CN101878331B - Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure - Google Patents

Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure Download PDF

Info

Publication number
CN101878331B
CN101878331B CN 200880118354 CN200880118354A CN101878331B CN 101878331 B CN101878331 B CN 101878331B CN 200880118354 CN200880118354 CN 200880118354 CN 200880118354 A CN200880118354 A CN 200880118354A CN 101878331 B CN101878331 B CN 101878331B
Authority
CN
China
Prior art keywords
resin
fiber
composite
ultrafine
composite fiber
Prior art date
Application number
CN 200880118354
Other languages
Chinese (zh)
Other versions
CN101878331A (en
Inventor
上笹利夫
小形信男
Original Assignee
大和纺合纤株式会社
大和纺控股株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007-311425 priority Critical
Priority to JP2007311535 priority
Priority to JP2007311425A priority patent/JP5004774B2/en
Priority to JP2007-311535 priority
Application filed by 大和纺合纤株式会社, 大和纺控股株式会社 filed Critical 大和纺合纤株式会社
Priority to PCT/JP2008/071677 priority patent/WO2009069759A1/en
Publication of CN101878331A publication Critical patent/CN101878331A/en
Application granted granted Critical
Publication of CN101878331B publication Critical patent/CN101878331B/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/04Melting filament-forming substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/0023Electro-spinning characterised by the initial state of the material the material being a polymer melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]

Abstract

An ultrafine composite fiber is a solid composite resin molded product having two or more phases. A resin having a volume resistivity of 1015 O cm or less is exposed on 30% or more of the surface of the composite resin molded product. The composite resin molded product is heated and fused in front of a supply electrode and/or between electrodes and extended by electro-spinning, thereby producing the ultrafine composite fiber. Thus, the ultrafine composite fiber of a synthetic fiber and an ultrafine fiber are produced by electro-spinning without mixing a solvent into a supplied resin. A methodfor manufacturing such an ultrafine composite fiber and a fiber structure including such an ultrafine composite fiber are provided.

Description

极细复合纤维和极细纤维及它们的制造方法以及纤维结构 Ultrafine composite fiber and an ultrafine fiber and a manufacturing method thereof and a fibrous structure

Thing

技术领域 FIELD

[0001] 本发明涉及使用了静电纺丝法(electro spinning)的极细纤维及其制造方法以及包含通过该方法获得的极细复合纤维的纤维结构物。 [0001] The present invention relates to an electrostatic spinning method (electro spinning) ultrafine fiber and its manufacturing method comprising ultrafine composite fiber obtained by the method of the fiber structure.

背景技术 Background technique

[0002] 一直以来,聚对苯二甲酸乙二醇酯(PET)纤维、尼龙纤维、聚烯烃纤维等合成纤维通常通过熔融纺丝法来制造。 [0002] Conventionally, polyethylene terephthalate (PET) fibers, nylon fibers, polyolefin fibers and other synthetic fibers are typically made by melt spinning. 然而通过熔融纺丝法难以获得极细纤维,特别是难以稳定地获得直径为8 μ m(以单纤维纤度计为约ldecitex)以下的纤维。 However, it is difficult to obtain ultrafine fibers by melt-spinning, especially difficult to stably obtain a diameter of 8 μ m (meter a single fiber fineness of about ldecitex) less fibers.

[0003] 另一方面,作为获得极细纤维的方法,下述专利文献1〜3提出了静电纺丝法。 [0003] On the other hand, as a method to obtain ultrafine fibers, the following Patent Document 1 ~ 3 proposes an electrostatic spinning method. 专利文献1公开了固体熔融静电纺丝法。 Patent Document 1 discloses a solid melt-electrospinning.

[0004] 专利文献1 :日本特开2007-239114 [0004] Patent Document 1: Japanese Patent Laid-Open 2007-239114

[0005] 专利文献2 :日本特开2007-197859 [0005] Patent Document 2: Japanese Patent Laid-Open 2007-197859

[0006] 专利文献3 :日本特开2005-M4927 [0006] Patent Document 3: Japanese Patent Laid-Open 2005-M4927

[0007] 但是,以往的静电纺丝法具有以下的问题。 [0007] However, the conventional electrospinning method has the following problems. 难以带电的聚合物即使施加电压也难以进行细纤维化,因此难以适用于静电纺丝法。 Polymers difficult to charge even when the applied voltage is difficult to be fibrillated, it is difficult to apply to electrostatic spinning. 另外,专利文献1〜3需要将纺丝前的供给树脂溶解或分散于溶剂中,因此存在在所得纤维中溶剂所产生的成分残留的问题。 Further, Patent Document 1~3 need to supply resin before spinning dissolved or dispersed in a solvent, there is a problem in the solvent component in the resulting residual fibers produced. 当溶剂残留于所得纤维中时,可能会发生之后溶剂所产生的成分渗出的各种问题。 When the solvent remaining in the resultant fibers, the solvent composition may occur after the resulting bleeding problems.

发明内容 SUMMARY

[0008] 本发明为了解决上述以往的问题,提供在不需要将供给树脂溶解或分散于溶剂中的情况下、使用静电纺丝法获得合成纤维的极细复合纤维和极细纤维以及极细复合纤维的制造方法和包含极细复合纤维的纤维结构物。 When the resin is dissolved or dispersed in a solvent [0008] In order to solve the aforementioned conventional problems, without the need to provide the feeding, using an electrospinning method to obtain synthetic ultrafine composite fiber and an ultrafine composite fiber and an ultrafine a method for producing fibers and the ultrafine composite fiber comprises a fiber structure.

[0009] 本发明的极细复合纤维的特征在于,其是通过将复合树脂成形物在供给侧电极前和/或上述供给侧电极与捕获电极之间进行加热熔融,并通过静电纺丝使其伸长而获得的;所述复合树脂成形物是具有2个以上的相的固体状的复合树脂成形物,且体积电阻率值为1015Ω · cm以下的树脂在所述复合树脂成形物表面上露出30%以上;其中,构成上述极细复合纤维的纤维成分为相分离状态。 [0009] wherein the ultrafine composite fiber of the present invention is characterized in that it is molded by the composite resin was heated and melted at the front between the supply-side electrode and / or the supply-side electrode and the collection electrode, and passed through electrospinning elongation obtained; the resin-formed product is a solid resin-formed product having two or more phases, and a volume specific resistance of 1015Ω · cm or less is exposed on the resin surface of the composite resin molded product more than 30%; wherein the fiber component constituting the ultrafine composite fiber are in a phase separation state.

[0010] 本发明的极细纤维是使构成上述极细复合纤维的任一成分脱离而获得的。 [0010] ultrafine fibers of the present invention is to Renyi Cheng constituting the ultrafine composite fiber obtained by partial detachment.

[0011] 本发明的极细复合纤维的制造方法的特征在于,其包含以下工序: [0011] The manufacturing method of the ultrafine composite fiber of the present invention is characterized in that it comprises the following steps:

[0012] 预先使体积电阻率值为IO15 Ω 以下的树脂在复合树脂成形物表面上露出30% 以上,其中所述复合树脂成形物是具有2个以上的相的固体状的复合树脂成形物,然后将上述复合树脂成形物供给至供给侧电极的工序; [0012] The volume resistivity value in advance IO15 Ω or less than 30% of the resin is exposed on the surface of the composite-resin-formed product, wherein the resin-formed product having two or more phases of the solid resin-formed product, then, the above composite resin molding process for supplying a feed to the side electrode;

[0013] 将上述复合树脂成形物在上述供给侧电极前和/或上述供给侧电极与捕获侧电极之间进行加热熔融的工序;和 [0013] The above composite resin molded product melting step of heating the front between the supply-side electrode and / or the supply-side electrode and the collection-side electrode; and

[0014] 通过静电纺丝使上述熔融的复合树脂成形物伸长的工序。 [0014] so that the molten composite resin molding step was elongated by electrospinning. [0015] 本发明的纤维结构物的特征在于包含极细复合纤维,所述极细复合纤维是通过将复合树脂成形物在供给侧电极前和/或上述供给侧电极与捕获电极之间进行加热熔融,并通过静电纺丝使其伸长而获得的;所述复合树脂成形物是具有2个以上的相的固体状的复合树脂成形物,且体积电阻率值为IO15 Ω · cm以下的树脂在所述复合树脂成形物表面上露出30%以上;其中,构成上述极细复合纤维的纤维成分为相分离状态;。 [0015] wherein the fiber structure of the present invention comprise ultrafine composite fiber, the ultrafine composite fiber is formed by a composite resin molded product is heated in the front between the supply-side electrode and / or the supply-side electrode and the collection electrode melted and stretched by electrospinning so obtained; the resin-formed product having two or more solid phase resin-formed product, and the volume resistivity value IO15 Ω · cm or less resin 30% or more on the exposed surface of the resin molded composite; wherein the fibers constituting the ultrafine composite fiber component of the phase separation state;.

附图说明 BRIEF DESCRIPTION

[0016] 图1为本发明的一个实施例的静电纺丝装置的概略说明图。 [0016] Fig 1 a schematic explanatory view of an electrospinning device according to an embodiment of the present invention.

[0017] 图2为本发明的另一实施例的静电纺丝装置的概略说明图。 A schematic explanatory view of the electrostatic spinning apparatus of the embodiment [0017] FIG. 2 is another of the present invention.

[0018] 图3为本发明的实验编号3中获得的极细纤维的截面图的扫描电子显微镜(SEM、 倍率为20000倍)的照片。 Cross-sectional view of the extremely fine fibers Experiment No. [0018] FIG 3 3 obtained in the present invention a scanning electron microscope (SEM, magnification 20,000 times) photograph.

[0019] 图4为图3的概略截面图。 [0019] FIG. 4 is a schematic cross-sectional view of FIG. 3.

[0020] 图5为本发明的实验编号5中获得的极细纤维的截面图的扫描电子显微镜(SEM、 倍率为10000倍)的照片。 Sectional view of an ultrafine fiber [0020] FIG. 5 Experiment No. 5 of the present invention obtained by a scanning electron microscope (SEM, magnification 10,000 times) photograph.

[0021] 图6为图5的概略截面图。 [0021] FIG. 6 is a schematic sectional view in FIG. 5.

[0022] 图7为本发明的实验编号6中获得的极细纤维的截面图的扫描电子显微镜(SEM、 倍率为4000倍)的照片。 Sectional view of an ultrafine fiber obtained in Experiment No. 6 [0022] FIG. 7 of the present invention is a scanning electron microscope (SEM, magnification 4000 times) photograph.

[0023] 图8为图7的概略截面图。 [0023] FIG. 8 is a schematic cross-sectional view of FIG. 7.

[0024] 图9为本发明的实验编号10中获得的极细纤维的截面图的扫描电子显微镜(SEM、 倍率为10000倍)的照片。 Sectional view of an ultrafine fiber obtained in Experiment No. 10 [0024] FIG. 9 of the present invention is a scanning electron microscope (SEM, magnification 10,000 times) photograph.

[0025] 图10为图9的概略截面图。 [0025] FIG. 10 is a schematic cross-sectional view of FIG. 9.

[0026] 图11为本发明的另一实施例的静电纺丝装置的概略说明图,是原料的复合纤维为多根纺丝的例子。 A schematic explanatory view of an electrospinning device according to another [0026] FIG. 11 of the present embodiment of the invention, the fiber composite material is an example of a plurality of spinning.

[0027] 图12A为作为本发明实施例2中使用的原料的复合树脂成形物的复合纤维的截面的一个例子、图12B为本发明实施例2中获得的极细复合纤维的截面的一个例子。 Examples of a cross section of a composite fiber material of a composite resin molded product used in Example 2 [0027] FIG. 12A is a embodiment of the present invention, FIG. 12B is a cross section of an example of an ultrafine composite fiber obtained in Example 2 of the present invention .

[0028] 图13A为作为本发明实施例3中使用的原料的复合树脂成形物的复合纤维的截面的一个例子、图13B为本发明实施例3中获得的极细复合纤维的截面的一个例子。 [0028] FIG 13A is a cross section of one example of a composite fiber material of the composite resin molded product used in a third embodiment of the present invention, FIG. 13B is a cross-sectional example of the ultrafine composite fiber obtained in Example 3 of the present invention .

[0029] 图14为本发明的实施例2、实验编号13中获得的EVOH除去前的极细纤维的扫描电子显微镜(SEM、倍率为2000倍)的照片。 Embodiment [0029] FIG. 2 embodiment 14 of the present invention, the photo ultrafine fibers before EVOH was removed in Experiment No. 13 obtained in a scanning electron microscope (SEM, magnification 2000 times) of.

[0030] 图15为本发明的实施例2、实验编号13中获得的EVOH除去后的极细纤维的扫描电子显微镜(SEM、倍率为2000倍)的照片。 Embodiment [0030] FIG. 2 embodiment 15 of the present invention, the ultrafine fiber after EVOH obtained in Experiment No. 13 to remove a scanning electron microscope (SEM, magnification 2000 times) photograph.

[0031] 图16为本发明的实施例2、实验编号14中获得的EVOH除去后的极细纤维的扫描电子显微镜(SEM、倍率为2000倍)的照片。 Embodiment [0031] FIG. 2 embodiment 16 of the present invention, after the photo EVOH ultrafine fiber obtained in Experiment No. 14 to remove a scanning electron microscope (SEM, magnification 2000 times) of.

[0032] 图17为本发明的实施例2、实验编号15中获得的EVOH除去后的极细纤维的扫描电子显微镜(SEM、倍率为1000倍)的照片。 [0032] FIG. 17 embodiment 2 of the present invention, the ultrafine fiber after EVOH obtained in Experiment No. 15 to remove a scanning electron microscope (SEM, magnification 1000 times) photograph.

[0033] 图18为本发明的实施例3、实验编号18中获得的EVOH除去前的极细纤维的扫描电子显微镜(SEM、倍率为5000倍)的照片。 [0033] FIG. 18 of the present invention 3, the ultrafine fibers before photo EVOH obtained in Experiment No. 18 to remove a scanning electron microscope (SEM, magnification 5000 times) of the Example.

[0034] 图19为本发明的实施例3、实验编号18中获得的EVOH除去后的极细纤维的扫描电子显微镜(SEM、倍率为5000倍)的照片。 Embodiment [0034] FIG. 3 embodiment 19 of the present invention, the EVOH ultrafine fiber obtained in Experiment No. 18 to remove a scanning electron microscope (SEM, magnification 5000 times) photograph. [0035] 图20为本发明的实施例3、实验编号19中获得的EVOH除去后的极细纤维的扫描电子显微镜(SEM、倍率为5000倍)的照片。 [0035] FIG. 20 embodiment of the present invention 3, the EVOH ultrafine fiber obtained in Experiment No. 19 to remove a scanning electron microscope (SEM, magnification 5000 times) photograph.

[0036] 图21为本发明的实施例3、实验编号20中获得的EVOH除去后的极细纤维的扫描电子显微镜(SEM、倍率为5000倍)的照片。 [0036] FIG. 21 embodiment 3 of the present invention, ultrafine fibers obtained after EVOH was removed in Experiment No. 20 of a scanning electron microscope (SEM, magnification 5000 times) photograph.

具体实施方式 Detailed ways

[0037] 本发明使用具有2个以上的相的固体状的复合树脂成形物来作为原料,上述复合树脂中的1种以上的树脂的体积电阻率值在IO15 Ω · cm以下,且上述树脂在复合树脂成形物表面上露出30%以上,该复合树脂成形物在通过电极间的供给侧电极时带电,并通过静电纺丝而伸长,可以在不使用有机溶剂的情况下获得用以往方法难以获得的极细复合纤维和极细纤维。 [0037] The present invention uses solid resin-formed product having two or more phases as a raw material, the volume resistivity value of the composite resin of one or more kinds of resins in IO15 Ω · cm or less, and said resin the exposed surface of the composite resin molded product 30% or more, when the resin molded charged by the supply-side electrode between the electrodes of the composite, and is stretched by electrospinning, can be obtained by conventional methods is difficult without the use of organic solvents the obtained ultrafine composite fiber and an ultrafine fiber. 即,由于可以在不向纺丝前的供给树脂中混入有机溶剂的情况下对树脂本身进行纺丝,因此具有在所得纤维中不存在溶剂的优点。 That is, since the resin itself can be spun without supplying the organic solvent is mixed resin before spinning, there is an advantage in the absence of a solvent the resulting fibers.

[0038] 本发明人等对固体熔融静电纺丝法中为何特定的树脂无法高效地伸长(extension)或拉伸(drawing)进行了研究。 [0038] The present inventors solid melt electrospinning process why specific resins can not be efficiently elongated (Extension) or stretched (Drawing) were studied. 结果发现,某特定的树脂中具有如聚丙烯(PP) 那样体积电阻率值高达IO16〜-cm的物质,这种物质即使施加电压也难以带电,因此难以进行细纤维化。 It was found that a specific resin having a substance such as polypropylene (PP) as a high value IO16~-cm volume resistivity, this material is also easily electrified even when a voltage is applied, it is difficult to finely fibrosis. 代表性的树脂的体积电阻率如下所述。 Representative volume resistivity of the resin is as follows.

[0039] 表1 [0039] TABLE 1

[0040] [0040]

树脂 体积电阻率值(Ω · cm)聚乙烯 IO16 〜IO20聚丙烯 IO16 〜IO20聚乳酸 IO"5 〜IO17聚氨酯 IO13 〜IO15尼龙 10 〜10聚酯 10 〜10EVOH IO7 〜IO9 Resin volume resistivity (Ω · cm) polypropylene, polyethylene IO16 ~IO20 IO16 ~IO20 polylactic IO "5 ~IO17 IO13 ~IO15 polyurethane polyester nylon 10 ~ 10 10 ~10EVOH IO7 ~IO9

[0041] 参考1 :EV0H是乙烯一乙烯醇共聚物的缩写。 [0041] Reference 1: EV0H is an abbreviation for ethylene-vinyl alcohol copolymer.

[0042] 参考2 :表1的数据参考旭化成AMIDAS株式会社1 '卞午;”卞編集部編、「7 卞午” ·尹一夕7" ” >7」1999年12月1日発行、工業調查会、186頁。 [0042] Reference 2: The data in Table 1 reference Asahi Kasei AMIDAS Corporation 1 'Bian afternoon; "Bian compilation unit, ed.," 7 Bian afternoon "· Yin overnight 7" "> 7" 1999 December 1 Requested Procedure houses, industrial survey will be, 186.

[0043] 因此,对在不使用溶剂的情况下将体积电阻率低的树脂成分制成复合树脂成形物进行了研究。 [0043] Thus, in the case where no solvent will be a low volume resistivity of the resin molded component made of a composite resin was studied. 复合树脂成形物的复合方法有多种多样,限定于纤维状的复合树脂成形物时, 从截面形状来看有分割型、并列型、海岛型、芯鞘型(其中芯和鞘为何种成分具有选择性) 等,从进行了各种研究的结果可知,当原料使用含有体积电阻率值为1015Ω · cm以下的树脂成分且上述树脂在复合树脂成形物表面上露出30%以上的复合树脂成形物时,伸长性最好。 The method of the composite resin-formed product are varied, when the composite resin molded article is limited to the fibrous, there is split-type, parallel type, sea-island cross-sectional shape from a point of view, the core-sheath type (wherein the core component and the sheath of which having selectivity), and from the results of various studies found that, when volume resistivity of the material containing a resin component is 1015Ω · cm or less, and the resin is exposed 30% or more of the composite resin was formed on the surface of the composite-resin-formed , the best elongation.

[0044] 在本发明中,体积电阻率值利用ASTM D-257进行测定。 [0044] In the present invention, the volume resistivity values ​​using ASTM D-257 was measured.

[0045] 关于固体熔融静电纺丝,由于通过供给侧电极时带电的树脂在电引力的作用下高速地向着捕获侧电极伸长,因此体积电阻率值超过1015Ω 的树脂由于难以带电,所以是不适于静电纺丝的树脂。 [0045] For solid melt electrospinning, since the supply-side electrode when the charged resin toward the collection-side electrode at a high speed in the elongation of the electric attraction force, so the volume resistivity value exceeds 1015Ω charged resin is difficult, so is not applicable electrostatic spinning resins. 但是,本发明通过在伸长时与体积电阻率值为1015Ω ^cmWTW 树脂组合,由于其影响作用,即使是体积电阻率值高的树脂也可伸长。 However, the present invention is by the volume resistivity value of the elongation at 1015Ω ^ cmWTW resin composition, because of its influence, even a high volume resistivity value of the resin can be extended. 推测其原因在于,固体状的复合树脂成形物在电极间的供给侧电极前和/或上述供给侧电极与捕获电极之间被加热熔融时,在被加热熔融的原料纤维的前端,露出至表面的体积电阻率值为规定值以下的成分在进行静电纺丝之前充分地带电,在该形势下,通常难以带电的体积电阻率值超过IO15Ω · cm的树脂同时被伸长、纺丝。 The reason for this presumably is that the solid resin-formed product in front of the supply-side electrode between the electrodes and / or the supply-side electrode and between the electrodes when the capture is heated and melted, heated and melted at the tip of the fiber material exposed to the surface the volume resistivity value of a predetermined value or less components performing sufficiently charge before electrospinning, in this situation, the charging is often difficult volume specific resistance exceeding resin IO15Ω · cm is stretched while spinning.

[0046] 在本发明中,在电极间的供给侧电极与捕获侧电极之间施加电压。 [0046] In the present invention, a voltage is applied between the supply-side electrode and the collection-side electrode between the electrodes. 优选的施加电压为20〜100kV、更优选为30〜50kV。 The preferred applied voltage 20~100kV, more preferably 30~50kV.

[0047] 当为上述范围时,树脂易于带电、在电极间也难以引起火花或电晕放电、没有着火等问题。 [0047] When the above-described range, the resin is easily charged, it is difficult to cause the spark between the electrodes or corona discharge, problems such as no fire. 当电压小于20kV时,在环境中的空间(电极间)中,由于电极间具有电阻,因此可能电子的流动变差、树脂难以带电。 When the voltage is less than 20kV, the space in the environment (inter-electrode), since the inter-electrode has a resistance, so may the flow of electrons is deteriorated, the resin is difficult to be charged. 另外,当超过IOOkV时,在电极间会引起火花或电晕放电,树脂可能会着火。 Further, if it exceeds IOOkV, causes a spark between the electrodes or corona discharge, the resin may catch fire.

[0048] 另外,电极间距离可以考虑所得极细复合纤维的纤维直径(直径)、纤维直径的不均以及极细纤维向捕获侧电极的聚集性来适当选择。 [0048] Further, the inter-electrode distance may be considered a fiber diameter of the obtained ultrafine composite fiber (diameter), fiber diameter and unevenness of the ultrafine fiber aggregate to capture side electrode be selected appropriately. 例如,电极间距离优选为2〜25cm、更优选为5〜20cm。 For example, the inter-electrode distance is preferably 2~25cm, more preferably 5~20cm. 当为上述范围时,树脂易于带电、在电极间也难以引起火花或电晕放电、 没有着火等问题。 When the above-mentioned range, the resin is easily charged, it is difficult to cause the spark between the electrodes or corona discharge, problems such as no fire. 当电极间距离小于2cm时,在电极间易于引起火花或电晕放电、树脂可能会着火。 When the inter-electrode distance is less than 2cm, is liable to cause a spark between the electrodes or corona discharge, the resin may catch fire. 当超过25cm时,具有电极间的电阻增高、电子的流动受阻、树脂难以带电的倾向。 When more than 25cm, the resistance between the electrodes is increased, the flow of electrons is blocked, the resin tends to have a hard charged.

[0049] 供给至供给侧电极的复合树脂成形物优选以固体状态供给。 [0049] supplied to the supply-side electrode preferably resin-formed product is supplied in a solid state. 还可以是通过供给侧电极时通过加热而成为熔融状或半熔融(软化)状的复合树脂成形物。 May also be in a molten or semi-molten (softened) shape by heating the resin-formed product passes through the supply-side electrode. 优选以纤维的状态供给。 It is preferably supplied in a fibrous state. 当复合树脂成形物为纤维的状态时,极细复合纤维的截面形状易于成为与纤维状的复合树脂成形物的截面形状相似的形状,易于控制进行静电纺丝而获得的极细复合纤维的截面形状。 When the cross section of the composite resin formed product is a fibrous state, the ultrafine composite fiber cross-sectional shape tends to become similar to the sectional shape of the resin-formed product is a fibrous shape, and easily controlled electrostatic spinning ultrafine composite fiber obtained by shape. 作为复合树脂成形物(复合纤维),优选单丝、将多根单丝会聚而成的多丝或丝束。 As the resin-formed product (composite fiber), preferably monofilaments, the plurality of filaments converging from multifilament or tow. 在上文中,多丝是指丝数为2〜100根、丝束是指丝数超过100根。 In the above, multifilament yarn refers to a number of 2~100 root, is the number of wire strands over 100. 其中,从静电纺丝性的角度出发,优选为将10〜1000根单丝会聚而成的多丝或丝束。 Wherein, from the viewpoint of electrostatic spinnability, it is preferable to be formed by condensing 10~1000 filaments or multifilament tows.

[0050] 向刚通过供给侧电极后的复合树脂成形物(例如固体的复合纤维)照射例如激光光线,将复合树脂成形物加热熔融。 [0050] immediately after the supply-side electrode by a composite resin molded product (e.g., a solid composite fiber) is irradiated such as a laser beam, the resin-formed product is heated and melted. 即使预先使复合树脂成形物成为熔融状或半熔融状, 通过在电极间进一步进行加热熔融,可以使复合树脂成形物低粘度化,因此能够提高伸长性。 Even if the composite-resin-formed product in advance in a molten or semi-molten state, by further heating and melting between the electrodes, the composite-resin-formed product may be a low viscosity, extensibility can be improved. 激光光线包含由YAG激光、二氧化碳(CO2)激光、氩激光、准分子激光、氦-镉激光等光源发出的激光光线。 A laser beam comprises a YAG laser, carbon dioxide (CO2) laser, argon laser, an excimer laser, a He - Cd laser beam emitted from a light source such as a laser. 这些激光光线中,从对高分子树脂的热吸收率良好、电源效率高、复合纤维的熔融性高的角度出发,优选由二氧化碳激光发出的激光光线。 The laser beam, the heat from the good absorption of the polymer resin, a high power efficiency, high-fusible composite fiber of the viewpoint, preferably the laser beam emitted from a carbon dioxide laser. 激光光线的波长例如为200nm〜20 μ m、优选为500nm〜18 μ m、更优选为1〜16 μ m(特别是5〜15 μ m)左右。 The wavelength of the laser beam, for example 200nm~20 μ m, preferably 500nm~18 μ m, more preferably 1~16 μ m (in particular 5~15 μ m) or so. 作为对复合树脂成形物进行加热熔融的其它方法,还可使用波长在780nm〜2. 5 μ m区域的近红外线等公知的方法。 As another method of resin-formed product is heated and melted, the wavelength of near infrared known method like 780nm~2. 5 μ m region may also be used.

[0051] 激光光线的照射方法并无特别限定,从能够对复合纤维局部地进行照射的角度出发,优选以点状照射激光光线的方法。 [0051] The laser beam irradiation method is not particularly limited, from the viewpoint of the irradiation can be performed locally conjugate fiber, preferably a laser beam in a dot manner. 对复合纤维照射将该点状激光光线的光束直径的大小可以根据复合纤维的形状进行选择。 The size of the beam diameter of the laser beam irradiation point conjugate fiber may be selected according to the shape of the composite fiber. 具体的光束直径例如在线状体树脂(例如单丝、多丝、丝束等)的情况下,只要比线状体树脂的平均直径大即可,例如为0. 5〜30mm、优选为1〜20mm、更优选为2〜15mm(特别是3〜IOmm)左右。 Specifically, for example, the case where the beam diameter of the linear resin (e.g., monofilament, multifilament, tow, etc.) as long as the ratio of the linear resin to the mean diameter of, for example, 0. 5~30mm, preferably 1 ~ 20mm, more preferably 2~15mm (especially 3~IOmm) around. 线状体树脂的平均直径与光束直径的比例可以是相对于线状体树脂的平均直径为1〜100倍左右的光束直径,优选为2〜 50倍、更优选为3〜30倍(特别是5〜20倍)左右的光束直径。 The average diameter ratio of the beam diameter of the resin may be linear with respect to the average diameter of the linear resin to the beam diameter of about 1~100 times, preferably 2 ~ 50 times, more preferably 3~30 times (especially 5~20 times the beam diameter) of approximately.

[0052] 而且,当在通过供给侧电极后照射激光光线以对复合树脂成形物进行加热熔融时,优选供给侧电极的树脂成形物出来一侧的端部与树脂成形物的被激光光线照射的部位之间的距离为1〜6mm。 [0052] Further, when the supply-side electrode by the irradiation of the laser beam to a composite resin molded product is heated and melted, the resin is preferably shaped supply-side electrode is irradiated with the laser beam and the side end portion of the resin molded product out the distance between the portion of 1~6mm. 更优选为2〜4mm。 More preferably 2~4mm. 其原因在于,当距离小于Imm时,激光光线照射部非常接近电极,因此电极的温度增高,结果加热树脂成形物的时间变长、可能会引起树脂分解;当超过6mm时,通过供给侧电极时带电的树脂成形物的带电量减少、即使利用激光光线对其进行加热熔融,也有熔融状体的树脂难以向着捕获侧电极伸长的倾向。 This is because, when the distance is less than Imm,, the laser beam irradiated portion is very close to the electrode, the electrode temperature increases, the result time of the resin molded product is heated longer, may cause decomposition of the resin; when more than 6mm, through the supply-side electrode charging charge amount of the resin molded product is reduced, even when it is heated by the laser beam melting, and the molten resin material tends to be difficult to elongate toward the collection-side electrode.

[0053] 复合树脂成形物熔融所需要的激光光线的输出功率可以控制在构成复合树脂成形物中的任意树脂的熔点最高的树脂的熔点以上、且构成复合树脂成形物的任意树脂不会着火或分解的温度的范围。 [0053] The laser beam melt molded composite resin required output power can be controlled above the melting point of the resin constituting the highest melting point of any of the resin molded product of the composite resin, and any resin constituting the resin-formed product does not catch fire or the decomposition temperature range. 关键是,只要复合树脂成形物成为具有粘性的状态即可。 The key is as long as the resin-formed product becomes viscous state can. 为了使复合树脂成形物具有粘性而进行加热的温度随着复合树脂成形物的供给速度或激光光线的输出功率、激光与复合树脂成形物之间的距离、复合树脂成形物的粗细的不同而变化, 例如在激光光线的情况下优选为160°C〜1200°C、更优选为600°C〜800°C的加热温度。 In order to make a composite resin molded product having a viscosity and a temperature for heating output power as the distance between the feed velocity of laser beam or a composite resin molded product, the resin-formed product with the laser, the thickness of the composite resin molded object different changes , for example in the case of laser beam heating temperature is preferably 160 ° C~1200 ° C, more preferably of 600 ° C~800 ° C. 当低于160°C的温度时,由于进行加热的热量少,因此会发生熔融不良、难以具有粘性并难以进行极细化,另外,当超过1200°C时,树脂可能会着火或分解,从而无法纤维化。 When a temperature below 160 ° C, since less heat for heating and thus melting failure occurs, it is difficult to be sticky and difficult ultrafine Further, if it exceeds 1200 ° C, the resin may catch fire or decomposed, not fibrosis. 另外,具体的激光光线的输出功率可以根据所使用的复合树脂成形物的物性值(熔点)或形状、粗细、 供给速度等来适当选择,例如可以为3〜100mA、优选为3〜50mA、更优选为6〜40mA左右。 Further, specific output power of the laser beam may be shaped in accordance with the composite resin used for the physical property value (melting point) or the shape thereof, the thickness, and the like may be appropriately selected feed rate, for example, may be 3~100mA, preferably 3~50mA, more preferably about 6~40mA. 当激光光线的输出功率小于3mA时,为了使树脂成为熔融状态,激光光线的照射条件可以通过测定复合树脂成形物的熔点来进行控制,但当复合树脂成形物为直径小的线状体且被赋予高电压的情况时,从简便性的角度出发,优选利用激光光线的输出功率来进行控制。 When the laser light output power is less than 3mA, to make the resin in a molten state, the irradiation conditions of the laser beam can be controlled by measuring the melting point of the resin-formed product, but when the product is a composite resin molded body and a smaller diameter wire is when a high voltage is given, from the viewpoint of simplicity, the output power of the laser beam is preferably used to control. 激光光线可以从复合树脂成形物的周围的1个位置或多个位置进行照射。 A laser beam or a plurality of positions around the position of the object may be molded from the composite resin is irradiated.

[0054] 熔融的复合树脂成形物在电引力的作用下向着捕获侧电极伸长。 [0054] The resin-formed product molten is extended toward the collection-side electrode electrically elongation under the effect of gravity. 此时的伸长倍率为100〜1000倍、优选为200〜800倍、更优选为300〜500倍左右。 At this time, the elongation ratio of 100~1000 times, preferably 200~800 times, more preferably about 300~500 times. 通过被拉伸至该伸长倍率,复合树脂成形物被极细纤维化。 By being stretched to a stretch ratio of the composite resin molded product are microfine. 此时,还可能发生超拉伸。 At this time, the super drawing possible. 结果,含有体积电阻率值超过1015Ω 的树脂的极细复合纤维的直径可以达到5μπι以下。 As a result, the volume resistivity value exceeds 1015Ω diameter containing resin ultrafine composite fiber can reach 5μπι less. 在优选的条件下,直径可以达到3 μ m以下;在更优选的条件下,直径可以达到1 μ m以下。 Under preferable conditions, the diameter can reach 3 μ m or less; under more preferable conditions, the diameter of 1 μ m or less can be achieved.

[0055] 在本发明中,复合树脂成形物从截面来看优选为海岛型、分割型或芯鞘型。 [0055] In the present invention, a composite resin molded product is preferably from a cross-sectional view of the island type, a splittable type, or a core-sheath type. 当为这样的截面时,可以选择性地配置通过供给侧电极的部分易于带电的树脂。 When such a cross section can be selectively configured through the supply-side electrode portion easily charged resin.

[0056] 需要说明的是,纤维直径在为圆形纤维时由纤维的直径求得。 [0056] Note that, when the fiber diameter is determined by the round fiber diameter of the fiber. 通过纤维截面或纤维侧面测量纤维直径。 By measuring the fiber diameter of a fiber cross section or fiber side face.

[0057] 异形截面(多边形、楕圆、中空、C型、Y型、X型、不定形等)通过将纤维截面假定成具有相同面积的圆形来测量其直径以作为纤维直径。 [0057] contour (polygon, ellipse, hollow, C-type, Y-type, X-type, amorphous, etc.) measured by the diameter of the fiber cross-section is assumed to have the same area as the circular diameter of the fiber. 因此,当为异形纤维时,无法通过纤维侧面求出纤维直径。 Thus, when the shaped fiber is not determined by the fiber diameter of the fiber side.

[0058] 通过供给侧电极的部分在复合树脂成形物表面上露出30%以上的树脂优选体积电阻率值为IO6〜IO14 Ω · cm。 [0058] The volume resistivity of the exposed resin is preferably 30% or more IO6~IO14 Ω · cm is supplied through the side electrode portion on the surface of the composite resin molded product. 更优选为IO7〜IO14 Ω · cm。 More preferably IO7~IO14 Ω · cm. 这样,复合纤维在通过供给侧电极时易于带电。 Thus, when the composite fibers easily charged through the supply-side electrode.

[0059] 另外,即使是体积电阻率值高得超过1015Ω · cm的树脂,通过单独使用或者组合使用多种下述方法:在树脂中混炼体积电阻率值降低的母料(例如含有碳或金属盐类等填充物类的母料);进行电晕加工、氟加工、驻极体(electret)加工等降低树脂电阻值的处理方法;或者在复合树脂表面涂布或浸渍体积电阻率值降低的油剂(例如阴离子系表面活性剂、阳离子系表面活性剂或非离子系表面活性剂等)等的处理;即使是体积电阻率值高的树脂,通过在静电纺丝之前使用上述方法降低表观体积电阻率值,也能够成为适于静电纺丝的树脂。 [0059] Further, even in high volume resistivity values ​​of 1015Ω · cm exceed resins, singly or in combination by using more of the following methods: kneading the resin reducing the volume resistivity value of a masterbatch (containing e.g. carbon or a filler such as metal salts based masterbatch); processing method for reducing the resistance value of the resin corona processing, fluorine processing, and electret (electret) processing; or reduce the surface of the composite resin coating or impregnating a volume resistivity value oil agent (e.g., anionic surfactants, cationic surfactants or nonionic surfactants, etc.) or the like process; even a high volume resistivity value of the resin, reducing the table by using the methods described above prior to electrospinning View volume resistivity, the resin can also be adapted to electrospinning.

[0060] 需要说明的是,表观体积电阻率值通常是指用树脂测定的体积电阻率(ASTM D-257)的树脂部分用使用了上述处理方法的试样进行测定得到的值。 [0060] Note that the apparent volume resistivity refers to volume resistivity values ​​are usually (ASTM D-257) with a resin portion of the resin was measured using a sample with the above-described processing method is a value obtained by measurement.

[0061] S卩,并非是树脂本身的体积电阻率,而是经处理的树脂所具有的、表示体积电阻率的值。 [0061] S Jie, not the volume resistivity of the resin itself, but with the resin-treated, showing volume resistivity.

[0062] 当体积电阻率值为IO15 Ω -cm以下的树脂在复合树脂成形物表面上露出30%以上时,即使是难以带电的体积电阻率值超过IO15 Ω · cm的树脂,在体积电阻率值为1015Ω .cm 以下的树脂充分带电并被静电纺丝时,由于其影响作用,体积电阻率值超过1015Ω 的树脂也同时被静电纺丝而伸长。 [0062] When the volume resistivity value IO15 Ω -cm or less than 30% of the resin is exposed on the surface of the composite-resin-formed product, even if it is difficult to charge a volume specific resistance exceeding resin IO15 Ω · cm in volume resistivity value of 1015Ω .cm or less when the resin is sufficiently charged and electrospun due to its influence, the volume resistivity value of more than 1015 ohm resins also be electrospun and extended.

[0063] 只要体积电阻率值为1015Ω · cm以下的树脂在复合树脂成形物表面上露出30% 以上,即使是体积电阻率高的树脂与低的树脂的组合,也能够形成极细复合纤维,在优选的条件下还能够得到直径为3 μ m以下的极细复合纤维。 [0063] As long as the volume resistivity value of 1015Ω · cm or less is exposed on the surface of the resin composite-resin-formed 30% or more, even with a high volume resistivity of the resin composition lower resin, an ultrafine composite fiber can be formed, under further preferred conditions can be obtained having a diameter of 3 μ m or less ultrafine composite fiber.

[0064] 当然,体积电阻率值为IO15 Ω · cm以下的树脂之间组合更没有问题。 [0064] Of course, the volume resistivity value of the composition IO15 Ω · cm or less between the resin and no problem.

[0065] 在本发明中,复合树脂成形物的体积电阻率值为1015Ω · cm以下的树脂的比例可以为10质量%以上、优选为30质量%以上、更优选为50质量%以上。 [0065] In the present invention, a composite resin molded product of the ratio of the volume resistivity value of 1015Ω · cm or less resin mass may be less than 10%, preferably less than 30% by mass, and more preferably 50 mass% or more. 当为该范围时,能够稳定地获得极细复合纤维。 When in this range, it is possible to stably obtain ultrafine composite fiber. 树脂的比例小于10质量%时,无论在复合树脂成形物表面上配置多少体积电阻率值为1015Ω -cm以下的树脂,由于复合树脂成形物总的树脂量少,因此在进行静电纺丝时,必须使体积电阻率值超过1015Ω · cm的难以带电的树脂大量地向着捕获侧电极拉伸,从而存在难以进行极细化的倾向。 The proportion of the resin is less than 10 mass%, much less than the volume resistivity value of 1015Ω -cm resin disposed both in the surface of the composite resin molded product, since the total resin composite resin molded product is less, thus when electrospinning is performed, must exceed the value of the volume resistivity of 1015Ω · cm is difficult to charge a large amount of resin is stretched toward the collection-side electrode, so that there is a tendency ultrafine difficult.

[0066] 即使是配合如烯烃(例如聚丙烯、聚乙烯)那样的体积电阻率值为10"^ ^m以上的难以带电的树脂,只要1015Ω · cm以下的树脂为10质量%以上,则可进行良好的静电纺丝。如果使用烯烃等体积电阻率值为1016Ω · cm以上的树脂和体积电阻率值为IO15 Ω - cm 以下的树脂,优选的体积电阻率值为1015Ω · cm以下的树脂的比例为10质量%〜70质量%。更优选为35质量%〜60质量%。其原因在于,当体积电阻率值为1015Ω ^cmWT 的树脂小于10质量%时,如上所述难以进行极细化;当超过70质量%时,虽然在静电纺丝方面没有问题,但在制作作为原料的复合树脂成形物时,由于烯烃部分极少,因此难以获得稳定的复合树脂成形物。 [0066] Even with such olefins (e.g., polypropylene, polyethylene) as the value of volume resistivity of 10 "^ ^ m or more difficult to charge resin, 1015Ω · cm or less as long as the resin is 10 mass% or more, may be If good electrostatic spinning carried out using olefins of the volume specific resistance of 1016Ω · cm or more and a volume specific resistance of a resin IO15 Ω -. cm or less resin, preferably a volume resistivity value of 1015Ω · cm or less resin ~ 70% by mass ratio of 10 mass%, more preferably 35 ~ 60 mass% mass% is because, when the volume specific resistance of 1015Ω ^ cmWT resin is less than 10% by mass, as described above ultrafine difficult ; when it exceeds 70 mass%, although there is no problem in terms of electrostatic spinning, but in the production of a composite resin molded product as a raw material, since an olefin portion minimal, it is difficult to obtain a stable resin-formed product.

[0067] 另外,优选在上述复合树脂成形物表面上露出30%以上的成分是选自乙烯-乙烯醇共聚物、聚酯、尼龙和聚氨酯中的至少1种,其他相的成分是选自聚烯烃、聚酯、尼龙和聚乳酸中的至少1种。 [0067] Further, preferably 30% or more of the components are exposed on the surface of the composite resin molded product is selected from an ethylene - vinyl alcohol copolymer, a polyester, nylon, polyurethane, and at least one, other ingredients are selected from poly olefin, at least one of polyester, nylon, and polylactic acid.

[0068] 在上述复合树脂成形物表面上露出30%以上的成分从高度带电、利用静电纺丝的伸长性大以及生物相容性优异的观点出发,特别优选乙烯-乙烯醇共聚物。 [0068] 30% or more of the components are exposed on the surface of the composite resin molded product from the highly charged using large elongation and excellent biocompatibility viewpoint of electrostatic spinning is particularly preferred ethylene - vinyl alcohol copolymer. 乙烯-乙烯醇共聚物的体积电阻率值优选为IO6〜1015Ω · cm、更优选为IO7〜109Ω · cm、更进一步优选为107·5 〜108·5Ω · cm。 Ethylene - vinyl alcohol copolymer is preferably a volume resistivity IO6~1015Ω · cm, more preferably IO7~109Ω · cm, still more preferably 107 · 5 ~108 · 5Ω · cm.

