尔特锻造机械有限公司 活塞杆和轮边轴锻造及热处理工艺
CN104353822B (zh) * 2014-10-23 2016-05-18 卫辉市川亚冶金设备制造有限公司 一种滑动水口机构面压杆的加工工艺
CN104476113A (zh) * 2014-10-29 2015-04-01 苏州市金德誉精密机械有限公司 一种底轮的加工工艺
CN104847779A (zh) * 2015-04-29 2015-08-19 广州市锐美汽车零部件有限公司 一种电机转轴及其加工方法
CN106312448B (zh) * 2015-07-01 2019-01-25 安徽添御石油设备制造有限公司 一种石油压裂车的压力泵阀箱的制作工艺
CN105714075B (zh) * 2016-01-30 2019-05-28 李令禹 一种挖掘机挖斗用分体斗齿及其制造方法
CN106141579A (zh) * 2016-07-07 2016-11-23 马鞍山云林百成机械制造有限公司 液压锤的液压镐制备方法
CN106078107A (zh) * 2016-07-07 2016-11-09 马鞍山云林百成机械制造有限公司 液压的冲击锤生产工艺
CN107328668B (zh) * 2017-07-12 2023-05-12 昆明理工大学 一种钢铁材料可锻性测试方法及装置
CN107717334A (zh) * 2017-08-18 2018-02-23 南通聚星铸锻有限公司 一种电液锤杆材料配方及锤杆加工方法
CN108103284B (zh) * 2017-11-28 2020-01-21 中国航发沈阳黎明航空发动机有限责任公司 一种改善1Cr13钢制膜合盖零件氮化层组织的方法
CN111660072A (zh) * 2020-01-04 2020-09-15 铁岭中油机械设备制造有限公司 一种防腐耐磨抽油光杆的制作方法
CN113481356B (zh) * 2021-07-02 2022-05-27 重庆长征重工有限责任公司 用于改善42CrMo合金钢锻件粗大晶粒的方法
CN114369704B (zh) * 2021-12-20 2023-12-26 无锡鹰贝精密液压有限公司 一种减小内球面变形的低碳合金钢球窝柱塞热处理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4674171A (en) * 1984-04-20 1987-06-23 Lor, Inc. Heavy wall drill pipe and method of manufacture of heavy wall drill pipe
CN100431781C (zh) * 2006-12-06 2008-11-12 重庆长征重工有限责任公司 锻压设备用锤杆的制造方法
CN100590208C (zh) * 2007-08-15 2010-02-17 沈阳鼓风机(集团)有限公司 42CrMoE热处理工艺
CN101338673A (zh) * 2008-07-31 2009-01-07 南阳开天工程机械有限公司 液压破碎锤用镶芯钎杆及其制作方法

Also Published As

Publication number Publication date
CN101890622A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
CN101890622B (zh) 电液锤锤杆的制造方法
CN100431781C (zh) 锻压设备用锤杆的制造方法
CN100503893C (zh) 表面具有硬贝氏体组织齿轮的制造工艺
CN105063491B (zh) 一种径向精锻机用高硬度锤头的制备方法
JP5497798B2 (ja) ピストンリングおよびシリンダスリーブを製造するための鋼材組成物
CN102257299A (zh) 可氮化钢活塞环和钢汽缸套及制造它们的铸造方法
CN105041658A (zh) 一种制冷压缩机用滚动活塞及其制造方法
JP5683497B2 (ja) ピストンリングおよびシリンダスリーブを製造するための鋼材組成物
CN103397293A (zh) 重型机械零部件的渗碳工艺
CN106392507A (zh) 一种汽车变速箱用倒档从齿锻压工艺
CN111893381A (zh) 一种高氮不锈轴承钢及其制备方法
JP2010065280A (ja) 熱間加工用金型
CN109161788B (zh) 一种注热蒸汽稠油热采井用耐高温石油套管及其制造方法
CN104928445B (zh) 一种高风压冲击器活塞及其热处理工艺
CN103990758B (zh) 一种10Cr9Mo1VNb钢锻件制造工艺
CN105983818A (zh) 一种定位环加工工艺
CN103740898B (zh) 一种高硬5Cr13MoV耐磨衬板压力淬火方法
CN101363123A (zh) 钢件表面喷丸及等离子低温渗硼的复合工艺方法
CN104455538A (zh) 一种具有高耐磨密封表面的球阀球体及其制备方法
KR20090034112A (ko) 가스터빈용 커플링 볼트의 제조방법
Stalinskii et al. Improving the quality of steel grinding balls
CN101597683B (zh) 一种耐磨钢中碳合金衬板的加工方法
CN101748330A (zh) 一种耐热套管用钢及其制造方法
CN110592576A (zh) 一种缸套生产方法、缸套及该缸套生产方法的应用
CN105563032B (zh) 应用双金属管料制造复合轴承的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant