CN101847828A - Vertical launching quantum cascade laser structure - Google Patents

Vertical launching quantum cascade laser structure Download PDF

Info

Publication number
CN101847828A
CN101847828A CN 201010171511 CN201010171511A CN101847828A CN 101847828 A CN101847828 A CN 101847828A CN 201010171511 CN201010171511 CN 201010171511 CN 201010171511 A CN201010171511 A CN 201010171511A CN 101847828 A CN101847828 A CN 101847828A
Authority
CN
China
Prior art keywords
layer
quantum cascade
cascade laser
grating
vertical launching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010171511
Other languages
Chinese (zh)
Other versions
CN101847828B (en
Inventor
郭万红
刘俊岐
陆全勇
张伟
江宇超
李路
王利军
刘峰奇
王占国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2010101715111A priority Critical patent/CN101847828B/en
Publication of CN101847828A publication Critical patent/CN101847828A/en
Application granted granted Critical
Publication of CN101847828B publication Critical patent/CN101847828B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention provides a vertical launching quantum cascade laser structure comprising a substrate and a metal grating layer, wherein a waveguide layer, an active layer and a contact layer sequentially grow on the substrate; and the metal grating layer is positioned on the contact layer and has a secondary Bragg period.

Description

Vertical launching quantum cascade laser structure
Technical field
The present invention relates to the semiconductor photoelectric device technical field, relate in particular to a kind of vertical launching quantum cascade laser structure.The unique distinction of this structure is, surface plasma-wave is guided in the two-grade grating distributed feed-back vertical launching quantum cascade laser, can realize high vertical coupled efficient, has simplified material growth and grating preparation technology simultaneously.
Background technology
Wavelength is that the quantum cascade laser of 8 ~ 12 μ m has very wide application prospect in fields such as atmosphere environment supervision and infrared counteraction.Different with the multimode operation that the Fabry-Perot-type cavity quantum cascade laser of routine is had with the limit emission, vertical launching quantum cascade laser possesses the advantage of single mode operation and Vertical Launch simultaneously, in the application of reality, can realize the integrated and online detection of two dimension, therefore be paid close attention to widely and study.
Current vertical launching quantum cascade laser mainly contains 2 D photon crystal distributed feed-back vertical launching quantum cascade laser and two-grade grating distributed feed-back vertical launching quantum cascade laser.Wherein, 2 D photon crystal distributed feed-back vertical launching quantum cascade laser requires its photonic crystal pattern to possess very high aspect ratio, require its fill factor, curve factor or the ABSORPTION EDGE can precise design and control simultaneously, but make the photonic crystal pattern that satisfies these requirements, for present photoetching process, but be a very big challenge.And by contrast, preparation technology is simple relatively for its grating of two-grade grating distributed feed-back vertical launching quantum cascade laser, therefore become a focus of vertical launching quantum cascade laser research in the world, and obtained deep research in the middle of in the past 10 years.
Although the further investigation to two-grade grating distributed feed-back vertical launching quantum cascade laser has obtained more achievement, comprise that the room temperature pulse swashs the far-field divergence angle of penetrating with 0.4 degree, these research major parts all are based on traditional dielectric waveguide structure.Though dielectric waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser has lower optical loss, its very thick ducting layer makes the material growth very difficult, and it is very dark that its grating requires etching simultaneously, and this makes etching technics very complicated again.Grow and preparing grating technology so design a kind of material of can simplifying, the two-grade grating distributed feed-back vertical launching quantum cascade laser structure that can improve vertical coupled efficient simultaneously again is a problem demanding prompt solution, and this patent is exactly to invent for this reason.
Summary of the invention
The objective of the invention is to, a kind of surface plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser structure is provided.This structure adopts very thin contact layer to replace very thick ducting layer in the traditional sucrose waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, has therefore simplified the material growth; Simultaneously only adopt metal grating just to realize very strong coupling, do not need the etching semiconductor layer, this has simplified etching technics.In addition, the employing of surface plasma waveguide makes the overlapping of laser light field and grating increase, and by optimizing the duty ratio of metal in the grating, has finally obtained very strong vertical coupled efficient simultaneously.
The invention provides a kind of vertical launching quantum cascade laser structure, comprising:
One substrate, growth has ducting layer, active layer and contact layer successively on this substrate;
Metal grating layer, this metal grating layer be positioned at contact layer above, and this metal grating layer has secondary Bragg period.
Wherein said substrate is the InP substrate.
The material of wherein said ducting layer is InGaAs, and this ducting layer mixes for the n type, and doping content is 6 * 10 16Cm -3, bed thickness is 0.55 μ m.
Wherein said active layer is made up of the InGaAs/InAlAs in 40 cycles, and the wavelength of this active layer correspondence is 8-12 μ m.
The material of wherein said contact layer is InGaAs, and doping content is 1 * 10 19Cm -3, bed thickness is 0.05 μ m.
The material of wherein said metal grating layer is a silver, and the thickness of this metal grating layer 14 is 0.25 μ m, and the duty ratio of metal is 0.55.
Wherein said metal grating layer is divided into 4 segment structures on contact layer.
Description of drawings
In order to further specify feature of the present invention and effect, the present invention is described further below in conjunction with drawings and the specific embodiments, wherein:
Fig. 1 is embodiments of the invention, and it is the waveguide of plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser and the schematic cross-section of two-grade grating structure.
Fig. 2 is for to press among the described embodiment of Fig. 1, and the coupling coefficient of plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser is along with the variation relation figure of metal grating duty ratio.
Fig. 3 is for to press among the described embodiment of Fig. 1, and the vertical coupled efficient of the plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser that different cavity is long is along with the variation relation figure of metal grating duty ratio.
Fig. 4 is for to press among the described embodiment of Fig. 1, and the gain for threshold value of the plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser that different cavity is long is along with the variation relation figure of metal grating duty ratio.
Embodiment
See also shown in the figure, the invention provides a kind of vertical launching quantum cascade laser structure, comprising:
One substrate 10, growth has ducting layer 11, active layer 12 and contact layer 13 successively on this substrate 10; Described substrate 10 is the InP substrate; The material of described ducting layer 11 is InGaAs, and this ducting layer 11 mixes for the n type, and doping content is 6 * 10 16Cm -3, bed thickness is 0.55 μ m; Described active layer 12 is made up of the InGaAs/InAlAs in 40 cycles, and the wavelength of this active layer correspondence is 8-12 μ m; The material of described contact layer 13 is InGaAs, and doping content is 1 * 10 19Cm -3, bed thickness is 0.05 μ m;
Metal grating layer 14, this metal grating layer 14 be positioned at contact layer 13 above, and this metal grating layer 14 has secondary Bragg period; The material of described metal grating layer 14 is a silver, and the thickness of this metal grating layer 14 is 0.25 μ m, and the duty ratio of metal is 0.55; Described metal grating layer 14 is divided into 4 segment structures on contact layer 13.
The advantage of this structure is: InGaAs contact layer 13 very thin thickness above (1) active layer 12, and in traditional dielectric waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, ducting layer above the active layer is very thick, generally be approximately 3 μ m, by contrast, the present invention has simplified the material growth.(2) employing of plasma waveguide only makes that the etching two-grade grating just can be realized very strong coupling on metal level, and in traditional dielectric waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, etching is finished after the two-grade grating on metal level, still need etching depth on the semiconductor layer below to be approximately the grating of 1 μ m, by contrast, the present invention has also simplified etching technics.(3) surface plasma-wave is guided into after the two-grade grating distributed feed-back vertical launching quantum cascade laser, duty ratio by metal in the optimization metal grating layer 14 is 0.55, the present invention has obtained 43% vertical coupled efficient, this compares with about 20% vertical coupled efficient in the traditional dielectric waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, is again a bigger improvement.
Waveguiding structure and the two-grade grating structure Design foundation and the method for designing of the above-mentioned plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser that provides below are provided in detail.
Two-grade grating distributed feed-back vertical launching quantum cascade laser utilize two-grade grating to the vertical diffraction of light and obtain Vertical Launch, the coupling coefficient of its grating has directly determined the performance of device.And the size of coupling coefficient depends primarily on two factors, i.e. the difference of the pattern effective refractive index at grating bottom and grating top and the overlapping degree of light field and grating.In the surface plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, the waveguiding structure at place, grating bottom is owing to adopt air as cover layer, and its light field pattern belongs to the dielectric waveguide mould; Yet the waveguiding structure at place, grating top is owing to adopt argent as cover layer, and its light field pattern belongs to the surface plasma mould, and the difference of the mode refractive index between these two kinds of guided wave modes is very large.In addition, the introducing of surface plasma waveguide makes more close grating one side of light field, thereby has caused bigger light field and the overlapping between grating.To sum up, in the surface plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, pattern effective refractive index bigger between the waveguiding structure at grating bottom and place, top is poor, and bigger overlapping between grating and the light field, caused very big coupling coefficient, as shown in Figure 2.
According to the coupled mode theory of the long structure in the theoretical and limited chamber of the Floquet-Bloch of unlimited chamber long periodicity structure, the duty ratio of metal influences the vertical coupled efficient and the gain for threshold value of surface plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser strongly in the metal grating layer 14.As shown in Figure 3, when duty ratio less (duty ratio is less than 0.3),, cause the overlapping between light field and grating less, so vertical coupled efficient is very little because metal ratio is less in the grating layer.When duty ratio big (duty ratio is greater than 0.7), though bigger metal ratio has guaranteed bigger light field and the overlapping between grating in the grating layer, but the pattern effective refractive index difference of place, grating top and grating bottom this moment waveguiding structure is along with the formed perturbation intensity of grating cyclic variation is very little, and both cancel out each other and cause less vertical coupled efficient.Gain for threshold value for surface plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, as shown in Figure 4, when duty ratio hour, gain for threshold value is bigger, it is less that this comes from the grating layer metal ratio, makes light field well not be limited in active area.In addition, when duty ratio is near 0.6 the change once more of gain for threshold value big, this is because the bigger cause of face coupling loss herein.To sum up, in order to obtain big vertical coupled efficient, keep relatively low gain for threshold value simultaneously, the duty ratio of metal is optimised for 0.55 in the metal grating layer.Under this duty ratio, the vertical coupled efficient of surface plasma waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser and gain for threshold value are respectively 43% and 12cm -1, and in traditional dielectric waveguide two-grade grating distributed feed-back vertical launching quantum cascade laser, corresponding value is respectively 17.5% and 20cm -1, this shows that the present invention has good effect.
Above-described specific embodiment; purpose of the present invention, technical scheme and beneficial effect are further described; institute is understood that; the above only is specific embodiments of the invention; be not limited to the present invention; within the spirit and principles in the present invention all, any modification of being made, be equal to replacement, improvement etc., all should be included within protection scope of the present invention.

Claims (7)

1. vertical launching quantum cascade laser structure comprises:
One substrate, growth has ducting layer, active layer and contact layer successively on this substrate;
Metal grating layer, this metal grating layer be positioned at contact layer above, and this metal grating layer has secondary Bragg period.
2. by the described vertical launching quantum cascade laser structure of claim 1, wherein said substrate is the InP substrate.
3. by the described vertical launching quantum cascade laser structure of claim 1, the material of wherein said ducting layer is InGaAs, and this ducting layer mixes for the n type, and doping content is 6 * 10 16Cm -3, bed thickness is 0.55 μ m.
4. by the described vertical launching quantum cascade laser structure of claim 1, wherein said active layer is made up of the InGaAs/InAlAs in 40 cycles, and the wavelength of this active layer correspondence is 8-12 μ m.
5. by the described vertical launching quantum cascade laser structure of claim 1, the material of wherein said contact layer is InGaAs, and doping content is 1 * 10 19Cm -3, bed thickness is 0.05 μ m.
6. by the described vertical launching quantum cascade laser structure of claim 1, the material of wherein said metal grating layer is a silver, and the thickness of this metal grating layer 14 is 0.25 μ m, and the duty ratio of metal is 0.55.
7. by the described vertical launching quantum cascade laser structure of claim 1, wherein said metal grating layer is divided into 4 segment structures on contact layer.
CN2010101715111A 2010-05-07 2010-05-07 Vertical launching quantum cascade laser structure Expired - Fee Related CN101847828B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101715111A CN101847828B (en) 2010-05-07 2010-05-07 Vertical launching quantum cascade laser structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101715111A CN101847828B (en) 2010-05-07 2010-05-07 Vertical launching quantum cascade laser structure

Publications (2)

Publication Number Publication Date
CN101847828A true CN101847828A (en) 2010-09-29
CN101847828B CN101847828B (en) 2012-03-28

Family

ID=42772332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101715111A Expired - Fee Related CN101847828B (en) 2010-05-07 2010-05-07 Vertical launching quantum cascade laser structure

Country Status (1)

Country Link
CN (1) CN101847828B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887709A (en) * 2014-03-20 2014-06-25 中国科学院半导体研究所 Asymmetric metal grating and coating semiconductor multi-quantum-well waveguide laser
CN104662750A (en) * 2012-02-28 2015-05-27 康宁股份有限公司 Surface emitting multiwavelength distributed-feedback concentric ring lasers
CN105846304A (en) * 2016-04-24 2016-08-10 西南技术物理研究所 All-solid-state high-power medium-long wave laser optical parameter amplifier
CN106415954A (en) * 2014-04-07 2017-02-15 丹麦技术大学 Vcsel structure
CN109244822A (en) * 2018-11-01 2019-01-18 中国科学院上海技术物理研究所 For measuring the device and measurement method of Terahertz quantum cascaded laser gain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5727013A (en) * 1995-10-27 1998-03-10 Wisconsin Alumni Research Foundation Single lobe surface emitting complex coupled distributed feedback semiconductor laser
US6810053B1 (en) * 1999-08-13 2004-10-26 Wisconsin Alumni Research Foundation Single mode, single lobe surface emitting distributed feedback semiconductor laser
CN1180518C (en) * 2000-02-24 2004-12-15 朗迅科技公司 Distributed feedback surface plasma vibrator laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5727013A (en) * 1995-10-27 1998-03-10 Wisconsin Alumni Research Foundation Single lobe surface emitting complex coupled distributed feedback semiconductor laser
US6810053B1 (en) * 1999-08-13 2004-10-26 Wisconsin Alumni Research Foundation Single mode, single lobe surface emitting distributed feedback semiconductor laser
CN1180518C (en) * 2000-02-24 2004-12-15 朗迅科技公司 Distributed feedback surface plasma vibrator laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《SPIE》 19971231 Kasraian M.,Dan Botez Anti-phase complex-coupled,surface-emitting distributed-feedback diode lasers , 2 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104662750A (en) * 2012-02-28 2015-05-27 康宁股份有限公司 Surface emitting multiwavelength distributed-feedback concentric ring lasers
CN104662750B (en) * 2012-02-28 2017-09-05 康宁股份有限公司 Surface emitting multi-wavelength distributed feed-back annular concentric laser
US10811845B2 (en) 2012-02-28 2020-10-20 Thorlabs Quantum Electronics, Inc. Surface emitting multiwavelength distributed-feedback concentric ring lasers
CN103887709A (en) * 2014-03-20 2014-06-25 中国科学院半导体研究所 Asymmetric metal grating and coating semiconductor multi-quantum-well waveguide laser
CN106415954A (en) * 2014-04-07 2017-02-15 丹麦技术大学 Vcsel structure
CN105846304A (en) * 2016-04-24 2016-08-10 西南技术物理研究所 All-solid-state high-power medium-long wave laser optical parameter amplifier
CN109244822A (en) * 2018-11-01 2019-01-18 中国科学院上海技术物理研究所 For measuring the device and measurement method of Terahertz quantum cascaded laser gain
CN109244822B (en) * 2018-11-01 2021-01-01 中国科学院上海技术物理研究所 Device and method for measuring gain of terahertz quantum cascade laser

Also Published As

Publication number Publication date
CN101847828B (en) 2012-03-28

Similar Documents

Publication Publication Date Title
CN101847828B (en) Vertical launching quantum cascade laser structure
CN103633559B (en) The semi-conductor Terahertz vertical surface emitting laser of superpower low divergence
CN101916965B (en) Short-wavelength grating surface emission quantum cascade laser structure and preparation method thereof
CN103219650B (en) Low divergence angle near diffraction limit output chirp photonic crystal edge-emitting laser array
CN103346478B (en) In stibium gallium, infrared round spot exports low divergence edge emitting photon crystal laser
CN102611002B (en) Low divergence angle full Bragg reflector waveguide semiconductor laser array
CN103825194B (en) Single-mode photon crystal edge-emission semiconductor laser
CN103915758B (en) A kind of multimode interferometric structure Terahertz quantum cascaded laser and manufacture method
CN105048282A (en) Monolithically integrated electrical pumping bragg reflection waveguide terahertz laser device
CN106848836A (en) A kind of high order surfaces grating face emitting semiconductor laser
CN102591093B (en) Photonic crystal crossed waveguide ultrashort single pulse light generator based on nonlinear effect
Keil et al. Bilayer luminescent solar concentrators with enhanced absorption and efficiency for agrivoltaic applications
van der Burgt et al. Unlocking higher power efficiencies in luminescent solar concentrators through anisotropic luminophore emission
CN103715607B (en) A kind of tunable substrate emission quantum cascade laser array device
CN104767122A (en) Single-mode tunable terahertz quantum cascade laser device structure and manufacturing method
CN102289031B (en) Method for improving optical fiber self-focusing threshold power and optical fiber
CN207992057U (en) A kind of surface plasma waveguide optical sensing devices of grapheme material
CN109088005A (en) A kind of organic solar batteries of tandem type metal grating structure
CN103368071B (en) Grating distributed feedback quanta cascaded laser
CN107706741A (en) A kind of gain coupling distributed feedback laser series connection linear array structure
CN102856789A (en) Mixed silicon single mode annular cavity laser based on microstructural silicon waveguide frequency selection
CN103532013B (en) A kind of emitting quantum cascade laser structure of low divergence
Liu et al. Design of monolithic distributed Bragg reflector-integrated photodiode using a tapered waveguide with INP and polymer cladding layer
CN108963757A (en) Chirp sampling grating quantum cascade laser
CN116577868B (en) Grating antenna adopting crescent section radiation block array

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120328

Termination date: 20130507