[0069] 上述乙烯-乙烯醇共聚物为将乙烯-乙酸乙烯酯共聚物皂化而获得的。 [0069] The ethylene - vinyl alcohol copolymer is an ethylene - vinyl acetate copolymer obtained by saponifying. 乙烯-乙烯醇共聚物中的乙烯的含量并无特别限定,优选为25〜70摩尔(mol) %、更优选为30〜 65摩尔(mol) %。 Ethylene - vinyl alcohol content of the ethylene copolymer is not particularly limited, preferably 25~70 mol (mol)%, more preferably 30~ 65 mole (mol)%. 作为市售品,有kuraray公司制商品名“EVAL”、日本合成化学工业公司制商品名“S0ARN0L”等,本发明中可以使用这些市售品。 As commercially available products kuraray Corporation under the trade name "EVAL", manufactured by Nippon Synthetic Chemical Industry Co., trade name "S0ARN0L" and the like, can be used in the present invention, these commercially available products. 另外,乙烯-乙烯醇共聚物的熔点随着其所含的乙烯和乙烯醇的含量而不同,例如含有38摩尔%乙烯的乙烯-乙烯醇共聚物的熔点为171°C、含有55摩尔%乙烯的乙烯-乙烯醇共聚物的熔点为142°C。 Further, ethylene - vinyl alcohol copolymer with a melting point content of ethylene and vinyl alcohol contained therein varies, for example, containing 38 mol% of ethylene of an ethylene - vinyl alcohol copolymer has a melting point of 171 ° C, containing 55 mol% of ethylene ethylene - vinyl alcohol copolymer has a melting point of 142 ° C. 另外,乙烯-乙烯醇共聚物可以使用1种或者混合使用2种以上乙烯含量不同的乙烯-乙烯醇共聚物。 Further, ethylene - vinyl alcohol copolymer may be used alone or as a mixture of two or more different ethylene content of the ethylene - vinyl alcohol copolymer.

[0070] 上述乙烯-乙烯醇共聚物的熔点优选为100°C〜190°C、更优选为120°C〜180°C、 进一步优选为140°C〜175°C。 [0070] The ethylene - vinyl alcohol copolymer is preferably the melting point is 100 ° C~190 ° C, more preferably from 120 ° C~180 ° C, more preferably from 140 ° C~175 ° C. 当乙烯-乙烯醇共聚物的熔点为100°C以上时,易于进行纤维化;当乙烯-乙烯醇共聚物的熔点为190°C以下时,在将纤维之间的交点进行热粘接时, 能够在较低温度下进行热处理。 When the melting point of the vinyl alcohol copolymer is 190 ° C or less, and then thermally fused at the intersection between the fibers, - when ethylene; - if the melting point of ethylene vinyl alcohol copolymer is not less than 100 ° C, easy fibrosis the heat treatment can be performed at a lower temperature.

[0071] 上述其他相的成分并无特别限定,例如可以混合使用聚乙烯、聚丙烯、聚丁烯、聚甲基戊烯、乙烯-丙烯共聚物等聚烯烃,聚对苯二甲酸乙二醇酯、聚对苯二甲酸丙二酯、聚对苯二甲酸丁二醇酯等聚酯,尼龙6、尼龙66等聚酰胺,聚苯乙烯等中的1种或2种以上。 [0071] The other component of the phase is not particularly limited, for example, mixed polyethylene, polypropylene, polybutene, polymethylpentene, ethylene - propylene copolymer, polyester, polyethylene terephthalate , polyethylene terephthalate, polyethylene or two or more kinds polyesters such as polybutylene terephthalate, nylon 6, nylon 66, polyamides, polystyrenes, and the like. 其中,其他相的成分从获得纤维强度的观点出发优选熔点为150°C〜300°C的范围。 Wherein other ingredients from the viewpoint of obtaining a fiber strength is preferably in a range of a melting point of 150 ° C~300 ° C is. 需要说明的是,熔点为150°C〜300°C范围的聚合物可以举出例如聚丙烯(160°C〜175°C )、聚甲基戊烯〜240°C )、聚对苯二甲酸乙二醇酯〜265°C )、聚对苯二甲酸丁二醇酯〜洸7°C)、尼龙60lO°C〜220°C)、尼龙66Q55°C〜^5°C)等(旭化成AMIDAS 株式会社,7子夕夕7編集部編、「,7子夕夕·尹一夕歹”夕」1999年12月1日発行、工業調查会、7頁〜11頁)。 Note that a melting point of 150 ° C~300 ° C range may include polymer, such as polypropylene (160 ° C~175 ° C), polymethyl pentene ~240 ° C), polyethylene terephthalate glycol esters ~265 ° C), poly (butylene terephthalate) Guang ~ 7 ° C), nylon 60lO ° C~220 ° C), nylon 66Q55 ° C~ ^ 5 ° C), etc. (manufactured by Asahi Kasei AMIDAS Ltd., Xi Xi 7 7 sub-section edited compilation, ", 7 sub-Yin Xi Xi bad overnight" evening ", 1999 December 1 Requested Procedure row, industrial Research, 7 ~ 11 pages).

[0072] 特别是在表面上露出30%以上的成分为乙烯-乙烯醇共聚物、其他相的成分为聚乳酸的芯鞘型复合纤维、海岛型复合纤维或分割型复合纤维等复合纤维,由于两成分的生物相容性优异、且在纤维内不含有溶剂,因此可以在手术用线、支架、人工关节等生物体内包埋材料、止血材料、细胞培养基材、口罩、体液吸收垫等医疗材料、面膜、化妆棉等化妆用品中使用。 [0072] in particular more than 30% of the component is exposed on the surface of an ethylene - vinyl alcohol copolymer, the other component is a polylactic acid phase core-sheath type composite fibers, sea-island type composite fiber or a splittable conjugate fiber composite fibers, due to the two component excellent in biocompatibility, and do not contain solvents in the fiber, it can be a substrate, a mask, a body fluid absorbent pad and other medical surgical wire, stent, artificial joints in vivo embedding material, hemostatic material, cells were cultured in use of materials, mask, cotton and other cosmetics.

[0073] 极细复合纤维优选在纤维内不含有溶剂。 [0073] The ultrafine composite fiber preferably does not contain a solvent in the fiber. 更优选构成极细复合纤维的树脂不含有有机溶剂或有机溶剂所产生的成分。 More preferably the resin constituting the ultrafine composite fiber does not contain an organic solvent or an organic solvent component generated. 当极细复合纤维为在纤维内不含有溶剂的构成时,一般来说对人或动物显示毒性的溶剂或溶剂所产生的成分不会从纤维渗出,可适用于接触人的领域或医疗领域。 When the ultrafine composite fiber does not contain solvents in the fiber configuration, generally a human or animal ingredients show toxic solvent or solvent produced from the fiber does not bleed out of the art applicable to human contact or medical field . 其中,有机溶剂通常也称作有机溶媒,有机溶剂所产生的成分是指溶剂由于热量或带电等而发生化学变化所产生的成分等。 Wherein the organic solvent is usually referred to as organic solvent, the organic solvent component refers to a component produced by a chemical change due to the solvent heat or the like generated by charging the like.

[0074] 为了获得极细复合纤维的在纤维内不含有溶剂的构成,只要是固体状的复合树脂成形物内不含有溶剂的构成即可。 [0074] In order to obtain an ultrafine composite fiber does not contain solvents in the fiber configuration, as long as the solid composite resin containing no solvent to the molding thereof. 不含有溶剂的复合树脂成形物例如是在复合树脂成形物为纤维的形态的情况下通过利用常规的熔融纺丝法对树脂进行纺丝而获得的。 In the case of not containing solvents, for example, a composite resin molded product is molded in the form of a fiber composite resin obtained by spinning a resin by a conventional melt spinning method.

[0075] 溶剂是指能够溶解或分散树脂且对人或动物没有毒性的物质。 [0075] The solvent refers to a substance capable of dissolving or dispersing a resin and is not toxic to humans or animals. 例如,溶剂可以举出己烷、苯、甲苯、二乙基醚、氯仿、乙酸乙酯、四氢呋喃、二氯甲烷、丙酮、乙腈、二甲基甲酰胺、二甲基亚砜、乙酸、1-丁醇、1-丙醇、2-丙醇、甲醇、乙醇、甲酸等。 For example, the solvent may include hexane, benzene, toluene, diethyl ether, chloroform, ethyl acetate, tetrahydrofuran, methylene chloride, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, acetic acid, 1- butanol, 1-propanol, 2-propanol, methanol, ethanol, formic acid and the like. 如上所述,优选极细复合纤维在纤维内不含有溶剂。 As described above, the ultrafine composite fiber preferably does not contain a solvent in the fiber.

[0076] 上述极细复合纤维的直径优选为20 μ m以下、更优选为0. 2〜17 μ m的范围、特别优选为0. 5〜5μπι。 Diameter [0076] The ultrafine composite fiber is preferably 20 μ m or less, more preferably 0. 2~17 μ m, and particularly preferably 0. 5~5μπι. 上述范围的极细纤维难以通过通常的熔融纺丝来获得。 The above range is difficult to obtain ultrafine fibers by the usual melt spinning.

[0077] 通过静电纺丝获得的复合纤维优选在表面上露出30%以上的成分与其他相的成分为相分离状态。 [0077] The obtained composite fiber by electrospinning preferably 30% or more of the exposed composition with other ingredients of the phase-separated state to the surface. 由于相分离而易于剥离,因此易于获得极细纤维。 Due to phase separation and easily peeled off, it is easy to obtain an ultrafine fiber.

[0078] 极细复合纤维优选从截面来看为海岛型、分割型或芯鞘型。 [0078] The ultrafine composite fiber preferably from a cross-sectional view of a sea-island type, a splittable type, or a core-sheath type. 当复合树脂成形物为多丝或丝束时,有时会成为多丝或丝束成为1个纤维的截面形状的极细纤维。 When the composite-resin-formed product is a multifilament or tow, it can sometimes be multifilament or tow becomes an ultrafine fiber cross-sectional shape of the fiber. 例如,当作为复合树脂成形物使用600根芯鞘型复合纤维会聚而成的丝束时,通过静电纺丝使其伸长而8/15 页 For example, when a 600 core-sheath type composite fiber as the composite-resin-formed product obtained by condensing tow through electrostatic spinning it elongation page 8/15

获得的极细复合纤维从外观上看会获得岛成分的片段数为1〜600的海岛型复合纤维。 The number of fragments obtained ultrafine composite fiber of the island component will get in appearance to 1~600 island type composite fiber. 本发明中所说的海岛型和/或芯鞘型复合纤维也包含这种截面形状的极细纤维。 In the present invention, sea-island type and / or core-sheath type composite fiber such ultrafine fibers are also cross-sectional shape.

[0079] 上述复合纤维中在表面上露出30%以上的成分优选为30〜90质量%、其他相的成分优选为70〜10质量%的范围。 [0079] In the conjugate fiber is exposed on the surface of the component is preferably 30% or more of 30~90% by mass, relative to the other components is preferably in a range of 70~10% by mass. 更优选为35 : 65〜60 : 40。 More preferably 35: 65~60: 40. 当为上述范围时,在电极间易于带电、纺丝性变得良好。 When the above-mentioned range, easy in charging between the electrodes, spinnability becomes good.

[0080] 还可以使构成本发明中获得的极细复合纤维的任一成分脱离,制成由残留成分构成的极细纤维。 [0080] It is also possible Renyi Cheng ultrafine composite fiber constituting the present invention is obtained from the points, made of ultrafine fibers of a residual component. 由此,可以制成更细的纤维。 Thus, the fibers can be made finer. 而且,还可制成仅使目标聚合物残留的极细纤维。 Furthermore, only the target can also be made of polymer residue ultrafine fibers.

[0081] 海岛结构或划分成多成分的分割结构由于独立的单成分树脂的片段单位非常小(用截面形状来描述,为非常小的物质聚集的状态),因此认为易于受到使供给侧电极的树脂带电时的影响、利用激光光线将树脂加热熔融时的影响,从而易于均勻地影响整个片段。 [0081] The sea-island structure or divided into a divided structure of a multi component due slice of separate single component resin is very small (in cross-sectional shape is described, a very small material aggregated state), it is considered susceptible to the supply-side electrode Effect when charging the resin, the resin is heated by a laser beam impact during melting, making it easy to uniformly affect the entire fragment.

[0082] 所得极细复合纤维还可进一步使任一种树脂成分脱离来取出更细的纤维。 [0082] The obtained ultrafine composite fiber may further be any of a resin component removed from finer fibers. 脱离方法可以是利用酸、碱、有机溶剂的方法等公知的方法,并无特别限定。 Departing from the method may be a known method using an acid, an alkali, an organic solvent method is not particularly limited. 脱离方法可以根据树脂对溶剂的溶解度积来适当选择。 From the product of method may be suitably selected according to the solubility of the resin in the solvent.

[0083] 特别是在鞘为乙烯-乙烯醇共聚物、芯为聚乳酸的芯鞘型复合纤维的情况下,当使聚乳酸脱离时,使用80〜100°C的水或者将氢氧化钾、氢氧化钠、碳酸氢钠等溶解于水而得到的碱性水溶液。 [0083] In particular, the sheath is ethylene - vinyl alcohol copolymer is a case where the core is polylactic acid complex fiber of sheath-core type, when the time from the polylactic acid, 80~100 ° C using water or potassium hydroxide, sodium hydroxide, sodium hydrogen carbonate was dissolved in water and an alkaline aqueous solution obtained. 另外,在使乙烯-乙烯醇共聚物脱离的情况下,可以使用常温OO〜 300C )的二甲基亚砜(DMSO)、加热至60°C的异丙醇或者2-丙醇等。 Further, the ethylene - vinyl alcohol copolymer in the case of detachment can be used at room temperature OO~ 300C) in dimethyl sulfoxide (DMSO), in isopropanol was heated to 60 ° C, or 2-propanol.

[0084] 通过对作为原料的复合树脂成形物的加热方式,可以将经伸长的极细复合纤维制作成各种形状。 [0084] By way of heating as a raw material of a composite resin molded product, it can be made into various shapes of the ultrafine composite fiber by elongation. 例如通过均勻地进行加热,可以获得相似形状的截面形状。 For example, by uniformly heating can be obtained similarly shaped cross-sectional shape. 通过从复合树脂成形物的一个方向的侧面进行加热,在截面内会发生熔融状态的分布不均,从而可以获得非相似形状的截面形状。 By side in one direction from the composite-resin-formed product is heated, uneven distribution occurs in a cross section in a molten state, can be obtained non-similarly shaped cross-sectional shape. 认为其原因在于,由于一侧的树脂侧面被充分地熔融而预伸长,而相反面与该侧侧面相比熔融粘度较大,无法充分地伸长,因此形成非相似形状。 The reason is that, since the side surface of the resin is sufficiently melted pre-stretched, while the opposite surface of the melt viscosity as compared with the larger side face, is not sufficiently stretched, thus forming a non-similar shape. 具体地说, 圆形截面可以形成C型截面或者芯成分分裂为2个以上,从而能够变为更细的纤维。 Specifically, the circular cross-section or may be formed C-shaped core component is split into two or more, it is possible to become finer fibers.

[0085] 当极细复合纤维聚集在捕获侧电极时,可以获得纤维结构物。 [0085] When the ultrafine composite fiber aggregate collection-side electrode at the time, the fiber structure can be obtained. 纤维结构物可以直接采集聚集在捕获侧电极的物质,通过将捕获侧电极制成传送带形状并使聚集的位置连续地移动,可以连续地制作片状的纤维结构物。 The fiber structure may be directly collected material gathered in the collection-side electrode, and gathered by the collection-side electrode made of the position of the conveyor belt shape continuously moved, it can be continuously produced sheet-like fibrous structure. 另外,作为纤维结构物的其他采集方法,通过在捕获侧电极上配置金属筛网或织布、无纺布、纸等,在该片状物上聚集极细复合纤维,可以获得层叠结构的纤维结构物。 Further, as another method of collecting fiber structure, by disposing a metal mesh or woven fabric on the collection-side electrode, a nonwoven fabric, paper, aggregated ultrafine composite fiber on the sheet-like, fiber lamination structure can be obtained structure. 进而,还可聚集成盒型过滤器等、如具有一定程度厚度的物品且并非片材型的物质。 Furthermore, the cartridge type can also be gathered into a filter or the like, such articles having a certain degree of thickness and not the sheet type materials. 在本发明中,纤维结构物是指纤维片材、过滤器等具有一定厚度的物品等的纤维堆积物。 In the present invention, the fiber structure refers fiber sheet, and other items such as a filter having a thickness of accumulated fibers.

[0086] 所聚集的对象物优选接地且与捕获侧电极没有电位差。 Preferably grounded object [0086] The aggregated and no potential difference with the collection-side electrode. 不过,只要在生产率方面没有特别的问题,则没有必要另外接地,可以以从捕获侧电极浮起些许的状态保持对象物。 However, as long as no particular problem in terms of productivity, there is no need to separately grounded, it may be in a state floating from the collection-side electrode of the object to be held a little.

[0087] 在本发明中,EVOH和PP的组合也可作为优选的例子列举。 [0087] In the present invention, a combination of EVOH and PP also be exemplified as a preferred example. 所得极细复合纤维还可以进一步使乙烯-乙烯醇共聚物(EVOH)脱离,从而仅将聚丙烯(PP)纤维取出。 The obtained ultrafine composite fiber may further ethylene - vinyl alcohol copolymer (EVOH) disengaged, so that only the polypropylene (PP) fibers removed. 作为一个例子,可以通过浸渍于含有2-丙醇的水溶液或二甲基亚砜(DMSO)中来将乙烯-乙烯醇共聚物(EVOH)脱离。 As one example, by immersing in an aqueous solution containing 2-propanol or dimethyl sulfoxide (DMSO) to the ethylene - vinyl alcohol copolymer (EVOH) disengaged. 脱离的聚丙烯极细纤维能够变得比所得极细复合纤维更细。 From polypropylene ultrafine fiber can be made finer than the obtained ultrafine composite fiber. 所得聚丙烯极细纤维的纤维直径优选为13 μ m以下。 The resulting ultrafine fiber diameter of the polypropylene fiber is preferably 13 μ m or less. 更优选的聚丙烯极细纤维的纤维直径为5 μ m以下。 Fiber diameter is more preferably polypropylene ultrafine fiber is 5 μ m or less. 例如在优选的条件下,1.2 μ m左右的芯鞘比为50 : 50的极细复合纤维通过使乙烯-乙烯 Under preferable conditions, for example, about 1.2 μ m core-sheath ratio of 50: 50 by ultrafine composite fiber of ethylene - vinyl

10醇共聚物脱离,可以获得更为微细的0. 3 μ m的聚丙烯极细纤维。 10 from alcohol copolymer can be obtained more fine 0. 3 μ m polypropylene ultrafine fiber.

[0088] 另外,通过对作为原料的复合树脂成形物的加热方式,可以使伸长的极细复合纤维和/或芯成分的聚丙烯成为各种形状。 [0088] Further, as a raw material by heating to a composite resin molded product may be elongated so that the ultrafine composite fiber and / or the core component of polypropylene into various shapes. 例如通过进行均勻地加热,可以获得相似形状的截面形状。 For example, by uniform heating can be obtained similarly shaped cross-sectional shape. 通过从复合树脂成形物的一个方向的侧面进行加热,在截面内会发生熔融状态的分布不均,从而可以获得非相似形状的截面形状。 By side in one direction from the composite-resin-formed product is heated, uneven distribution occurs in a cross section in a molten state, can be obtained non-similarly shaped cross-sectional shape. 其原因认为在于,由于一侧的树脂侧面被充分地熔融而预伸长,而相反面与该侧侧面相比熔融粘度较大,因此形成非相似形状。 The reason for that is that, since the side surface of the resin is sufficiently melted pre-stretched, while the opposite surface side surface compared with the melt viscosity, thus forming a non-similar shape. 具体地说,圆形截面可以形成C型截面或者芯成分分裂为2个以上,从而能够变为更细的纤维。 Specifically, the circular cross-section or may be formed C-shaped core component is split into two or more, it is possible to become finer fibers.

[0089] 下面,参照附图对制造方法进行说明。 [0089] Next, with reference to the accompanying drawings of the manufacturing method will be described. 图1为本发明的一个实施例的静电纺丝装置的概略说明图。 A schematic explanatory view of an electrospinning apparatus according to an embodiment of the present invention. FIG. 该静电纺丝装置11从电压产生装置3向供给侧电极1和捕获侧电极2之间施加电压,从激光照射装置4沿着箭头X向供给侧电极1的正下方照射激光光线。 The electrospinning apparatus 11 from the voltage generating apparatus 1 and the collection-side electrode 3 a voltage is applied between the electrodes 2, directly below the laser beam is irradiated from the laser irradiation device electrode 4 along the arrow X 1 side is supplied to the supply side. 供给侧电极与捕获侧电极间的距离优选为2〜25cm。 Between the supply-side electrode and the collection-side electrode distance is preferably 2~25cm. 更优选为5〜20cm。 More preferably 5~20cm. 当电极间的距离低于2cm时,由于施加高电压,因此会引起火花或电晕放电;当超过25cm时,电引力的效果减小、熔融的纤维可能不能伸长至捕获侧电极。 When the distance between the electrodes is less than 2cm, since high voltage is applied, thus sparks or corona discharge; when more than 25cm, the effect of electric attraction force decreases, the molten fibers may not be elongated to the collection-side electrode. 将作为原料的复合纤维7从被放入容器5的收纳纤维6中抽出、通过导轨8、9,由供给辊10供给至静电纺丝装置11。 7 will be extracted from a composite fiber material are put in a container 5 housed fibers 6, 8 and 9 by the guide rail, is supplied from the supply roller 10 to the electrostatic spinning apparatus 11. 原料的复合纤维可以由卷绕在线轴上的绕线体供给。 The composite fiber material may be supplied from the winding body wound onto a bobbin. 复合纤维7在通过供给侧电极时带电。 When the composite fibers 7 charged by the supply-side electrode. 在此带电状态下,通过在供给侧电极1的正下方被激光照射装置4沿着箭头X照射激光光线,复合纤维7 被加热熔融,在电引力的作用下一起伸长至捕获侧电极。 In this charging state, the laser irradiation device 4 irradiating a laser beam along an arrow X, a composite fiber 7 is heated and melted immediately below the supply-side electrode 1, to the collection-side electrode with an elongation at electric attraction force. 此时,复合纤维在箭头Y方向上伸长、进行极细化。 In this case, the composite fiber direction extending in the arrow Y, for ultrafine. 12为经极细化的复合纤维聚集而成的纤维结构物(片材)。 12 by the ultrafine composite fiber aggregate formed of a fiber structure (sheet).

[0090] 在图1中,当原料的复合纤维为多根、例如如图11所示为复合纤维7a〜7f的6 根时,可以由激光照射装置4借助反射板镜13向供给侧电极1的正下方照射激光光线。 [0090] In FIG. 1, when the composite fiber is a plurality of raw material, for example, as shown in FIG 6 is 7a~7f composite fiber, the reflective plate may be formed by means of the mirror electrode 13 is supplied to the side of the laser irradiation apparatus 41 directly below the laser beam is irradiated. 此时,操作反射板镜13,以角度θ将激光光线从箭头Xl摆至Χ2。 At this time, the operation reflection plate mirror 13, the laser beam at an angle θ from the pendulum to the arrow Xl Χ2. 由此,可以将激光光线照射至全部的原料复合纤维7a〜7f上。 Thereby, the laser beam may be irradiated on all of the source composite fiber 7a~7f. 如此,即使复合树脂成形物为多根复合纤维或无纺布的形态也可进行纺丝。 Thus, even when a composite resin molded product is a plurality of composite fibers or a nonwoven fabric form can also be spun.

[0091] 图2为本发明的另一实施例的静电纺丝装置的概略说明图。 A schematic explanatory view of the electrostatic spinning apparatus of the embodiment [0091] FIG. 2 is another of the present invention. 该静电纺丝装置20由高电压端子22向安装于聚酰亚胺树脂板23上的供给侧电极21施加电压。 The electrospinning apparatus 20 by a high-voltage terminal 22 is mounted to the supply voltage is applied to the polyimide resin side electrode plate 2321. 供给侧电极优选为针状。 Supply-side electrode preferably is a needle. 在针状电极中,优选的针长度为5〜30mm。 In the needle electrode, the needle length is preferably 5~30mm. 更优选的针长度为10〜20mm。 More preferably needle length 10~20mm. 当针长度小于5mm时,作为原料的复合纤维的挤出方向性不稳定,有难以向激光光线照射部分引导的倾向。 When the needle length is less than 5mm, as an extrusion directional instability of composite fiber material, tends to be difficult to guide the laser beam irradiated portion. 另外,当超过30mm时,原料纤维通过针内时会遇到阻力,在挤出时可能无法顺利地挤出。 Further, when it exceeds 30mm, the resistance encountered by the fiber material while the inner needle may not be extruded smoothly during extrusion. 针内径优选为10〜2000 μ m。 Inner diameter of the needle preferably 10~2000 μ m. 更优选的内径为20〜1650 μ m。 More preferably an inner diameter of 20~1650 μ m. 当内径低于20 μ m时,处理根数减少,由于细,因此难以通过原料纤维。 When the inner diameter is less than 20 μ m, the number of the reduction process, since the fine, it is difficult to pass the raw material fibers. 当超过2000 μ m时,有难以使纤维内部也带电的倾向。 When it exceeds 2000 μ m, it is difficult to make the inside of the fiber have a tendency to be charged. 而且,针状电极并非必须为1根,当预一次进行大量的静电纺丝时, 与用1根粗针进行相比,多根细针对原料纤维向激光光线照射部引导的引导性而言更为有利。 Further, the needle electrode is not necessarily one, when a large number of pre-electrospinning, and be compared with a thick needle, a plurality of thin fiber material for the guide of the guiding laser beam irradiation portion in terms of more It is favorable. 优选的针根数为1〜1000根。 The preferred number of the needle is 1~1000 root. 更优选的针根数为1〜300根。 A more preferable number of needles is 1~300 root. 捕获侧电极M接地。 M collection-side electrode is grounded. 由多个激光照射装置25、25沿着箭头XI、X2向供给侧电极21的正下方照射激光光线。 A plurality of laser irradiation devices 25, 25 along the arrow XI, X2 immediately below the supply-side electrode 21 is irradiated with a laser beam. 原料的复合纤维7在通过供给侧电极21时带电。 7, the composite fiber material during the charging electrode 21 through the supply side. 在此带电状态下,通过在供给侧电极21的正下方被激光照射装置25、25沿着箭头X1、X2照射激光光线,复合纤维7被加热熔融,在电引力的作用下向着捕获侧电极M伸长。 In this charging state, the direction of the arrow 25, 25 by being X1, X2 irradiated with a laser beam, the composite fiber 7 is heated and melted at a laser irradiation apparatus immediately below the supply-side electrode 21, the electric attraction force toward the collection-side electrode M elongation. 此时,复合纤维在箭头Y方向上例如伸长数百倍而进行极细化。 In this case, the composite fiber in the arrow Y direction, such as elongation performed ultrafine hundreds of times. 四为经极细化的复合纤维的聚集物。 By four of ultrafine composite fiber aggregate. 在加热伸长区域观中,当随着接近激光照射部之后的捕获侧电极附近而温度降低时,在伸长的最中间,树脂开始结晶,具有难以精细地进行牵弓I的倾向,因此例如由电加热器等加热装置输送热量,为了使纤维不会骤冷,优选由加热器或油槽等加热装置输送热量、对加热伸长区域观进行加热。 In the heating zone concept elongation, when as approaching the vicinity of the collection-side electrode after the laser irradiation portion and the temperature decreases, is in the middle, the resin started to crystallize elongated, tends to be difficult to finely pull bow I, thus e.g. by an electric heater or other heating means heat transport, in order that the fibers will not quench, preferably by a heat transport apparatus as a heater or a heating oil bath, a heating zone for heating the elongated concept. 加热伸长区域的温度由纤维的种类决定,可以加热至合成纤维的玻璃化转变温度以上、熔点以下。 The temperature of the heating-extending region is determined by the type of fibers, synthetic fibers may be heated to the glass transition temperature or higher, the melting point. 具体地说, 加热伸长区域的温度优选为50〜300°C、更优选为100〜200°C。 Specifically, the heating temperature is preferably elongated region is 50~300 ° C, more preferably 100~200 ° C. 由于能够容易地进行精细的温度调整,因此加热方法优选通过使用电的方法来进行。 Since it is possible to easily perform fine temperature adjustment, the heating process is preferably performed by a method using electricity.

[0092] 图12A为作为本发明一个实施例中使用的原料的复合树脂成形物的复合纤维的截面图。 [0092] FIG. 12A is a sectional view of an embodiment of the present invention, the composite fiber composite resin material used in the embodiment of the molded product. 该复合纤维70为单丝,具有由芯为聚丙烯(PP)71、鞘为乙烯-乙烯醇共聚物(EVOH) 72构成的芯鞘结构。 The composite fiber 70 is a monofilament having a core of polypropylene (PP) 71, a sheath of an ethylene - a core-sheath structure composed of vinyl alcohol copolymer (EVOH) 72. 图12B为本发明的一个实施例中获得的极细复合纤维的截面图。 A cross-sectional view of an ultrafine composite fiber obtained in the embodiment of the present invention. FIG. 12B. 该复合纤维73具有由芯为经极细化的聚丙烯(PP) 74、鞘为经极细化的乙烯-乙烯醇共聚物(EVOH) 75构成的芯鞘结构。 The composite fiber 73 has a core of polypropylene by ultrafine (PP) 74, a sheath through ultrafine ethylene - vinyl alcohol copolymer (EVOH) 75 composed of core-sheath structure.

[0093] 图13A为作为本发明的另一实施例中使用的原料的复合树脂成形物的复合纤维的截面图。 [0093] FIG 13A is a cross-sectional view of a composite fiber-resin composite molded object of the present invention as another starting material used in the embodiment. 例如,该复合纤维76为将多丝临时固定的例子,为将由芯为聚丙烯(PP)77、鞘为乙烯-乙烯醇共聚物(EVOH) 78构成的芯鞘结构的长丝多根会聚而成的。 For example, the composite fiber 76 is temporarily fixed multifilament example, by a core of polypropylene (PP) 77, a sheath of an ethylene - vinyl alcohol copolymer (EVOH) 78 filaments plurality of core-sheath structure composed of converging into. 用于会聚的临时固定例如通过对多根复合纤维浇上热水而获得。 For temporary fixing is obtained by condensing, for example, a plurality of composite fibers of hot water poured. 图13B为本发明的另一实施例中获得的极细复合纤维的截面图。 FIG 13B is a sectional view of an ultrafine composite fiber obtained in another embodiment of the present invention. 该复合纤维80具有由芯为经极细化的聚丙烯(PP)81、鞘为经极细化的乙烯-乙烯醇共聚物(EV0H)82构成的芯鞘结构。 The composite fiber 80 has a core of polypropylene by ultrafine (PP) 81, a sheath through ultrafine ethylene - vinyl alcohol copolymer (EVOH) core-sheath structure composed of 82.

[0094] 实施例 [0094] Example

[0095] 以下使用实施例更加具体地说明本发明。 [0095] The following Examples more specifically described using the embodiment of the present invention. 需要说明的是,本发明并不限定于下述实施例。 It should be noted that the present invention is not limited to the following examples.

[0096] 1.原料树脂 [0096] 1. Raw material resin

[0097] 使用下述树脂。 [0097] using the following resins.

[0098] (1)聚对苯二甲酸乙二醇酯(PET) =Toray公司制商品名“T200E”、熔点为255°C、 固有粘度(IV)为0.64。 [0098] (1) polyethylene terephthalate (PET) = Toray Corporation under the trade name "T200E", a melting point of 255 ° C, intrinsic viscosity (IV) of 0.64.

[0099] (2)聚丙烯(PP):日本Polypropylene公司制商品名“SA03”、熔点为161°C、根据JIS-K-7210测定的熔体流动速率(MFR ;测定温度为230°C、荷重为21. 18N(2. 16kgf))为30。 [0099] (2) Polypropylene (PP): manufactured by Japan Polypropylene Corporation under the trade name "SA03", a melting point of 161 ° C, according to JIS-K-7210 Determination of melt flow rate (MFR of; measurement temperature of 230 ° C, load of 21. 18N (2. 16kgf)) 30.

[0100] (3)尼龙6 (Ny):宇部兴产株式会社制商品名“1015B”、分子量为15000。 [0100] (3) Nylon 6 (Ny): Ube Industries, Ltd., trade name "1015B", a molecular weight of 15,000.

[0101] (4)高密度聚乙烯(PE):日本polyethylene公司制商品名“HE481”、熔点为130°C、根据JIS-K-7210测定的熔体流动速率(MFR 190°C、荷重为21. 18N(2. 16kgf))为12。 [0101] (4) High-density polyethylene (PE): manufactured by Japan polyethylene Corporation under the trade name "HE481", a melting point of 130 ° C, a melt flow rate according to JIS-K-7210 assay (MFR 190 ° C, load of 21. 18N (2. 16kgf)) 12.

[0102] (5)实验编号10中使用的乙烯-乙烯醇共聚物(EVOH):使用日本合成化学公司制“K3835BN”、熔点为171°C、根据JIS-K-7210测定的熔体流动速率(MFR ;测定温度为230°C、 荷重为21. 18N(2. 16kgf))为35。 [0102] (5) used in Experiment No. 10 in the ethylene - vinyl alcohol copolymer (EVOH): Nippon Synthetic Chemical Industry Co., Ltd. "K3835BN", a melting point of 171 ° C, a melt flow JIS-K-7210 was measured in accordance with the rate of (MFR of;. a measurement temperature of 230 ° C, load of 21. 18N (2 16kgf)) 35.

[0103] (6)实验编号11〜12中使用的乙烯-乙烯醇共聚物(EVOH):使用日本合成化学公司制“SG544”、熔点为170°C、根据JIS-K-7210测定的熔体流动速率(MFR :测定温度为230°C、荷重为21. 18N(2. 16kgf))为45。 [0103] (6) used in Experiment No. 11~12 ethylene - vinyl alcohol copolymer (EVOH): Nippon Synthetic Chemical Industry Co., Ltd. "SG544", a melting point of 170 ° C, a melt JIS-K-7210 was measured according to flow rate (MFR:. measurement temperature of 230 ° C, load of 21. 18N (2 16kgf)) 45.

[0104] (7)实验编号11〜12中使用的聚乳酸(PLA):使用丰田汽车株式会社制“U' ζ S-32”、熔点为179°C、体积电阻率值为9Χ1016(Ω · cm) 0[0105] 2.原料复合树脂成形物的制造 [0104] (7) used in Experiment No. 11~12 polylactic acid (PLA): manufactured by Toyota Motor Corporation using "U 'ζ S-32", a melting point of 179 ° C, the volume resistivity value 9Χ1016 (Ω · manufacturing cm) 0 [0105] 2. the raw material compound was molded resin

[0106] 原料复合树脂成形物为采用常规方法进行熔融纺丝以获得未拉伸丝,从而制成原料的复合树脂成形物(复合纤维)。 [0106] The raw material compound was molded resin is melt-spun by a conventional method to obtain an undrawn yarn, to prepare a composite resin material molded product (composite fiber).

[0107] 3.静电纺丝方法 [0107] 3. The method of electrospinning

[0108] 静电纺丝装置使用图2所示的装置、其条件如表2所示。 Apparatus shown in [0108] FIG electrospinning apparatus 2, with the proviso that shown in Table 2.

[0109] 激光装置:鬼塚硝子公司制PIN-30R(额定输出功率为30W、波长为10. 6 μ m、光束直径为6mm) [0109] Laser apparatus: manufactured by Onizuka Glass Co., PIN-30R (rated output power of 30W, a wavelength of 10. 6 μ m, the beam diameter of 6mm)

[0110] 电极间的电压:35kV [0110] The inter-electrode voltage: 35kV

[0111] 电极间的距离:8cm The distance between the electrodes [0111]: 8cm

[0112] 原料纤维的送出速度:6. Omm/min [0112] feeding speed of the fiber raw material:. 6 Omm / min

[0113] 环境温度 [0113] ambient temperature

[0114]激光强度:100V、8mA [0114] Laser intensity: 100V, 8mA

[0115] 供给侧电极与激光照射部的距离:4mm [0115] from the supply-side electrode and laser irradiation section: 4mm

[0116] 供给侧电极:使用1根Unicontrols株式会社制UN系列20GX 15。 [0116] supply-side electrode: Unicontrols Ltd. using a UN series 20GX 15.

[0117] 4.纤维直径的测定方法 [0117] 4. A method for measuring fiber diameter

[0118] 使用扫描电子显微镜(SEM、日立制作所公司制商品名“S-3500N”、倍率为1500倍) 观察纤维侧面,从任意30根的测定结果求得平均值。 [0118] using a scanning electron microscope (SEM, manufactured by Hitachi, Ltd. under the trade name "S-3500N", magnification 1500 times) side of the fiber, the measurement results obtained from an average value of 30 arbitrary.

[0119](实施例1) [0119] (Example 1)

[0120] 对于实验编号1〜12,原料复合树脂成形物的第1成分、第2成分、截面结构、树脂比例、纤维直径如表2所示。 [0120] For Experiment No. 1~12, the composite resin material of the first molding material component, the second component, cross-sectional structure, a resin ratio, fiber diameter as shown in Table 2.

[0121] 使用这些原料复合树脂成形物,通过图2所示静电纺丝方法制造极细纤维。 [0121] Using these resin-formed material was manufactured ultrafine fibers 2 through electrostatic spinning method as shown in FIG. 静电纺丝条件及所得的极细纤维的纤维直径一起示于表2。 Together electrospinning conditions and the fiber diameter of the obtained ultrafine fibers are shown in Table 2.

[0122] [0122]

Figure CN101878331BD00141

[0125] 在二甲基亚砜20ml中放入通过静电纺丝获得的复合纤维lg,在常温(20〜30°C ) 下搅拌15小时。 [0125] into the composite fiber obtained by electrospinning lg in 20ml of dimethylsulfoxide, and stirred at room temperature (20~30 ° C) 15 hours. 之后,将溶剂抽滤,用甲醇进行置换洗涤后,在常温下干燥1小时获得PLA纤维。 Thereafter, the solvent was filtered off with suction, washed after replacement with methanol, and dried at room temperature for 1 hour to obtain PLA fibers. [0126] B. PLA 的脱离[0127] 在5质量%的氢氧化钾水溶液200ml中放入通过静电纺丝获得的复合纤维lg,在80°C下搅拌15小时。 [0126] B. PLA detachment [0127] lg into a composite fiber obtained by electrospinning 5 mass% potassium hydroxide aqueous solution 200ml stirred at 80 ° C 15 h. 之后,将溶剂抽滤,用纯水进行置换洗涤后,在60°C下干燥1小时获得EVOH纤维。 Thereafter, the solvent was filtered off with suction, washed after replacement with pure water, dried at 60 ° C for 1 hour to obtain EVOH fiber. [0128] 由表2可知,实验编号1〜6、8、10〜12均是在复合树脂成形物的通过供给侧电极的部分的复合树脂成形物表面,体积电阻率值为1015Ω .cm以下的树脂达到50%或100%, 从而可获得良好的纺丝性和极细纤维。 [0128] As apparent from Table 2, Experiment No. 1~6,8,10~12 are molded in the surface of the composite resin was molded by the composite resin portion of the supply-side electrode, the volume resistivity value of 1015Ω .cm or less resin, 50% or 100%, thereby to obtain good spinning properties and an ultrafine fiber. 另外,所得复合纤维中不存在溶剂。 Further, the resulting composite fiber absence of a solvent. [0129] 与此相对,实验编号7、9的复合纤维的鞘成分为聚烯烃,复合树脂成形物表面的树脂难以带电,体积电阻率值超过IO15 Ω · cm的树脂为100%,因此无法进行纺出。 [0129] On the other hand, the sheath component of the composite fibers of Experiments Nos. 7, 9 is a polyolefin resin surface of the resin-formed easily electrified, the volume resistivity value exceeds IO15 Ω · cm to 100% resin, and therefore can not be spun. [0130] 将实验编号3中获得的极细纤维的截面图的扫描电子显微镜(SEM、倍率为20000 倍)的照片示于图3,将概略截面图示于图4。 [0130] The scanning electron microscope cross-sectional view of an ultrafine fiber obtained in Experiment No. 3 (SEM, magnification 20,000 times) photograph shown in Figure 3, a schematic sectional view in FIG. 4. 图4中,30为极细的芯鞘结构的复合纤维、31 为Ny、32为PET。 4, 30 denotes an ultrafine composite fiber of core-sheath structure, 31 Ny, 32 is PET. 它们是以体积电阻率值为IO15 Ω · cm以下的PET为鞘成分的芯鞘复合, 由于在表面上露出100%,因此具有良好的纺丝性且伸长的纤维为相分离状态。 They are based on the volume resistivity value IO15 Ω · cm or less for the core-sheath conjugate PET sheath component, because the surface is exposed to 100%, thus having good spinnability and fiber elongation phase separation state. 此条件下, 由于使用芯鞘结构的复合树脂成形物作为原料,因此获得了相似形状的极细复合纤维。 Under this condition, since the core-sheath structure composite resin molded article as a raw material, an ultrafine composite fiber is thus obtained a similar shape. [0131] 将实验编号5中获得的极细纤维的截面图的扫描电子显微镜(SEM、倍率为10000 倍)的照片示于图5、将概略截面图示于图6。 [0131] The scanning electron microscope cross-sectional view of an ultrafine fiber obtained in Experiment No. 5 (SEM, magnification 10,000 times) photograph shown in FIG. 5, a schematic sectional view in FIG. 图6中,40为极细的16分割结构的复合纤维、41为PET、42为PE。 6, 40 denotes an ultrafine composite fiber structure divided 16, 41 is PET, 42 of PE. 它们是使用体积电阻率值为IO15 Ω · cm以下的Ny的分割型复合, 由于体积电阻率低的树脂在表面上露出50%,因此具有良好的纺丝性且伸长的纤维为相分离状态。 They are using the volume resistivity value IO15 Ω · cm or less of the split type composite Ny, due to the low volume resistivity of the resin is exposed on the surface of 50%, thus having good spinnability and fiber elongation phase separation state . 此条件下,由于使用分割型的复合树脂成形物作为原料,因此获得了相似形状的分割型极细复合纤维。 Under this condition, since the split type composite-resin-formed product as a raw material, thereby obtaining a split-type ultrafine composite fiber having an analogous shape. [0132] 将实验编号6中获得的极细纤维的截面图的扫描电子显微镜(SEM、倍率为4000 倍)的照片示于图7、将概略截面图示于图8。 [0132] The scanning electron microscope cross-sectional view of an ultrafine fiber obtained in Experiment No. 6 (SEM, magnification 4000 times) photograph shown in FIG. 7, a schematic sectional view in FIG. 在图8中,50为极细的16分割结构的复合纤维、51为PET、52为PE。 In FIG. 8, 16, 50 for the split ultrafine composite fiber structure 51 is PET, 52 of PE. 它们是使用体积电阻率值为1015Ω · cm以下的Ny的分割型复合, 由于体积电阻率低的树脂在表面上露出50%,因此具有良好的纺丝性且伸长的纤维为相分离状态。 They are a volume resistivity value of 1015Ω · cm or less of the split type composite Ny, due to the low volume resistivity of the resin is exposed on the surface of 50%, thus having good spinnability and fiber elongation phase separation state. [0133] 将实验编号10中获得的极细纤维的截面图的扫描电子显微镜(SEM、倍率为10000 倍)的照片示于图9、将概略截面图示于图10。 [0133] The scanning electron microscope cross-sectional view of an ultrafine fiber obtained in Experiment No. 10 (SEM, magnification 10,000 times) photograph shown in FIG. 9, the schematic sectional view in FIG. 10. 在图10中,60为极细的海岛结构的复合纤维、61为PP、62为EV0H。 In Figure 10, 60 denotes an ultrafine composite fiber sea-island structure, 61 PP, 62 is EV0H. 它们是使用体积电阻率值为IO15 Ω · cm以下的EVOH的海岛型复合,由于体积电阻率低的树脂在表面上露出100%,因此具有良好的纺丝性且伸长的纤维为相分离状态。 They are using the volume resistivity value IO15 Ω · cm or less in-sea type composite EVOH, due to the low volume resistivity of the resin is exposed on the surface of 100%, thus having good spinnability and fiber elongation phase separation state . 此条件下,由于使用海岛型的复合树脂成形物作为原料,因此获得了相似形状的海岛型极细复合纤维。 Under this condition, since a sea-island type composite-resin-formed product as a raw material, thus obtaining a sea-island-type ultrafine composite fiber having an analogous shape. [0134] 实验编号11中获得的极细纤维的截面图与图5和图6基本相同。 [0134] sectional view of an ultrafine fiber obtained in Experiment No. 11 in FIG. 5 and FIG. 6 is substantially the same. 图6中,40为极细的16分割结构的复合纤维、41为PLA、42为EV0H。 6, 40 denotes an ultrafine composite fiber structure divided 16, 41 for the PLA, 42 is EV0H. 它们是使用体积电阻率值为IO15 Ω -cm 以下的EVOH的分割型复合,由于体积电阻率低的树脂在表面上露出50%,因此具有良好的纺丝性且伸长的纤维为相分离状态。 They use the volume resistivity value is less IO15 Ω -cm split type composite EVOH is due to the low volume resistivity of the resin is exposed on the surface of 50%, thus having good spinnability and fiber elongation phase separation state . 此条件下,由于使用分割型的复合树脂成形物作为原料,因此获得了相似形状的分割型极细复合纤维。 Under this condition, since the split type composite-resin-formed product as a raw material, thereby obtaining a split-type ultrafine composite fiber having an analogous shape. 另外,实验编号11通过使PLA脱离,从而获得了EVOH单一成分的极细纤维。 Further, by the experiment No. 11 from the PLA to obtain a ultrafine fiber EVOH single component. [0135] 实验编号12中获得的极细纤维的截面图与图3和图4基本相同。 [0135] sectional view of an ultrafine fiber obtained in Experiment No. 12 in FIG. 3 and FIG. 4 is substantially the same. 图4中,30为极细的芯鞘结构的复合纤维、31为PLA、32为EV0H。 4, 30 denotes an ultrafine composite fiber of core-sheath structure, 31 is a PLA, 32 is EV0H. 它们是以体积电阻率值为1015Ω · cm以下的EVOH为鞘成分的芯鞘复合,由于在表面上露出100%,因此具有良好的纺丝性且伸长的纤维为相分离状态。 They are based on the volume resistivity value of 1015Ω · cm or less EVOH as a core-sheath composite sheath component, because the surface is exposed to 100%, thus having good spinnability and fiber elongation phase separation state. 此条件下,由于使用芯鞘结构的复合树脂成形物作为原料,因此获得了相似形状的极细复合纤维。 Under this condition, since the core-sheath structure composite resin molded article as a raw material, an ultrafine composite fiber is thus obtained a similar shape. 另外,实验编号12通过使EVOH脱离,从而获得了PLA单一成分的极细纤维。 Further, by making the EVOH Experiment No. 12 out to obtain a single PLA ultrafine fiber component. [0136](实施例2)[0137] 对于实验编号13〜15,作为复合树脂成形物的原料纤维使用图12A所示的截面结构的物质。 [0136] (Example 2) [0137] For Experiment No. 13~15, a composite resin molding material cross-sectional structure shown in FIG raw fiber material 12A. 实验编号16〜17 (比较例)的截面结构示于表3。 Experiment No. 16~17 (Comparative Example) is a cross-sectional structure is shown in Table 3. 另外,实验编号13〜17 的芯鞘成分、树脂比例、纤维直径如表3所示。 In Experiment No. 13~17 sheath component of the core, the proportion of the resin, the fiber diameter as shown in Table 3. [0138] 使用这些原料纤维,通过上述静电纺丝方法来制造极细纤维。 [0138] Using these raw material fibers, ultrafine fibers produced by the electrostatic spinning method. 将所得实验编号13 的极细纤维的扫描电子显微镜(SEM、倍率为2000倍)的照片示于图14。 The ultrafine fiber obtained in Experiment No. 13 of the scanning electron microscope (SEM, magnification 2000 times) of 14 is shown in FIG. 实验编号14〜15 也为相同的外观。 Experiment No. 14~15 also the same appearance. [0139] 将所得极细纤维充分浸渍于由2-丙醇70g和蒸馏水30g构成的90°C的混合溶液直至乙烯-乙烯醇共聚物(EVOH)完全溶解,从而将乙烯-乙烯醇共聚物(EVOH)除去。 [0139] The resultant ultrafine fiber until fully immersed in a mixed solution of ethylene of 90 ° C from 2-propanol, distilled water and 70g 30g configuration - vinyl alcohol copolymer (EVOH) was dissolved completely, so that the ethylene - vinyl alcohol copolymer ( EVOH) removed. 将EVOH除去后的实验编号13〜15的极细纤维的扫描电子显微镜(SEM、倍率为2000倍)的照片示于图15〜17。 The ultrafine fibers of Experiments Nos. 13~15 after EVOH was removed by a scanning electron microscope (SEM, magnification 2000 times) of 15~17 shown in FIG. 将所得结果示于表3。 The results are shown in Table 3. [0140]表 3[0141]实验编号 原料纤维 静电纺丝后的纤维直径(μπι) O内为标准偏差 鞘成分脱离后的纤维直径(μιη) O内为标准偏差 芯成分 鞘成分 截面结构 树脂比例 纤维直径(μπι) 13 PP EVOH 芯鞘 30/70 452 1.85 (1.60) 14 PP EVOH 芯鞘 50/50 438 3.46 (0.76) 15 PP EVOH 芯鞘 70/30 472 16.34 (3.32) 12.74 (4.59)16 (比较例) PP - 单一 - 600 无法纺出 -17 (比较例) EVOH PP 芯鞘 50/50 450 无法纺出 -[0142] 由表3可知,实验编号13〜15通过使用芯为聚丙烯(PP)、鞘为乙烯-乙烯醇共聚物(EVOH)的复合纤维作为原料,能够使纺丝后的纤维直径达到1.85〜16.34μπι。 [0140] Table 3 [0141] After the fiber diameter of the fiber diameter of the fibers electrospun Experiment No. departing from the starting material (μπι) O is the standard deviation of the sheath component (μιη) O is a cross-sectional structure of the resin sheath component ratio of the standard deviation core component fiber diameter (μπι) 13 PP EVOH core-sheath 30/70 452 1.85 (1.60) 14 PP EVOH core-sheath 50/50 438 3.46 (0.76) 15 PP EVOH core-sheath 70/30 472 16.34 (3.32) 12.74 (4.59) 16 ( Comparative Example) PP - single - 600 can not be spun-17 (Comparative Example) EVOH PP 50/50 core-sheath 450 can not be spun - [0142] can be seen from table 3, experiments Nos. 13~15 by using a core of polypropylene (PP ), the sheath of an ethylene - vinyl alcohol copolymer (EVOH) as a starting material of the composite fiber, the fiber diameter can be reached after spinning 1.85~16.34μπι. 乙烯-乙烯醇共聚物(EVOH)的成分比越多,纺丝性越良好、越可以细径化,但纤维直径分布的不均较大。 Ethylene - the more the good spinnability component vinyl alcohol copolymer (EVOH) ratio, a small diameter of the can, but larger variation of fiber diameter distribution. [0143] 另外,将乙烯-乙烯醇共聚物(EVOH)除去后,可以获得聚丙烯(PP)单独的极细纤维。 [0143] Further, the ethylene - vinyl alcohol copolymer after (EVOH) was removed, it is possible to obtain polypropylene (PP) alone ultrafine fibers. [0144](实施例3)[0145] 对于实验编号18〜20,作为复合树脂成形物的原料纤维使用图13Α所示的截面结构的物质,芯鞘成分、树脂比例、纤维直径如表4所示。 [0144] (Example 3) [0145] For Experiment No. 18~20, a composite resin molded product of a fiber material using a cross-sectional structure shown in FIG. 13Α substances, core-sheath composition, the proportion of the resin, the fiber diameter as shown in Table 4 shows. 使用60根该纤维进行会聚。 Use of the fiber 60 is condensed. 会聚是如下获得的:通过用夹子将60根纤维的束的一端固定、轻轻地牵拉另一端使其紧张并对16齐、浇上热水进行临时固定然后干燥。 Convergence is obtained by: by the end of fiber bundle 60 with clamps gently pulling it tight and the other end 16 homogeneous, pour hot water is temporarily fixed and then dried. 例如,在实验编号18中,将60根纤维直径为120μπι 的长丝纤维会聚,如图13Α所示。 For example, in Experiment No. 18, 60 filament fibers having a diameter of 120μπι converging, as shown in FIG 13Α. [0146] 使用这些原料纤维,通过上述静电纺丝方法制造极细纤维。 [0146] Using these raw material fibers, ultrafine fibers manufactured by the electrostatic spinning method. 将获得的实验编号18 的极细纤维的扫描电子显微镜(SEM、倍率为5000倍)的照片示于图18。 The photo ultrafine fiber obtained in Experiment No. 18, a scanning electron microscope (SEM, magnification 5000 times) are shown in FIG. 18. 实验编号19〜20 也为同样的外观。 Experiment No. 19~20 is also a similar appearance. [0147] 将所得极细纤维充分浸渍于由2-丙醇70g和蒸馏水30g构成的90°C的混合溶液直至乙烯-乙烯醇共聚物(EVOH)完全溶解,从而将乙烯-乙烯醇共聚物(EVOH)除去。 [0147] The resultant ultrafine fiber until fully immersed in a mixed solution of ethylene of 90 ° C from 2-propanol, distilled water and 70g 30g configuration - vinyl alcohol copolymer (EVOH) was dissolved completely, so that the ethylene - vinyl alcohol copolymer ( EVOH) removed. 将EVOH除去后的实验编号18〜20的极细纤维的扫描电子显微镜(SEM、倍率为5000倍)的照片示于图19〜21。 The ultrafine fibers of Experiments Nos. 18~20 after EVOH was removed by a scanning electron microscope (SEM, magnification 5000 times) of 19~21 shown in FIG. 将所得结果示于表4。 The results are shown in Table 4. [0148] 表4[0149] [0148] Table 4 [0149]

Figure CN101878331BD00171

[0150] 由表4可知,实验编号18〜20通过使用芯为聚丙烯(PP)、鞘为乙烯-乙烯醇共聚物(EVOH)的复合纤维作为原料,从而使纺丝后的纤维直径达到1. 21〜1. 53 μ m。 [0150] As apparent from Table 4, Experiment No. 18~20 by using a core of polypropylene (PP), the sheath of an ethylene - vinyl alcohol copolymer (EVOH) composite fibers as a raw material, such that the diameter of the fiber after spinning to achieve a . 21~1. 53 μ m. 纺丝性良好,与实施例3相比,可以更加稳定地细径化、纤维直径分布的不均也小。 Good spinnability, as compared to Example 3 can be more stably reduction in diameter, the uneven distribution of fiber diameter is small. 另外,可获得与原料的芯鞘复合纤维相似形状的极细复合纤维。 Further, core-sheath composite fibers obtained with the shape similar to the raw material ultrafine composite fiber. [0151] 另外,除去乙烯-乙烯醇共聚物(EVOH)后的聚丙烯(PP)的纤维直径为0. 43〜 1. 28 μ m。 [0151] Further, ethylene was removed - after the vinyl alcohol copolymer (EVOH) polypropylene (PP) fibers having a diameter of 0. 43~ 1. 28 μ m. [0152] 本发明中获得的极细的复合纤维及纤维结构物可用于过滤器、电池隔膜(特别是锂离子电池用隔膜)、纸、无纺布、人工毛皮的皮层等。 [0152] the present invention obtained in the ultrafine composite fibers and fiber structures can be used in filters, battery separators (in particular, a lithium ion battery separator), paper, nonwoven fabric, artificial fur skin and the like. 另外,还可用于手术用线、支架、人工关节等生物体内包埋材料,止血材料、细胞培养基材、口罩、体液吸收垫等医疗材料,面膜、 化妆棉等化妆用品等。 Furthermore, it can be used for surgical wire, stent, artificial joints in vivo embedding material, hemostatic material, a cell culture substrates, masks, medical materials and the like bodily fluid absorbent pads, mask, cotton and other cosmetic products and the like.

Claims (11)

1. 一种极细复合纤维,其特征在于,所述极细复合纤维是通过将作为原料的复合树脂成形物在供给侧电极前和/或所述供给侧电极与捕获电极之间进行加热熔融,并通过静电纺丝使其伸长而获得的;所述复合树脂成形物是通过供给侧电极时为固体状、熔融状或半熔融状即软化状的具有2个以上的相的复合树脂成形物,其含有体积电阻率值为1015Ω .cm 以下的树脂成分,所述树脂在所述复合树脂成形物表面上露出30%以上。 An ultrafine composite fiber, wherein the ultrafine composite fibers are melted by heating prior to the supply-side electrode and / or the supply-side electrode material is a composite resin molded product to the capture between the electrodes and elongation are obtained by electrostatic spinning it; the resin-formed product passes through the supply-side electrode is formed as a solid, molten or semi-molten state that is softened composite resin having two or more phases thereof, comprising a volume resistivity value of 1015Ω .cm or less resin component, the resin in the composite resin molding is exposed on the surface of 30% or more.
2.根据权利要求1所述的极细复合纤维,其特征在于,构成所述极细复合纤维的纤维成分为相分离状态。 The ultrafine composite fiber according to claim 1, wherein the ultrafine composite fiber constituting the fiber component is phase-separated state.
3.根据权利要求1或2所述的极细复合纤维,其中,所述极细复合纤维在纤维内不含有溶剂。 The ultrafine composite fiber of claim 1 or claim 2, wherein the ultrafine composite fiber does not contain a solvent in the fiber.
4.根据权利要求1所述的极细复合纤维,其中,所述复合树脂成形物为纤维,相结构为海岛型、分割型或芯鞘型。 The ultrafine composite fiber according to claim 1, wherein said resin-formed product is a fiber, a sea-island type phase structure, a core-sheath type or a split type.
5.根据权利要求1或4所述的极细复合纤维,其中,所述复合树脂成形物为单丝或多根会聚而成的多丝或者丝束。 The ultrafine composite fiber of claim 1 or claim 4, wherein the composite resin formed product is a monofilament or multifilament convergence in the root or tow.
6.根据权利要求1或4所述的极细复合纤维,其中,所述复合树脂成形物是芯为聚丙烯、鞘为乙烯-乙烯醇共聚物的芯鞘结构。 The ultrafine composite fiber of claim 1 or claim 4, wherein said core is a composite resin molded product of polypropylene, ethylene sheath - core-sheath structure of vinyl alcohol copolymer.
7.根据权利要求1所述的极细复合纤维,其中,在所述复合树脂成形物表面上露出30%以上的成分为选自乙烯-乙烯醇共聚物、聚酯、尼龙和聚氨酯中的至少1种,其他相的成分为选自聚烯烃、聚酯、尼龙和聚乳酸中的至少1种,其中芯为聚丙烯、鞘为乙烯-乙烯醇共聚物的芯鞘结构除外。 The ultrafine composite fiber according to claim 1, wherein the composition is exposed to more than 30% of ethylene on a selected surface of the composite resin molded article - vinyl alcohol copolymer, polyester, nylon and polyurethane least one kind of other ingredients selected from polyolefins, polyesters, nylons, and polylactic acid is at least 1, wherein the core is polypropylene and the sheath is ethylene - except sheath-core vinyl alcohol copolymer.
8. 一种极细纤维,其为使构成权利要求1〜7任一项所述的极细复合纤维的任一个成分脱离而获得的。 A fine fiber, which is a constituting component of any one of claims 1~7 ultrafine composite fiber according to any one of the detachment is obtained.
9. 一种极细复合纤维的制造方法,其包含下述工序:将作为原料的复合树脂成形物供给的工序,所述复合树脂成形物含有体积电阻率值为IO15 Ω -cm以下的树脂、所述树脂在复合树脂成形物表面上露出30%以上,且所述复合树脂成形物在通过供给侧电极时为固体状、熔融状或半熔融状即软化状;将复合树脂成形物在所述供给侧电极前和/或所述供给侧电极与捕获侧电极之间进行加热熔融的工序;和通过静电纺丝使所述熔融的复合树脂成形物伸长的工序。 9. A method for producing ultrafine composite fibers, comprising the steps of: a step for supplying a resin material as a composite molding, the molded composite resin containing a volume resistivity value of less IO15 Ω -cm resin, the resin exposed on 30% or more in the composite-resin-formed surface, and the composite resin molded product in the supply-side electrode through the solid, molten or semi-molten state that is softened; composite resin molded product in the supply-side front electrode and / or supply-side electrode and the step of heating and melting captured between the side electrode; and the molten resin-formed through electrostatic spinning step was elongated.
10.根据权利要求9所述的极细复合纤维的制造方法,其中,在从所述复合树脂成形物被加热熔融的部分至捕获侧电极之间设置加热伸长区域。 10. The method for manufacturing an ultrafine composite fiber according to claim 9, wherein, in the heated portion is melted from the resin-formed product to the capture zone disposed between the heating-extending side electrode.
11. 一种纤维结构物,其特征在于,其包含极细复合纤维,所述极细复合纤维是通过将作为原料的复合树脂成形物在供给侧电极前和/或所述供给侧电极与捕获电极之间进行加热熔融,并通过静电纺丝使其伸长而获得的;所述复合树脂成形物是通过供给侧电极时为固体状、熔融状或半熔融状即软化状的具有2个以上的相的复合树脂成形物,其含有体积电阻率值为1015Ω · cm以下的树脂成分,所述树脂在所述复合树脂成形物表面上露出30%以上;其中,构成所述极细复合纤维的纤维成分为相分离状态。 A fiber structure, characterized in that it comprises ultrafine composite fiber, the ultrafine composite fiber is formed by and / or the feed prior to the supply-side electrode material is a composite resin molded product to the capture-side electrode between the electrodes for heating and melting, and it is obtained by electrospinning elongated; the resin-formed product passes through the supply-side electrode is of a solid, molten or semi-molten state having a softening i.e. two or more phase composite resin molded product, a resin component comprising a volume resistivity value of 1015Ω · cm or less, 30% or more of the resin is exposed on the surface of the composite resin molded product; wherein the ultrafine composite fiber constituting fiber component is phase-separated state.
CN 200880118354 2007-11-30 2008-11-28 Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure CN101878331B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007-311425 2007-11-30
JP2007311535 2007-11-30
JP2007311425A JP5004774B2 (en) 2007-11-30 2007-11-30 Extra fine composite fiber, method for producing the same, and fiber structure
JP2007-311535 2007-11-30
PCT/JP2008/071677 WO2009069759A1 (en) 2007-11-30 2008-11-28 Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure

Publications (2)

Publication Number Publication Date
CN101878331A CN101878331A (en) 2010-11-03
CN101878331B true CN101878331B (en) 2012-06-20

Family

ID=40678648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200880118354 CN101878331B (en) 2007-11-30 2008-11-28 Ultrafine composite fiber, ultrafine fiber, method for manufacturing same, and fiber structure

Country Status (4)

Country Link
US (1) US20100297443A1 (en)
EP (1) EP2221402A4 (en)
CN (1) CN101878331B (en)
WO (1) WO2009069759A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110003144A1 (en) * 2006-11-14 2011-01-06 Philip John Brown Capillary-channeled polymer fibers modified for defense against chemical and biological contaminants
EP2325361A4 (en) * 2008-09-04 2013-11-13 Daiwabo Holdings Co Ltd Fibrous mass, composite of conductive substrate with fibrous mass, and processes for producing same
ES2369811B1 (en) * 2010-05-04 2012-10-15 Consejo Superior De Investigaciones Científicas (Csic) Procedure for obtaining nanocomposed materials.
CN101845676B (en) * 2010-05-18 2012-05-23 北京航空航天大学 Multifunctional composite fiber and preparation method thereof
WO2011149836A1 (en) 2010-05-24 2011-12-01 Drexel University Textile-templated electrospun anisotropic scaffolds for tissue engineering and regenerative medicine
JP5679052B2 (en) 2010-06-21 2015-03-04 コーロン インダストリーズ インク Porous nanoweb and method for producing the same
JP5804344B2 (en) * 2010-11-24 2015-11-04 国立大学法人福井大学 Manufacturing method of fiber mat and fiber mat
KR101310523B1 (en) * 2011-07-15 2013-09-23 삼성전기주식회사 Porous sheet and method for manufacturing the same
WO2013096095A1 (en) * 2011-12-19 2013-06-27 Virginia Tech Intellectual Properties, Inc. Melt electrospun fibers containing micro and nanolayers and method of manufacturing
PL231639B1 (en) 2012-04-17 2019-03-29 Politechnika Łódzka Medical material for the reconstruction of blood vessels, a method for producing the medical material and medical material applied to the reconstruction of blood vessels
US20150287967A1 (en) * 2012-10-23 2015-10-08 Cornell University Ceramic nanofiber separators
CN103320876B (en) * 2013-06-24 2015-09-23 江南大学 A kind of electrostatic spinning linear nozzle
CN104088022B (en) * 2014-07-02 2016-06-01 北京化工大学 A kind of combination electrostatic spinning apparatus and method preparing multistage ultra-fine fibre
JP6390363B2 (en) * 2014-11-11 2018-09-19 日本ポリプロ株式会社 Propylene resin composition for melt spinning type electrospinning, method for producing propylene ultrafine fiber using the same, and propylene ultrafine fiber produced by the method
JP6551770B2 (en) * 2015-01-08 2019-07-31 パナソニックIpマネジメント株式会社 Nonwoven fabric, air purifier using the same, and method for producing nonwoven fabric
US20180142382A1 (en) * 2015-06-12 2018-05-24 Reliance Industries Limited Electrostatic intermingling device and a process for intermingling filaments
DE112017001094A5 (en) 2016-03-01 2018-12-06 Bisping Medizintechnik Gmbh Apparatus and method for structure-controlled electrospinning
JP2017190552A (en) * 2016-04-11 2017-10-19 花王株式会社 Ultra fine fiber manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814404A (en) 1994-06-03 1998-09-29 Minnesota Mining And Manufacturing Company Degradable multilayer melt blown microfibers
CN1225143A (en) 1996-07-10 1999-08-04 金伯利-克拉克环球有限公司 Process for producing fine fibers and fabrics thereof

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69917194T2 (en) * 1998-12-16 2005-05-04 KURARAY CO., LTD, Kurashiki Thermoplastic polyvinyl alcohol fibers and process for their preparation
US20020127939A1 (en) * 2000-11-06 2002-09-12 Hwo Charles Chiu-Hsiung Poly (trimethylene terephthalate) based meltblown nonwovens
KR20020063020A (en) * 2001-01-26 2002-08-01 한국과학기술연구원 Method for Preparing Thin Fiber -Structured Polymer Webs
TWI311594B (en) * 2002-10-23 2009-07-01 Toray Industries Nanofiber aggregate, liquid dispersion, process for producing hybrid fiber, fiber structure and process for producing the same
US7431869B2 (en) * 2003-06-04 2008-10-07 Hills, Inc. Methods of forming ultra-fine fibers and non-woven webs
US7871946B2 (en) * 2003-10-09 2011-01-18 Kuraray Co., Ltd. Nonwoven fabric composed of ultra-fine continuous fibers, and production process and application thereof
JP4238119B2 (en) 2003-11-25 2009-03-11 日本バイリーン株式会社 Method for manufacturing fiber assembly and apparatus for manufacturing the same
JP2006069142A (en) * 2004-09-06 2006-03-16 Teijin Techno Products Ltd Composite fiber structure and its manufacturing method
US8574713B2 (en) * 2005-03-10 2013-11-05 Massachusetts Institute Of Technology Superhydrophobic fibers and methods of preparation and use thereof
US20060213829A1 (en) * 2005-03-25 2006-09-28 Rutledge Gregory C Production of submicron diameter fibers by two-fluid electrospinning process
US7438777B2 (en) * 2005-04-01 2008-10-21 North Carolina State University Lightweight high-tensile, high-tear strength bicomponent nonwoven fabrics
JP4777760B2 (en) * 2005-12-01 2011-09-21 株式会社Snt Composite structure including network structure
JP4778797B2 (en) 2006-01-25 2011-09-21 株式会社Espinex Nanofiber
JP2007239114A (en) 2006-03-06 2007-09-20 Kuraray Co Ltd Melt electrostatic spinning method and ultrafine fiber
JP5069431B2 (en) * 2006-06-30 2012-11-07 帝人ファイバー株式会社 Composite fiber and multi-slit fiber
US8486554B2 (en) * 2006-09-28 2013-07-16 Japan Vilene Company, Ltd. Alkaline battery separator, process for production thereof and alkaline batteries
JP5140886B2 (en) * 2007-05-07 2013-02-13 帝人株式会社 Composite fiber structure
JP2009024295A (en) * 2007-07-20 2009-02-05 Tomoegawa Paper Co Ltd Electrodeposition apparatus, method for producing structure and structure produced therewith
EP2020455A3 (en) * 2007-07-30 2010-06-02 Idemitsu Technofine Co. Ltd Fiber, fiber assembly, and fiber producing method
EP2325361A4 (en) * 2008-09-04 2013-11-13 Daiwabo Holdings Co Ltd Fibrous mass, composite of conductive substrate with fibrous mass, and processes for producing same
US8894907B2 (en) * 2008-09-29 2014-11-25 The Clorox Company Process of making a cleaning implement comprising functionally active fibers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814404A (en) 1994-06-03 1998-09-29 Minnesota Mining And Manufacturing Company Degradable multilayer melt blown microfibers
CN1225143A (en) 1996-07-10 1999-08-04 金伯利-克拉克环球有限公司 Process for producing fine fibers and fabrics thereof

Also Published As

Publication number Publication date
CN101878331A (en) 2010-11-03
EP2221402A1 (en) 2010-08-25
US20100297443A1 (en) 2010-11-25
WO2009069759A1 (en) 2009-06-04
EP2221402A4 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US8685310B2 (en) Method of preparing nanofibers via electro-blown spinning
JP4346647B2 (en) Method for producing continuous filament made of nanofiber
EP1330566B1 (en) Spinning and processing of carbon nanotube filaments, ribbons, and yarns
US20080241538A1 (en) Filament Bundle Type Nano Fiber and Manufacturing Method Thereof
KR20080111103A (en) Solution spun fiber process
KR101714811B1 (en) Separator for non-aqueous batteries, non-aqueous battery using same, and production method for separator for non-aqueous batteries
JP2009515060A (en) Methods and devices for the production of nanofibers by electrospinning polymer solutions or melts
Veleirinho et al. Solvent and concentration effects on the properties of electrospun poly (ethylene terephthalate) nanofiber mats
Yu et al. Production of submicrometer diameter fibers by two‐fluid electrospinning
EP2045375A1 (en) Apparatus and method for electrospinning 2D- or 3D-structures of micro- or nano-fibrous materials
US20050104258A1 (en) Patterned electrospinning
Teo et al. A dynamic liquid support system for continuous electrospun yarn fabrication
Supaphol et al. Ultrafine electrospun polyamide‐6 fibers: Effect of emitting electrode polarity on morphology and average fiber diameter
JP3972092B2 (en) Methods for producing fibers, films and nonwoven fabrics of silk and silk-like materials, and fibers, films or nonwoven fabrics produced by these methods
Lu et al. Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process
Wang et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method
JP2006507428A (en) Method for producing continuous filament made of nanofiber
US7662332B2 (en) Electro-blowing technology for fabrication of fibrous articles and its applications of hyaluronan
US6110590A (en) Synthetically spun silk nanofibers and a process for making the same
McEachin et al. Production and characterization of polycaprolactone nanofibers via forcespinning™ technology
KR101680908B1 (en) Centrifugal solution spun nanofiber process
Zhuang et al. Solution blowing of submicron-scale cellulose fibers
EP2129816B1 (en) Production of nanofibers by melt spinning
Kanani et al. Effect of changing solvents on poly (ε-caprolactone) nanofibrous webs morphology
US20060213829A1 (en) Production of submicron diameter fibers by two-fluid electrospinning process

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted