Connect public, paid and private patent data with Google Patents Public Datasets

Super-hydrophobic polyurethane/ oxide nano particle hybrid coating material and preparation method thereof

Info

Publication number
CN101838496A
CN101838496A CN 201010145642 CN201010145642A CN101838496A CN 101838496 A CN101838496 A CN 101838496A CN 201010145642 CN201010145642 CN 201010145642 CN 201010145642 A CN201010145642 A CN 201010145642A CN 101838496 A CN101838496 A CN 101838496A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
coating
super
hydrophobic
method
polyurethane
Prior art date
Application number
CN 201010145642
Other languages
Chinese (zh)
Other versions
CN101838496B (en )
Inventor
杨胜洋
王丽芳
陈苏
陈莉
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a super-hydrophobic polyurethane/ oxide nano particle hybrid coating and a preparation method thereof. The super-hydrophobic coating is prepared by oxide nano particles, silane coupling agent and polyurethane which have wide material source and are easily obtained through a self-assembly method, and has the contact angle of 140-168 degrees and the rolling angle of 1-20 degrees as well as good visible light permeability. The invention solves the problems that the currently prepared transparent super-hydrophobic coating needs extremely low surface energy perfluorinated silane modification, has high production cost and complicated technique, and can not realize large-scale production. The method has simple technique, easily obtained raw material and low cost; and theprepared super-hydrophobic coating can be taken as a dustproof and antifogging protective coating of the surface of solids such as glass and the like, and a waterproof insulating layer used in a micro-electronic device, a sensor and the like.

Description

一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料及其制 A super-hydrophobic polyurethane / oxide nanoparticles prepared hybrid material and a coating

备方法 Preparation method

技术领域 FIELD

[0001] 本发明属于超疏水涂层制备技术领域,更具体的说,涉及一种超疏水聚氨酯/氧化物纳米粒子杂化涂层及其制备方法。 [0001] The present invention belongs to the technical field of preparing a superhydrophobic coating, more particularly, to a super-hydrophobic polyurethane / oxide nanoparticle coating and preparation method of the hybrid.

背景技术 Background technique

[0002] 超疏水(表面静态接触角大于150° )涂层具有防水、防污染、防氧化、自清洁等性能,因而备受人们关注。 [0002] superhydrophobic (surface static contact angle of greater than 150 °) with a waterproof coating, pollution prevention, oxidation, self-cleaning properties, and thus much attention. 而透明超疏水涂层,不仅具备超疏水表面的性质而且具有很好的可见光透过性,用于室外光电及显示设备,高层建筑的自清洁玻璃,作为汽车、飞机等的挡风玻璃等,具有着巨大的应用价值。 And transparent superhydrophobic coating, not only with the nature of super-hydrophobic surface and has good visible light transmittance, used for outdoor display and photovoltaic equipment, self-cleaning glass high-rise buildings as automobiles, aircraft windshields, etc., It has great value.

[0003] 目前透明超疏水涂层的研究并不多,制备方法主要包括溶胶-凝胶法、相分离法、 自组装法以及等离子体法等。 [0003] It Transparent superhydrophobic coating is not much, including the preparation of sol - gel method, phase separation method, a plasma method and the self-assembly method.

[0004] 溶胶-凝胶法如专利CN200710070728. 1将透明基体材料提拉法浸入溶胶凝胶法有机铝盐螯合制得的溶胶中制备透明薄膜;Naka jimaA等(Adv Mater. 1999, (11): 1365-1368)将可升华的粉状化合物Al (C2H7O2) 3加入到硅溶胶或铝溶胶制备透明涂层,这些均需经热处理得到一定粗糙度后用极低自由能全氟烷基氯硅烷或全氟烷基烷氧基硅烷修饰,从而制得透明的高疏水性涂层。 . [0004] The sol - gel method as described in patent CN200710070728 1 prepared transparent base material is immersed in a sol-gel method Czochralski organic aluminum chelate sol prepared transparent film; Naka jimaA the like (Adv Mater 1999, (11. ): after 1365-1368) the powdered sublimable compound Al (C2H7O2) 3 was added to a silica sol or alumina sol prepared clear coating, these need to be heat-treated to a certain roughness can perfluoroalkyl group consisting of chloride with low perfluoroalkyl silane or alkoxysilane modified, thereby preparing a transparent high hydrophobic coating. 而HM Shang等(ThinSolid Films. 2005,(472): 37-43)则用TEOS、MPS、MTES为原料,经水解得到的硅溶胶浸涂于玻片表面后在CTMS和TFCS的作用下进行自组装,形成的硅基透明薄膜透明度均高于90%,其中最大的接触角达到近165°。 And HM Shang et (ThinSolid Films 2005, (472):. 37-43) is used TEOS, MPS, MTES as raw material, after dipping in the sol obtained by hydrolysis from the slide surface under the effect of the TFCS and CTMS assembly, the transparency of a transparent film formed of the silicon are higher than 90%, wherein a maximum contact angle of nearly 165 °.

[0005]等离子体法如Hozumi 等(Thin Solid Films. 1997,303 :222 〜225)采用化学气相沉积(CVD)法使沉积膜的表面获得一定粗糙度后,以含有全氟烷基的硅烷作为气源,经等离子体处理制得透明的超疏水性薄膜。 [0005] The plasma method Hozumi et (Thin Solid Films 1997,303:. 222 ~225) after chemical vapor deposition (CVD) method so that the surface of the deposited film to obtain a certain roughness, a silane containing a perfluoroalkyl group as gas source, the plasma treatment was a transparent superhydrophobic film. 李国兴等(Applied Surface Science. 2008,(254): 5299-5303)则利用磁控溅射技术将氮化硼薄膜沉积到硅基表面,然后通过CF4等离子处理在表面获得了双尺度的粗糙度,获得了接触角为159°的透明超疏水薄膜。 Li Guoxing other (Applied Surface Science 2008, (254):. 5299-5303) using a magnetron sputtering technique of the boron nitride thin film is deposited onto the silicon surface, then CF4 plasma treatment on the surface of dual-scale roughness is obtained, obtaining a contact angle of 159 ° transparent superhydrophobic film.

[0006] 自组装法如Javier Bravo 等(Langmuir. 2007, (23) :7293_7298)利用LBL 自组装法在玻片表面浸涂三层,首先吸附层为PAH/SPS,增强了聚合物和纳米粒子的结合力;中间层为PAH/二氧化硅(50+20nm),提供超疏水所需的双尺度的粗糙度结构;顶层为PAH/ 二氧化硅(20nm),通过硅烷降低薄膜的表面自由能。 [0006] The self-assembly Javier Bravo et (Langmuir 2007, (23):. 7293_7298) LBL self-assembly using the three dip slide surface, the first adsorption layer is PAH / SPS, enhancing polymer and nanoparticles bonding force; intermediate layer provides the desired super-hydrophobicity structure of the double-scale roughness of PAH / silica (50 + 20nm),; the top layer is PAH / silica (20nm), a silane reducing the surface free energy of the film . 该薄膜的接触角为160°,后退角小于10°,并且光学透过率在可见光区域高于90%。 The contact angle of the film was 160 °, a receding angle of less than 10 °, and the optical transmittance of more than 90% in the visible region. 专利CN200910066706. 7则将带负电氧化物纳米粒子和阳离子聚合物LBL层层组装,尽管透光率很高,但工艺繁琐,且需在400°C 高温烧结后用低表面能的长链全氟硅烷以化学沉积法修饰,原料昂贵且条件苛刻;而专利CN200810218808. 1将二氧化硅胶体电泳沉积到导电玻璃上,透光率高,但不能进行大范围的制备。 Patent CN200910066706. 7 will negatively charged oxide nanoparticles and a cationic polymer with LBL layer assembly, although the light transmittance is high, but the process is complicated, and require a long-chain perfluoro with a low surface energy at 400 ° C after high-temperature sintering silane modified chemical deposition method, a raw material is expensive and severe conditions; whereas the patent CN200810218808 1 colloidal silica to electrophoretic deposition on conductive glass, high transmittance, but a wide range can not be prepared.

[0007] 上述涂层方法制备工艺复杂,成本昂贵,而且需要苛刻的化学条件及工艺,或者用较为昂贵的氟硅烷进行表面修饰,这些都限制了超疏水涂层在工业上的广泛应用。 [0007] The method of preparing the coating process is complicated, costly and requires harsh chemical conditions and processes, or surface modification with a relatively expensive fluorosilane, these limits superhydrophobic coatings widely used in the industry. 因此,需要一种操作简单,原料易得,成本较低并可以规模化制备和应用的透明超疏水表面的方法。 Thus, a simple, easily available raw materials, low cost and can scale the transparent superhydrophobic surface preparation and application of a need for a method of operation. 发明内容 SUMMARY

[0008] 本发明的目的提出了一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料,本发明的另一目的还提供了上述材料的制备方法,解决了当前制备透明超疏水涂层中多需极低表面能的全氟硅烷修饰、生产成本高、工艺复杂、不能规模化生产的问题。 [0008] The object of the present invention proposes a superhydrophobic polyurethane / oxide nanoparticles hybrid coating material, a further object of the present invention further provides a method for preparing the material, to solve the current preparing a transparent superhydrophobic coating more need to very low surface energy of perfluorinated silane-modified, high production costs, process complexity, production problems can not scale.

[0009] 实现本发明目的的技术方案是:一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料,其特征在于超疏水杂化涂层材料的表面水接触角为140° -168°,滚动角为1-20° ; 其原料组分为改性超疏水氧化物纳米粒子溶液和聚氨酯溶液;其中聚氨酯和改性超疏水氧化物纳米粒子的质量比为1-8 : 1 ;所述的改性超疏水氧化物纳米粒子溶液由以下步骤制得: [0009] The purpose of the present invention, the technical solution is: A super-hydrophobic polyurethane / oxide nanoparticles hybrid coating material, characterized in that the superhydrophobic surface of the hybrid coating material of water contact angle of 140 ° -168 °, roll angle of 1-20 °; the raw material component superhydrophobic oxide-modified nanoparticle solution and polyurethane solution; and wherein the mass-modified urethane superhydrophobic oxide nanoparticles ratio of 1-8: 1; the superhydrophobic oxide-modified nanoparticle solution prepared to give the following steps:

[0010] A.氧化物纳米粒子预处理:称取氧化物纳米粒子于烘箱中干燥后与溶剂混合,超声分散均勻后加入反应器,升温,随后加入硅烷偶联剂,搅拌均勻升温回流反应;最后将产物经无水乙醇洗涤并离心分离,经真空干燥得改性氧化物纳米粒子,置于干燥器中备用; [0010] A. Pretreatment oxide nanoparticles: Weigh the dried mixed oxide nanoparticles with the solvent in an oven, after ultrasonic dispersion added to the reactor uniformly heated, followed by addition of a silane coupling agent, the reaction was stirred at reflux for uniform temperature rise; Finally the product was dried over anhydrous washed with ethanol and centrifuged, and dried in vacuo to obtain oxide-modified nanoparticles disposed desiccator;

[0011] B.超疏水氧化物纳米粒子溶液的制备:取上述改性氧化物纳米粒子超声分散于溶剂中配成氧化物纳米粒子溶液;随后将为改性氧化物纳米粒子重量的0. 75-2倍的含疏水链化学物质分散在溶剂中,在磁力搅拌下加至氧化物纳米粒子溶液中,制得超疏水氧化物纳米粒子混合溶液,控制混合溶液的质量固含量为1_5%。 [0011] B. Preparation of superhydrophobic oxide nanoparticle solution: Take the modified ultrasonic oxide nanoparticles dispersed in a solvent formulated oxide nanoparticle solution; nanoparticles will then modifying oxides of 0.75 wt. -2 times the hydrophobic chain containing a chemical substance dispersed in the solvent, under magnetic stirring was added to a solution of oxide nanoparticles, to prepare a superhydrophobic oxide nanoparticles mixed solution, the mixed solution to control solids content of 1_5% by mass.

[0012] 其中步骤A中所述的氧化物纳米粒子为纳米二氧化硅、纳米三氧化二铝、纳米二氧化钛或纳米二氧化锆;粒径I-IOOOnm ;优选纳米二氧化硅;步骤A所述的溶剂为甲苯、二甲苯、N,N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;溶剂用量为氧化物纳米粒子重量的10-50倍;所述的硅烷偶联剂为Y-缩水甘油醚氧丙基三甲氧基硅烷、甲基三甲氧基硅烷、三甲基乙氧基硅烷、聚二甲硅基氧烷中的一种或几种,偶联剂用量为氧化物纳米粒子重量的0. 5-5倍。 [0012] A step wherein the oxide nanoparticles in the nano silica, nano alumina, nano-titanium dioxide or zirconium dioxide; particle size I-IOOOnm; preferably nanometer silica; step A the solvents are toluene, xylene, N, N- dimethylformamide, cyclohexane, methylene chloride one or more; solvent in an amount of 10-50 times the weight of the oxide nanoparticles; the Y- silane coupling agent is glycidoxypropyl trimethoxy silane, methyl trimethoxy silane, trimethyl silane, one or more polydimethyl siloxane in the silicon, the coupling agent in an amount of 0.5 wt oxide nanoparticles 5-5 times.

[0013] 优选步骤A中超声分散后升温至60-100°C;加入硅烷偶联剂,升温至100-140°C回流反应6-12小时。 [0013] Step A preferred ultrasonically dispersed warmed to 60-100 ° C; silane coupling agent was added, was warmed to 100-140 ° C to reflux for 6-12 hours.

[0014] 优选步骤B中配成超疏水氧化物纳米粒子溶液中的溶剂为甲苯、二甲苯、N, N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;含疏水链化学物质为C8-C22的酰胺、 C8-C22的烷基三氯硅烷、C8-C22的烷基三烷氧基硅烷、C6-C12的含氟脂肪酸、四氢全氟C6-C12的烷基三氯硅烷、四氢全氟或C6-C12烷基三烷氧基硅烷中的一种或几种;溶解含疏水链化学物质的溶剂为四氢呋喃、N,N-二甲基甲酰胺、二乙基甲酰胺、三氯甲烷、二氯甲烷、 正己烷、环己烷、烷基环己烷或四氯化碳;优选溶解含疏水链化学物质的溶剂为四氢呋喃、 N,N-二甲基甲酰胺、三氯甲烷或二氯甲烷。 [0014] Step B preferably formulated superhydrophobic oxide nanoparticles solvent solution is toluene, xylene, N, N- dimethylformamide, cyclohexane, methylene chloride is one or more; hydrophobic chains containing amide chemical substance is a C8-C22, C8-C22 alkyl trichlorosilane, C8-C22 alkyl trialkoxy silanes, fluorinated C6-C12 fatty acids, C6-C12 perfluoro-tetrahydro of alkyl trichlorosilane, or tetrahydro-perfluoro C6-C12 alkyl trialkoxysilanes of one or more; solvent dissolving a hydrophobic chain containing chemicals are tetrahydrofuran, N, N- dimethylformamide, diethylformamide, chloroform, methylene chloride, hexane, cyclohexane, alkylcyclohexane or carbon tetrachloride; preferably dissolve hydrophobic chains containing chemical substances are tetrahydrofuran, N, N- dimethyl formamide, chloroform or dichloromethane.

[0015] 本发明所述的聚氨酯为溶剂型聚氨酯;优选聚氨酯溶液的质量固含量为1-15% ; 溶剂为丙酮、甲乙酮、环己酮、醋酸乙酯、二氯甲烷、四氢呋喃、N,N-二甲基甲酰胺、二氧六环中一种或几种;优选为四氢呋喃或N,N-二甲基甲酰胺。 [0015] The present invention is a polyurethane solvent-based polyurethane; solid content mass of the polyurethane solution is preferably 1 to 15%; solvent is acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, dichloromethane, tetrahydrofuran, N, N - dimethylformamide, dioxane one or more; preferably tetrahydrofuran or N, N- dimethylformamide.

[0016] 本发明还提供了上述超疏水聚氨酯/氧化物纳米粒子杂化涂层材料的方法,其具体步骤如下:(1)配制聚氨酯溶液,将改性的超疏水氧化物纳米粒子混合溶液与聚氨酯溶液,按改性的超疏水氧化物纳米粒子与聚氨酯质量比为1 : 1-8的比例混合,搅拌均勻后反应,通过浓缩以除去多余溶剂,即制得透明超疏水表面涂层剂; [0016] The present invention further provides a method of the above-described super-hydrophobic urethane hybrid coating material / oxide nanoparticles, the specific steps are as follows: (1) Preparation of polyurethane solution, the mixed solution was superhydrophobic oxide nanoparticles modified with polyurethane solution, modified according to the superhydrophobic oxide nanoparticles to the polyurethane mass ratio of 1: 1-8 mixture, stir the reaction, concentrated to remove excess solvent, i.e., to obtain a transparent superhydrophobic surface coating agent;

[0017] (2)涂层热处理:将透明超疏水表面涂层剂涂覆在基底材料表面,在30-80°C中烘干至溶剂完全挥发,即制得具有透明超疏水性能的改性聚氨酯/氧化物纳米粒子涂层。 [0017] (2) heat treating the coating: transparent superhydrophobic surface coating agent is coated on the surface of the substrate material, and drying at 30-80 ° C until the solvent is completely volatilized, i.e., to obtain a transparent superhydrophobic properties of modified polyurethane / oxide nanoparticle coating.

[0018] 所述的基底材料为金属、无机或有机的致密或多孔材料。 [0018] The base material is a metal, an inorganic or organic porous or dense material. 优选基底材料为为铝箔、 玻璃、硅、陶瓷、半导体或高分子材料。 Preferably the base material is an aluminum foil, glass, silicon, ceramic, semiconductor or polymer material.

[0019] 优选反应条件为超声或60-120°C加热回流;浓缩方式为减压蒸馏或者加热抽真空。 [0019] Preferably the reaction is heated to reflux conditions ultrasound or 60-120 ° C; was concentrated by distillation under reduced pressure or heating mode is evacuated.

[0020] 涂层过程的选择可根据被处理的基体材料大小及几何形状进行选择。 Select [0020] The coating process can be selected according to the size of the material to be treated and geometry of the matrix. 其中涂覆方式可为喷涂法、旋转涂覆法、提拉法或者滴液注膜法。 Wherein the coating method may be a spray coating method, spin coating method, dip method, or dropping injection membrane. 如喷涂法适用于处理面积大且不受被处理面的几何形状限制;旋转涂膜及滴液法适用于相对面积较小的平面;提拉法对基体材料几何形状限制也不大,可直接浸入涂层剂中进行10-16h的自组装化学反应。 The spray coating process is suitable for large area and is not restricted by the processing surface geometry; dropping and spin coating method is suitable for relatively small plane area; Czochralski geometry of the base material is not large limits, direct self-assembled chemical reaction 10-16h immersed in the coating agent.

[0021] 无论选用何种涂覆方式将透明超疏水表面涂层剂涂覆在基底材料表面,经简单热处理,烘干至溶剂完全挥发,即制得具有透明超疏水性能的聚氨酯/改性氧化物纳米粒子涂层,优选涂层的烘干温度为40-65°C,所得材料表面的水接触角为140-168°,一般为155°左右,滚动角为1-20°。 [0021] manner which is coated a transparent superhydrophobic surface coating agent is coated on the base material surface, by simple heat treatment, drying the solvent is completely volatilized, i.e., to obtain a transparent superhydrophobic properties of polyurethane / modified irrespective of the selected oxide nanoparticle coating composition, the coating drying temperature is preferably 40-65 ° C, the resultant material surface water contact angle of 140-168 °, generally about 155 °, the roll angle of 1-20 °.

[0022] 有益效果: [0022] beneficial effects:

[0023] 1.涂层剂制备的原料易得,成本低,所需设备及制备工艺简单,成膜温度较低,并且通过简单的涂层法就可以获得透明超疏水表面,使用方便,效果稳定。 [0023] 1. Preparation of coating agent raw material easily available, low cost, simple preparation process and the necessary equipment, low film formation temperature, and can obtain a transparent superhydrophobic surfaces, easy to use by a simple coating method, the effect stable.

[0024] 2.本发明方法制备的透明超疏水涂层,具有较大的表面接触角(大于150° )和较小的滚动角,水珠在上面能自由滚动并带走表面灰尘从而实现自洁功能; A transparent superhydrophobic coating prepared from [0024] 2. The method of the present invention, having a large surface contact angle (greater than 150 °) and a small roll angle, roll freely drops and dust on the surface away from the top in order to achieve cleaning function;

[0025] 3.本发明制备的透明超疏水涂层,具有良好的可见光透过性,平均可见光透过率大于60%。 [0025] 3. The transparent superhydrophobic coating preparation of the present invention, having excellent visible light transmittance, the visible light transmittance greater than 60% on average.

[0026] 4.疏水性氧化物纳米粒子如二氧化硅除具备疏水性质之外,还具有硬度高、耐磨、 绝热性好、介电常数低、化学稳定性好等特点,在微电子器件、光学薄膜器件、传感器等领域有很好的发展前景。 [0026] 4. The hydrophobic oxide nanoparticles such as silica, in addition to have hydrophobic properties, also has a high hardness, wear resistance, good thermal insulation, low dielectric constant, good chemical stability, in microelectronics the art, the optical thin film devices, sensors and the like have a good prospect.

[0027] 5.本发明方法制备的透明超疏水涂层,可用于汽车、飞机、航天器等挡风玻璃、建筑幕墙等场合,同时可作为玻璃等固体表面的防尘、防雾保护涂层,也可以作为微电子器件、传感器等中的防水绝缘层使用。 Preparation of a transparent superhydrophobic coating process of the invention [0027] The present, dust can be used for automobile, aircraft, spacecraft and other windshields, building walls and other occasions, at the same time as a solid surface such as glass, the protective coating antifogging It may also be used as microelectronic devices, sensors and the like waterproof insulating layer.

附图说明 BRIEF DESCRIPTION

[0028] 图1是采用本发明方法制备得到的透明超疏水涂层不同放大倍数下的扫描电镜图。 [0028] FIG. 1 is a scanning electron micrograph at different magnifications transparent superhydrophobic coating obtained by the preparation method. 图a为放大600倍的电镜图,图b为放大10000倍的电镜图。 FIG is a 600 times enlarged electron micrograph, FIG b is an enlarged electron micrograph of 10000-fold.

[0029] 图2是接触角测定仪得到的放大图片。 [0029] FIG. 2 is a contact angle meter to obtain an enlarged image. 图c为水滴在表面的接触角(水滴体积: 5 μ L),图d为相应滚动角(水滴体积:9 μ L)。 Panel c is a contact angle of water drop on the surface (droplet volume: 5 μ L), a roll angle corresponding to FIG d (drop volume: 9 μ L).

[0030] 图3是透明超疏水涂层的数码照片。 [0030] FIG. 3 is a transparent superhydrophobic coating of digital photos.

[0031] 图4是实施例2所制得的透明超疏水涂层的扫描电镜图。 [0031] FIG. 4 is a transparent superhydrophobic coating SEM images prepared in Example 2. 图e为放大600倍的电镜图,图f为放大2500倍的电镜图。 FIG e is an enlarged electron micrograph of 600 times, 2,500 times in FIG f is an enlarged electron micrograph.

具体实施方式 detailed description

[0032] 以下结合实施例对本发明作进一步详细描述。 [0032] The following embodiments in conjunction with embodiments of the present invention is described in further detail. [0033] 扫描电镜照片由荷兰Philips-FEI公司产QUANTA200扫描电镜测得。 [0033] SEM photographs by the Dutch company Philips-FEI yield QUANTA200 SEM measured.

[0034]接触角数据由 Drop Shape Analysis System G10/DSA100 ( KRLTSS, Germany)液滴形貌分析仪测得。 [0034] The contact angle data System G10 / DSA100 (KRLTSS, Germany) droplet morphology analyzer was a Drop Shape Analysis.

[0035] 可见光透过率由Perkin Elmer Lambda20型紫外可见光仪测得。 [0035] The visible light transmittance of visible light was measured by the instrument Perkin Elmer Lambda20 UV.

[0036] 下面给出本发明的具体实施例,但本发明并不仅仅限定于这些实施例,这些实施例不构成对本发明权利要求饱和范围的限制。 [0036] The following presents particular embodiments of the present invention, but the present invention is not limited to these embodiments, these embodiments do not limit the scope of the present invention is a saturated claims.

[0037] 实施例1 [0037] Example 1

[0038] 1.纳米二氧化硅预处理 [0038] 1. Pretreatment nanosilica

[0039] 称取3g沉淀法纳米二氧化硅(平均粒径50nm,比表面积150m2/g),于100°C烘箱中干燥2小时后与30g甲苯置于250ml的三口烧瓶中超声分散均勻;升温至80°C,滴加由20g甲苯水解的6. 4g γ -缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30分钟,继续搅拌30 分钟后,升温至110°C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110°C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0039] 3g weighed precipitated nano silica (average particle diameter 50nm, specific surface area of ​​150m2 / g), in 100 ° C oven for 2 hours after 30g of toluene was placed in a 250ml three-necked flask uniform ultrasonic dispersion; heating to 80 ° C, was added dropwise a toluene 6. 4g γ 20g hydrolyzed - glycidoxypropyl trimethoxysilane was added dropwise for 30 minutes, stirring was continued for 30 minutes, warmed to 110 ° C at reflux for 10 hours to its full reaction; the product was finally washed with absolute ethanol and centrifuged four times, vacuum oven dried 110 ° C in 17 hours to obtain the modified silica into a desiccator.

[0040] 2.超疏水二氧化硅的制备: [0040] 2. Preparation of super-hydrophobic silica:

[0041] 取上述经过处理的改性二氧化硅1. 5g超声分散于75g甲苯中配成二氧化硅溶液; 随后将2. 25g十八酰胺超声分散于50g N, N- 二甲基甲酰胺中,在磁力搅拌器80r/min转速下缓慢加至二氧化硅溶液中并搅拌15min,制得超疏水二氧化硅混合溶液。 [0041] After taking modified silica ultrasonic dispersion treatment 1. 5g silica in 75g of toluene was formulated as described above; followed by ultrasonic dispersion stearylamine 2. 25g in 50g N, N- dimethylformamide , under magnetic stirrer 80r / min speed was slowly added to the silica solution and stirred 15min, super-hydrophobic silica to prepare a mixed solution. 将超疏水二氧化硅混合溶液滴涂于玻璃片上在25°C下自然干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为150°,滚动角为10°。 Super-hydrophobic silica mixture was dropped onto the glass sheet naturally dried at 25 ° C, to obtain a modified nano-silica thin super hydrophobic properties, a surface water contact angle of 150 °, the roll angle of 10 °.

[0042] 3.涂层溶液的配制 [0042] 3. Prepare coating solution

[0043] 将超疏水二氧化硅混合溶液加至聚氨酯溶液中,置于高功率数控超声波清洗器KQ-200KDE在100W功率下超声45分钟即制得透明超疏水表面涂层剂,其中聚氨酯溶液为6g聚氨酯磁力搅拌溶解于50gN,N- 二甲基甲酰胺中配得。 [0043] The super-hydrophobic silica mixture was added to the polyurethane solution, placed in a high-power ultrasonic cleaner CNC KQ-200KDE at 100W power ultrasound in about 45 minutes to obtain a transparent superhydrophobic surface coating agent, wherein the polyurethane solution is magnetic stirring was dissolved in 6g polyurethane 50gN, N- dimethyl formamide worthy.

[0044] 4.在基体材料上制备透明超疏水涂层 [0044] 4. Preparation of a transparent superhydrophobic coating on a base material

[0045] 聚氨酯/ 二氧化硅涂层剂滴涂于玻璃片上,在55°C烘箱中静置烘干既得透明超疏水涂层。 [0045] The polyurethane / silica coating agent is dropped onto the glass slide and allowed to stand at 55 ° C drying oven for acquired transparent superhydrophobic coatings.

[0046] 附图1为涂层表面的扫描电镜照片。 [0046] Figure 1 is a scanning electron micrograph of the surface of the coating. 如附图2所示,该涂层的表面水接触角达160°,滚动角2.1°,同时涂层具有良好的可见光透过性,平均可见光透过率达67%。 As shown in Figure 2, the coating surface of the water contact angle of 160 °, the roll angle of 2.1 °, while the coating has good visible light transmittance, visible light transmittance rate of 67% on average. 透明超疏水玻璃实物图如附图3所示,将所得到的透明超疏水玻璃放在图片上,下面图片清晰可见,并且水滴在表面上易于滚落。 Transparent glass superhydrophobic physical map as shown in FIG. 3, the resulting superhydrophobic transparent glass on the picture, the picture below clearly visible, and the water droplets roll off the surface easily.

[0047] 实施例2 [0047] Example 2

[0048] 1.纳米二氧化硅预处理 [0048] 1. Pretreatment nanosilica

[0049] 称取3g沉淀法纳米二氧化硅(平均粒径50nm,比表面积150m2/g),于100°C烘箱中干燥2小时后与150g甲苯置于500ml的三口烧瓶中超声至分散均勻;升温至70°C,滴加由20g甲苯水解的15g Y-缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至110°C回流5小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110°C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0049] 3g weighed precipitated nano silica (average particle diameter 50nm, specific surface area of ​​150m2 / g), in 100 ° C oven for 2 hours after the three-necked flask with 500ml of toluene were placed 150g sonicated until dispersed uniformly; warmed to 70 ° C, 20g of toluene was added dropwise 15g Y- hydrolyzed glycidoxypropyl trimethoxysilane was added dropwise for 30 minutes, stirring was continued for 30 minutes, warmed to 110 ° C refluxed for 5 hours, allowed sufficient reaction; the product was finally washed with absolute ethanol and centrifuged four times, vacuum oven dried 110 ° C in 17 hours to obtain the modified silica into a desiccator.

[0050] 2.超疏水二氧化硅的制备: [0050] 2. Preparation of super-hydrophobic silica:

[0051] 取上述经过处理的改性二氧化硅0. 2g超声分散于15g甲苯中配成二氧化硅溶液;随后将O. 3g十八酰胺超声分散于15gN,N- 二甲基甲酰胺中,在磁力搅拌器80r/min转速下加至二氧化硅溶液中并搅拌30min,制得超疏水二氧化硅混合溶液。 [0051] After taking modified silica dispersion treatment in an ultrasonic 0. 2g silica solution 15g of toluene formulated as described above; followed by ultrasonic dispersion O. 3g stearylamine in 15gN, N- dimethyl formamide , the silica was added to the solution and stirred with a magnetic stirrer at 80r / min speed 30min, to prepare a mixed solution of super-hydrophobic silica. 将玻璃片浸没于超疏水二氧化硅混合溶液自组装反应5h后于20°C下自然干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为151°,滚动角为13°。 The super-hydrophobic silica glass was immersed in the mixed solution was dried under a natural self-assembling reaction after 5h 20 ° C, to obtain a modified nano-silica thin super hydrophobic properties, a surface water contact angle of 151 °, the roll angle is 13 °.

[0052] 3.涂层溶液的配制 [0052] 3. Prepare coating solution

[0053] 将超疏水二氧化硅混合溶液加至聚氨酯溶液中,置于高功率数控超声波清洗器KQ-200KDE在100W功率下超声50min即制得透明超疏水表面涂层剂,其中聚氨酯溶液为1. 6g聚氨酯磁力搅拌溶解于20g N, N- 二甲基甲酰胺中配得。 [0053] The super-hydrophobic silica mixture was added to the polyurethane solution, placed in a high-power ultrasonic cleaner CNC KQ-200KDE 50min at 100W power ultrasound i.e. was a transparent superhydrophobic surface coating agent, wherein the polyurethane solution is a 1 . 6g magnetic stirring polyurethane was dissolved in 20g N, N- dimethyl formamide worthy.

[0054] 4.在基体材料上制备透明超疏水涂层 [0054] 4. Preparation of a transparent superhydrophobic coating on a base material

[0055] 将玻璃片提拉法浸没于聚氨酯/ 二氧化硅涂层剂中自组装反应5h,在45°C烘箱中静置烘干既得透明超疏水涂层。 [0055] The glass sheet is immersed in the polyurethane Czochralski / silica coating agent from the assembly reaction 5h, allowed to stand for drying acquired transparent superhydrophobic coating in an oven at 45 ° C.

[0056] 该涂层的表面水接触角达154°,滚动角2°,同时涂层具有良好的可见光透过性,平均可见光透过率达73 %。 [0056] surface of the water contact angle of the coating was 154 °, the roll angle of 2 °, while the coating has good visible light transmittance, visible light transmittance 73% on average.

[0057] 实施例3 [0057] Example 3

[0058] 1.纳米二氧化硅预处理 [0058] 1. Pretreatment nanosilica

[0059] 称取3g气相法纳米二氧化硅(平均粒径30nm,比表面积380m2/g),于100°C烘箱中干燥2小时后与90g N,N-二甲基甲酰胺置于250ml的三口烧瓶中超声至分散均勻;升温至90°C,滴加由20g甲苯水解的6. 4g γ-缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至120°C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤5次并离心分离,经110°C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0059] Weigh 3g fumed nano silica (average particle diameter 30nm, specific surface area of ​​380m2 / g), at 100 ° C after oven dried for 2 hours with 90g N, N- dimethylformamide was placed in a 250ml an ultrasonic three-necked flask to evenly dispersed; warmed to 90 ° C, dropwise added 6. 4g γ- glycidoxypropyl trimethoxysilane hydrolysis 20g toluene was added dropwise for 30 minutes, stirring was continued for 30 minutes, warmed to 120 ° C refluxed for 10 hours, allowed sufficient reaction; the product was finally washed with absolute ethanol and centrifuged five times, vacuum oven dried 110 ° C in 17 hours to obtain the modified silicon dioxide, placed in a desiccator spare.

[0060] 2.超疏水二氧化硅的制备: [0060] 2. Preparation of super-hydrophobic silica:

[0061] 取上述经过处理的改性二氧化硅0. 2g超声分散于IOg甲苯中配成二氧化硅溶液; 随后将0. 3g十八酰胺超声分散于8g N, N- 二甲基甲酰胺及2g甲苯的混合溶剂中,在磁力搅拌器90r/min转速下逐滴加至二氧化硅溶液中并搅拌30min,制得超疏水二氧化硅混合溶液。 [0061] After taking the above-described modified silica dispersion treatment in an ultrasonic 0. 2g silica solution IOg toluene dubbed; 0. 3g stearylamine then ultrasonic dispersion in 8g N, N- dimethylformamide and a mixed solvent of toluene and 2g, by a magnetic stirrer at 90r / min speed silica added dropwise to the solution and stirred for 30min, to prepare a mixed solution of super-hydrophobic silica. 将超疏水二氧化硅混合溶液滴涂在铝箔上于36°C下干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为151°,滚动角为15°。 Superhydrophobic dropwise a mixed solution of a silica-coated on an aluminum foil and dried at 36 ° C to give a modified nano-silica thin super hydrophobic properties, a surface water contact angle of 151 °, the roll angle of 15 °.

[0062] 3.涂层溶液的配制 [0062] 3. Prepare coating solution

[0063] 将超疏水二氧化硅混合溶液滴加至聚氨酯溶液中于90°C搅拌回流即制得透明超疏水表面涂层剂,其中聚氨酯溶液为1.2g聚氨酯磁力搅拌溶解于50g N, N-二甲基甲酰胺中配得。 [0063] The super-hydrophobic silica mixture was added dropwise to the polyurethane solution was stirred at 90 ° C to reflux to obtain a transparent i.e. superhydrophobic surface coating agent, wherein the polyurethane solution is a polyurethane magnetic stirring was dissolved in 1.2g 50g N, N- dimethyl formamide worthy.

[0064] 4.在基体材料上制备透明超疏水涂层 [0064] 4. Preparation of a transparent superhydrophobic coating on a base material

[0065] 聚氨酯/ 二氧化硅涂层剂滴涂于铝箔上,在45°C烘箱中静置烘干既得透明超疏水涂层。 [0065] Polyurethane / silica coating agent is dropped onto the aluminum foil and allowed to stand at 45 ° C drying oven acquired transparent superhydrophobic coatings.

[0066] 该涂层的表面水接触角达152°,滚动角2°,同时涂层具有良好的可见光透过性,平均可见光透过率达62%。 [0066] The coating of the surface of the water contact angle of 152 °, the roll angle of 2 °, while the coating has good visible light transmittance, visible light transmittance rate of 62% on average. 附图4为涂层表面的扫描电镜照片。 Figure 4 is a scanning electron micrograph of the surface of the coating.

[0067] 实施例4 [0067] Example 4

[0068] 1.纳米二氧化硅预处理 [0068] 1. Pretreatment nanosilica

[0069] 称取3g气相法纳米二氧化硅(平均粒径30nm,比表面积380m2/g),于100°C烘箱中干燥2小时后与90g N, N- 二甲基甲酰胺置于250ml的三口烧瓶中超声至分散均勻;升温至90°C,滴加由20g甲苯水解的6. 4g Y-缩水甘油醚氧丙基三甲氧基硅烷,滴加时间30 分钟,继续搅拌30分钟后,升温至120°C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110°C的真空烘箱中干燥17小时得改性二氧化硅,置于干燥器中备用。 [0069] Weigh 3g fumed nano silica (average particle diameter 30nm, specific surface area of ​​380m2 / g), at 100 ° C after oven dried for 2 hours with 90g N, N- dimethylformamide was placed in a 250ml an ultrasonic three-necked flask to evenly dispersed; warmed to 90 ° C, dropwise added 6. 4g Y- glycidoxypropyl trimethoxysilane hydrolysis 20g toluene was added dropwise for 30 minutes, stirring was continued for 30 minutes, warmed to 120 ° C refluxed for 10 hours, allowed sufficient reaction; the product was finally washed with absolute ethanol and centrifuged four times, vacuum oven dried 110 ° C in 17 hours to obtain the modified silicon dioxide, placed in a desiccator spare.

[0070] 2.超疏水二氧化硅的制备: [0070] 2. Preparation of super-hydrophobic silica:

[0071] 取上述经过处理的改性二氧化硅0. 2g超声分散于IOg甲苯中配成二氧化硅溶液; 随后将0. 15g C12的含氟脂肪酸超声分散于8g N, N- 二甲基甲酰胺及2g甲苯的混合溶剂中,在磁力搅拌器80r/min转速下缓慢加至二氧化硅溶液中并搅拌30min,制得超疏水二氧化硅混合溶液。 [0071] After taking the above-described modified silica dispersion treatment in an ultrasonic 0. 2g silica solution IOg toluene dubbed; fluorine-containing fatty acid is then ultrasonic 0. 15g C12 was dispersed in 8g N, N- dimethyl formamide mixed solvent of toluene and 2g, magnetic stirrer at 80r / min speed was slowly added to the silica solution and stirred 30min, super-hydrophobic silica to prepare a mixed solution. 将超疏水二氧化硅混合溶液喷涂在铝箔上于36°C下干燥,得具有超疏水性能的改性纳米二氧化硅薄膜,其表面水接触角为153°,滚动角为15°。 Superhydrophobic silicon dioxide was sprayed on an aluminum foil and dried at 36 ° C to give a modified nano-silica thin super hydrophobic properties, a surface water contact angle of 153 °, the roll angle of 15 °.

[0072] 3.涂层溶液的配制 [0072] 3. Prepare coating solution

[0073] 将超疏水二氧化硅混合溶液滴加至聚氨酯溶液中于90°C搅拌回流即制得透明超疏水表面涂层剂,其中聚氨酯溶液为1.8g聚氨酯磁力搅拌溶解于50g N, N-二甲基甲酰胺中配得。 [0073] The super-hydrophobic silica mixture was added dropwise to the polyurethane solution was stirred at 90 ° C to reflux to obtain a transparent i.e. superhydrophobic surface coating agent, wherein the polyurethane solution is a polyurethane magnetic stirring 1.8g was dissolved in 50g N, N- dimethyl formamide worthy.

[0074] 4.在基体材料上制备透明超疏水涂层 [0074] 4. Preparation of a transparent superhydrophobic coating on a base material

[0075] 聚氨酯/ 二氧化硅涂层剂喷涂于铝箔上,在45°C烘箱中静置烘干既得透明超疏水涂层。 [0075] Polyurethane / silica coating agent is sprayed onto aluminum foil and allowed to stand at 45 ° C drying oven acquired transparent superhydrophobic coatings.

[0076] 该涂层的表面水接触角达155°,滚动角7°,同时涂层具有良好的可见光透过性,平均可见光透过率达65 %。 [0076] The water contact angle of the surface of the coating was 155 °, the roll angle of 7 °, while the coating has good visible light transmittance, the visible light average transmission rate of 65%.

[0077] 实施例5 [0077] Example 5

[0078] 1.纳米三氧化二铝预处理 [0078] 1. Pretreatment nano-aluminum oxide

[0079] 称取3g纳米三氧化二铝(平均粒径50nm),于100°C烘箱中干燥2小时后与30g 甲苯置于250ml的三口烧瓶中超声分散均勻;升温至80°C,滴加由20g甲苯水解的6. 4g Y-氨丙基三乙氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至110°C回流10小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110°C的真空烘箱中干燥17小时得改性三氧化二铝,置于干燥器中备用。 [0079] Weigh 3g nano-aluminum oxide (average particle diameter 50nm), at 100 ° C after oven dried for 2 hours with 30g of toluene 250ml three-necked flask was placed in an ultrasonic dispersing uniformly; warmed to 80 ° C, was added dropwise of 6. 4g Y- aminopropyl triethoxysilane hydrolyzed 20g of toluene dropwise over 30 minutes and stirring was continued for 30 minutes, warmed to 110 ° C refluxed for 10 hours, the reaction sufficiently; Finally the product with no washed with water, ethanol and centrifuged four times, vacuum oven dried 110 ° C in 17 hours to obtain the modified aluminum oxide, placed desiccator.

[0080] 2.超疏水三氧化二铝的制备: [0080] 2. A super-hydrophobic aluminum oxide prepared:

[0081] 取上述经过处理的改性三氧化二铝Ig超声分散于IOOg甲苯中配成三氧化二铝溶液;随后将1. 5g硬脂酸超声分散于IOOg N, N- 二甲基甲酰胺中,在磁力搅拌器80r/min转速下缓慢加至三氧化二铝溶液中并搅拌15min,制得超疏水三氧化二铝混合溶液。 [0081] After taking the above-described process of Ig modified aluminum oxide dispersed in an ultrasonic IOOg toluene solution was formulated aluminum oxide; 1. 5g of stearic acid was then dispersed in an ultrasonic IOOg N, N- dimethylformamide , under magnetic stirrer 80r / min speed was slowly added a solution of aluminum oxide and stirred for three 15min, to prepare a superhydrophobic aluminum oxide mixed solution. 抽真空以除去多余溶剂后将超疏水三氧化二铝混合溶液滴涂在陶瓷上于25°C下自然干燥,得具有超疏水性能的改性纳米三氧化二铝薄膜,其表面水接触角为150°,滚动角为6°。 After evacuation to remove excess solvent superhydrophobic aluminum oxide mixed solution was dropped on the ceramic coating to dry naturally at 25 ° C, to obtain a modified nano-aluminum oxide film super hydrophobic properties, a surface water contact angle 150 °, the roll angle of 6 °.

[0082] 3.涂层溶液的配制 [0082] 3. Prepare coating solution

[0083] 将超疏水三氧化二铝混合溶液加至聚氨酯溶液中,高功率数控超声波清洗器KQ-200KDE在100W功率下超声45分钟即制得透明超疏水表面涂层剂,其中聚氨酯溶液为16g聚氨酯磁力搅拌溶解于70g N, N-二甲基甲酰胺中配得,涂层剂抽真空以除去多余溶剂。 [0083] The superhydrophobic aluminum mixed oxide solution was added to the polyurethane solution, a high-power ultrasonic cleaner CNC KQ-200KDE ultrasound i.e. 45 minutes to obtain a transparent superhydrophobic surface coating agent at 100W power, wherein the polyurethane solution is 16g polyurethane magnetic stirring dissolved in 70g N, N- dimethyl formamide worthy, the coating agent is evacuated to remove excess solvent.

[0084] 4.在基体材料上制备透明超疏水涂层[0085] 聚氨酯/三氧化二铝涂层剂滴涂于聚四氟乙烯板上,在50°C烘箱中静置烘干既得透明超疏水涂层。 [0084] 4. Preparation of a transparent superhydrophobic coating on the base material [0085] The polyurethane / alumina coating agent is dropped onto the Teflon plate, allowed to stand acquired drying oven at 50 ° C and ultra-transparent hydrophobic coating.

[0086] 实施例6 [0086] Example 6

[0087] 1.纳米二氧化钛预处理 [0087] 1. Pretreatment titanium dioxide

[0088] 称取3g纳米二氧化钛(平均粒径50nm),于100°C烘箱中干燥2小时后与150g 甲苯置于500ml的三口烧瓶中超声至分散均勻;升温至70°C,滴加由20g甲苯水解的15g(3-环氧丙基丙氧基)三甲氧基硅烷,滴加时间30分钟,继续搅拌30分钟后,升温至110°C回流5小时,使其充分反应;最后将产物用无水乙醇洗涤4次并离心分离,经110°C的真空烘箱中干燥17小时得改性二氧化钛,置于干燥器中备用。 [0088] Weigh 3g titanium dioxide (average particle diameter 50nm), at 100 ° C after oven dried for 2 hours with 150g of toluene were placed in a 500ml three-necked flask to ultrasonic uniformly dispersed; warmed to 70 ° C, a solution of 20g toluene hydrolyzed 15g (3- propoxy-epoxypropyl) trimethoxysilane, dropwise addition time of 30 minutes, stirred for 30 minutes, warmed to 110 ° C refluxed for 5 hours, allowed sufficient reaction; the product was finally of anhydrous ethanol were washed and centrifuged four times, vacuum oven dried 110 ° C in 17 hours to obtain modified titanium dioxide, placed in a desiccator.

[0089] 2.超疏水二氧化钛的制备: [0089] 2. A super-hydrophobic titanium oxide prepared:

[0090] 取上述经过处理的改性二氧化钛0. 2g超声分散于8g甲苯中配成二氧化钛溶液; 随后将0.2g C12的含氟脂肪酸超声分散于8g N, N-二甲基甲酰胺中,在磁力搅拌器80r/ min转速下加至二氧化钛溶液中并搅拌30min,制得超疏水二氧化钛混合溶液。 [0090] After taking the above-described modification of titanium dioxide dispersed in an ultrasonic 0. 2g 8g of toluene solution of titanium dioxide formulated; fluorine-containing fatty acid was then dispersed in an ultrasonic 0.2g C12 8g N, N- dimethyl formamide, in add the titanium dioxide solution with magnetic stirrer 80r / min speed and stirred for 30min, to prepare a superhydrophobic titania mixed solution. 将超疏水二氧化钛混合溶液提拉法以涂覆在聚四氟乙烯板上于20°C下自然干燥,得具有超疏水性能的改性纳米二氧化钛薄膜,其表面水接触角为151°,滚动角为13°。 Superhydrophobic titania pulling method to coat the mixed solution on a Teflon plate in dry naturally at 20 ° C, to obtain a modified nanoparticle titania thin film ultra-hydrophobic properties, a surface water contact angle of 151 °, the roll angle is 13 °.

[0091] 3.涂层溶液的配制 [0091] 3. Prepare coating solution

[0092] 将超疏水二氧化钛混合溶液加至聚氨酯溶液中,高功率数控超声波清洗器KQ-200KDE在100W功率下超声50min即制得透明超疏水表面涂层剂,其中聚氨酯溶液为3g 聚氨酯磁力搅拌溶解于20g N,N-二甲基甲酰胺中配得。 [0092] The superhydrophobic titanium dioxide mixed solution was added to the polyurethane solution, a high-power ultrasonic cleaner CNC KQ-200KDE 50min at 100W power ultrasound i.e. was a transparent superhydrophobic surface coating agent, wherein the polyurethane solution is magnetically stirred to dissolve the polyurethane 3g to 20g N, N- dimethyl formamide worthy.

[0093] 4.在基体材料上制备透明超疏水涂层 [0093] 4. Preparation of a transparent superhydrophobic coating on a base material

[0094] 聚氨酯/ 二氧化钛涂层剂滴涂于铝箔上,在32°C恒温干燥既得透明超疏水涂层。 [0094] The polyurethane / titanium dioxide coating agent is dropped onto the aluminum foil, dried acquired transparent superhydrophobic coating temperature 32 ° C.

[0095] 该涂层的表面水接触角达150°,滚动角16°,同时涂层具有良好的可见光透过性,平均可见光透过率达60 %。 [0095] The coating of the surface of the water contact angle of 150 °, the roll angle of 16 °, while the coating has good visible light transmittance, the visible light average transmission rate of 60%.

Claims (10)

  1. 一种超疏水聚氨酯/氧化物纳米粒子杂化涂层材料,其特征在于超疏水表面杂化材料的表面水接触角为140°-168°,滚动角为1-20°;其原料组分为改性超疏水氧化物纳米粒子溶液和聚氨酯溶液;其中聚氨酯和改性超疏水氧化物纳米粒子的质量比为1-8∶1;所述的改性超疏水氧化物纳米粒子溶液由以下步骤制得:A.氧化物纳米粒子预处理:称取氧化物纳米粒子于烘箱中干燥后与溶剂混合,超声分散均匀后加入反应器,升温,随后加入硅烷偶联剂,搅拌均匀升温回流反应;最后将产物经无水乙醇洗涤并离心分离,经真空干燥得改性氧化物纳米粒子,置于干燥器中备用;B.超疏水氧化物纳米粒子溶液的制备:取上述改性氧化物纳米粒子超声分散于溶剂中配成氧化物纳米粒子溶液;随后将为改性氧化物纳米粒子重量的0.75-2倍的含疏水链化学物质分散在溶剂中,在 A super-hydrophobic polyurethane / oxide nanoparticles hybrid coating material, characterized in that the surface of the water the hybrid material superhydrophobic surface contact angle of 140 ° -168 °, the roll angle of 1-20 °; the raw material component superhydrophobic oxide modified nanoparticle solution and polyurethane solution; and wherein the mass ratio of the polyurethane-modified superhydrophobic oxide nanoparticles is 1-8:1; superhydrophobic said modified oxide nanoparticle solution prepared by the steps of . have: A pretreatment oxide nanoparticles: Weigh oxide nanoparticles was dried in an oven with a mixed solvent, after ultrasonic dispersion uniformly added to the reactor, heating, followed by addition of a silane coupling agent, the reaction was stirred at reflux for uniform temperature rise; final the product was washed with ethanol and isolated by centrifugation, and dried in vacuo to give the modified oxide nanoparticles, placed in a desiccator; B superhydrophobic oxide nanoparticles solution: take the modified oxide nanoparticles ultrasound dispersed in a solvent formulated oxide nanoparticle solution; then will nano particles 0.75-2 times by weight of the modified oxide hydrophobic chains containing chemical substances dispersed in a solvent, in the 力搅拌下加至氧化物纳米粒子溶液中,制得超疏水氧化物纳米粒子混合溶液,控制混合溶液的质量固含量为1-5%。 Was added to a stirring force oxide nanoparticles solution prepared superhydrophobic oxide nanoparticles mixed solution, the mixed solution to control the quality of the solid content was 1-5%.
  2. 2.根据权利要求1所述的涂层材料,其特征在于步骤A中所述的氧化物纳米粒子为纳米二氧化硅、纳米三氧化二铝、纳米二氧化钛或纳米二氧化锆;粒径I-IOOOnm ;步骤A所述的溶剂为甲苯、二甲苯、N,N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;溶剂用量为氧化物纳米粒子重量的10-50倍;所述的硅烷偶联剂为Y-缩水甘油醚氧丙基三甲氧基硅烷、甲基三甲氧基硅烷、三甲基乙氧基硅烷、聚二甲硅基氧烷中的一种或几种,偶联剂用量为氧化物纳米粒子重量的0. 5-5倍。 2. The coating material according to claim 1, characterized in that the oxide nanoparticles in step A is in the nano silica, nano alumina, nano-titanium dioxide or zirconium dioxide; diameter I- IOOOnm; step a the solvent is toluene, xylene, N, N- dimethylformamide, cyclohexane, one or more of methylene chloride; the solvent in an amount of oxide nanoparticles by weight of 10- 50 times; Y- said silane coupling agent is glycidoxypropyl trimethoxy silane, methyl trimethoxy silane, trimethyl silane, silicon polydimethyl siloxane of one or more, a coupling agent in an amount of 0.5 wt oxide nanoparticles 5-5 times.
  3. 3.根据权利要求1所述的涂层材料,其特征在于步骤A中超声分散后升温至60-100°C ; 加入硅烷偶联剂,升温至100-140°C回流反应6-12小时。 3. The coating material according to claim 1, wherein the step A dispersed ultrasonically heated to 60-100 ° C; silane coupling agent was added, was warmed to 100-140 ° C to reflux for 6-12 hours.
  4. 4.根据权利要求1所述的涂层材料,其特征在于步骤B中配成超疏水氧化物纳米粒子溶液中的溶剂为甲苯、二甲苯、N,N-二甲基甲酰胺、环己烷、二氯甲烷中的一种或几种;含疏水链化学物质为C8-C22的酰胺、C8-C22的烷基三氯硅烷、C8-C22的烷基三烷氧基硅烷、 C6-C12的含氟脂肪酸、四氢全氟C6-C12的烷基三氯硅烷、四氢全氟或C6-C12烷基三烷氧基硅烷中的一种或几种;溶解含疏水链化学物质的溶剂为四氢呋喃、N, N-二甲基甲酰胺、二乙基甲酰胺、三氯甲烷、二氯甲烷、正己烷、环己烷、烷基环己烷或四氯化碳。 4. The coating material according to claim 1, characterized in that the solvent superhydrophobic oxide nanoparticle solution in step B formulated as toluene, xylene, N, N- dimethylformamide, cyclohexane , one or more of the methylene chloride; hydrophobic chains containing amide chemical substance is a C8-C22, C8-C22 alkyl trichlorosilane, C8-C22 alkyl trialkoxysilanes, C6-C12 of the fluorine-containing fatty acid, tetrahydro-perfluoro C6-C12 alkyl trichlorosilane, or tetrahydro-perfluoro C6-C12 alkyl trialkoxysilanes of one or more; dissolving solvent containing the chemical substance is a hydrophobic chain tetrahydrofuran, N, N- dimethylformamide, diethylformamide, chloroform, methylene chloride, hexane, cyclohexane, alkylcyclohexane or carbon tetrachloride.
  5. 5.根据权利要求1所述的涂层材料,其特征在于所述的聚氨酯溶液的质量固含量为1-15% ;溶剂为丙酮、甲乙酮、环己酮、醋酸乙酯、二氯甲烷、四氢呋喃、N,N-二甲基甲酰胺、 二氧六环中的一种或几种。 The coating material according to claim 1, characterized in that the mass of the solids content of the polyurethane solution of 1-15%; solvent acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, dichloromethane, tetrahydrofuran , N, N- dimethylformamide, dioxane or a few.
  6. 6. 一种制备如权利要求1所述超疏水聚氨酯/氧化物纳米粒子杂化涂层材料的方法, 其具体步骤如下:(1)配制聚氨酯溶液,将改性的超疏水氧化物纳米粒子混合溶液与聚氨酯溶液,按改性的超疏水氧化物纳米粒子与聚氨酯质量比为1 : 1-8的比例混合,搅拌均勻后反应,通过浓缩以除去多余溶剂,即制得透明超疏水表面涂层剂;(2)涂层热处理:将透明超疏水表面涂层剂涂覆在基底材料表面,在30-80°C中烘干至溶剂完全挥发,即制得具有透明超疏水性能的改性聚氨酯/氧化物纳米粒子涂层。 A process for preparing a polyurethane as described in claim 1 The method of the superhydrophobic coating material / oxide nanoparticles hybrid, the specific steps are as follows: (1) Preparation of polyurethane solution, the superhydrophobic mixed oxide nanoparticles modified solution and the polyurethane solution, the superhydrophobic oxide nanoparticles according to the mass ratio of the modified polyurethane is 1: 1-8 mixture, stir the reaction, concentrated to remove excess solvent, i.e., to obtain a transparent superhydrophobic surface coating agent; (2) heat treating the coating: transparent superhydrophobic surface coating agent is coated on the surface of the substrate material, and drying the solvent completely volatile, i.e., to obtain a transparent superhydrophobic properties of the modified polyurethane of 30-80 ° C / oxide nanoparticle coating.
  7. 7.根据权利要求6所述方法,其特征在于所述的基底材料为金属、无机或有机的致密或多孔材料。 7. The method according to claim 6, wherein said base material is a metal, an inorganic or organic porous or dense material.
  8. 8.根据权利要求7所述方法,其特征在于所述的基底材料为为铝箔、玻璃、硅、陶瓷、半导体或高分子材料。 8. A method according to claim 7, wherein said base material is an aluminum foil, glass, silicon, ceramic, semiconductor or polymer material.
  9. 9.根据权利要求6所述的方法,其特征涂覆方式为喷涂法、旋转涂覆法、提拉法或者滴液注膜法。 9. The method according to claim 6, wherein the coating method is spray coating method, spin coating method, dip method, or dropping injection membrane.
  10. 10.根据权利要求6所述的方法,其特征在于反应条件为超声或60-120Ό加热回流;浓缩方式为减压蒸馏或者加热抽真空;涂层的烘干温度为40-65°C。 10. The method according to claim 6, characterized in that the reaction conditions 60-120Ό ultrasound or heated to reflux; was concentrated by distillation under reduced pressure or heating mode is evacuated; the coating drying temperature is 40-65 ° C.
CN 201010145642 2010-04-09 2010-04-09 Super-hydrophobic polyurethane/ oxide nano particle hybrid coating material and preparation method thereof CN101838496B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010145642 CN101838496B (en) 2010-04-09 2010-04-09 Super-hydrophobic polyurethane/ oxide nano particle hybrid coating material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010145642 CN101838496B (en) 2010-04-09 2010-04-09 Super-hydrophobic polyurethane/ oxide nano particle hybrid coating material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101838496A true true CN101838496A (en) 2010-09-22
CN101838496B CN101838496B (en) 2013-02-06

Family

ID=42742179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010145642 CN101838496B (en) 2010-04-09 2010-04-09 Super-hydrophobic polyurethane/ oxide nano particle hybrid coating material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101838496B (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358807A (en) * 2011-07-30 2012-02-22 吉林大学 Hydrophobic nano composite automobile finish and preparation method thereof
CN102653628A (en) * 2012-04-24 2012-09-05 上海大学 Preparation method and application of nano sol modified waterborne polyurethane emulsion
CN103342953A (en) * 2013-06-19 2013-10-09 北京大学 Aircraft coating and preparation method thereof, and method for forming aircraft coating
CN103449736A (en) * 2012-05-28 2013-12-18 中国科学院兰州化学物理研究所 Preparation method of self-repair super-hydrophobic polyurethane coating
CN103555184A (en) * 2013-10-23 2014-02-05 三棵树涂料股份有限公司 Super-amphiphobic nano composite finish varnish, and preparation method thereof
CN103614063A (en) * 2013-12-02 2014-03-05 苏州市姑苏新型建材有限公司 Transparent waterborne waterproof coating for building and preparation method thereof
CN103642378A (en) * 2013-11-14 2014-03-19 重庆大学 Antiseptic super-hydrophobic paint for electric power system fittings and preparation method
CN104017489A (en) * 2014-05-29 2014-09-03 中国石油大学(华东) Nano-TiO2 modified acrylic polyurethane finish paint and preparation method thereof
CN104046217A (en) * 2013-03-12 2014-09-17 无锡市顺业科技有限公司 Preparation method of high strength superhydrophobic coating
CN104117396A (en) * 2013-04-26 2014-10-29 中国科学院化学研究所 Super-hydrophobic pipette gun head and preparation method thereof
CN104210197A (en) * 2014-09-25 2014-12-17 海安浩驰科技有限公司 Super-hydrophobic film and preparation method and application thereof
CN104387889A (en) * 2014-11-19 2015-03-04 广西大学 Preparation method of silicon-dioxide particle acrylonitrile silicone copolymerized resin coating
CN104449357A (en) * 2014-11-26 2015-03-25 浙江大学 Transparent super-hydrophobic coating material and method for preparing transparent super-hydrophobic coating by transparent super-hydrophobic coating material
CN104649711A (en) * 2013-11-18 2015-05-27 纳米及先进材料研发院有限公司 Hydrophobic coating composition and method of imparting hydrophobicity onto a surface
CN104987520A (en) * 2015-07-09 2015-10-21 北京航空航天大学 Super-hydrophobic nanometer transparent coating and preparation method thereof
CN105102558A (en) * 2013-01-30 2015-11-25 伊利诺斯工具制品有限公司 Super hydrophobic coating
CN105399979A (en) * 2015-12-22 2016-03-16 上海仪耐新材料科技有限公司 Oleophylic hydrophobic cellulose sponge and preparation method thereof
CN106189706A (en) * 2016-08-09 2016-12-07 河南大学 Preparation method of super-hydrophobic resin coating
WO2017092674A1 (en) * 2015-11-30 2017-06-08 Dazzeon Technology Co., Ltd. Electrical device capable of water-resisting, vapor resistant and electrically conducting in moisture-containing environment and method for making the same
US9828521B2 (en) 2012-09-28 2017-11-28 Ut-Battelle, Llc Durable superhydrophobic coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101117713A (en) * 2007-07-30 2008-02-06 北京航空航天大学 Method for preparing super-hydrophobic modified SiO2-polyurethane composite coating by using immersion-self-assembly
CN101270260A (en) * 2008-01-28 2008-09-24 南京工业大学 Ultra-hydrophobic surface coating material and preparation method thereof
CN101575478A (en) * 2008-05-05 2009-11-11 中国科学院宁波材料技术与工程研究所 Method for preparing epoxy resin super-hydrophobic coat
US20100068457A1 (en) * 2007-04-13 2010-03-18 Anke Soellner Biocidal/hydrophobic inner coating of condenser pipes (of industrial turbines and subsidiary cooling cycles)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100068457A1 (en) * 2007-04-13 2010-03-18 Anke Soellner Biocidal/hydrophobic inner coating of condenser pipes (of industrial turbines and subsidiary cooling cycles)
CN101117713A (en) * 2007-07-30 2008-02-06 北京航空航天大学 Method for preparing super-hydrophobic modified SiO2-polyurethane composite coating by using immersion-self-assembly
CN101270260A (en) * 2008-01-28 2008-09-24 南京工业大学 Ultra-hydrophobic surface coating material and preparation method thereof
CN101575478A (en) * 2008-05-05 2009-11-11 中国科学院宁波材料技术与工程研究所 Method for preparing epoxy resin super-hydrophobic coat

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《聚氨酯工业》 20080628 刘丹等 聚氨酯/二氧化硅复合材料研究进展 第5-9页 1-10 第23卷, 第3期 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358807A (en) * 2011-07-30 2012-02-22 吉林大学 Hydrophobic nano composite automobile finish and preparation method thereof
CN102653628B (en) 2012-04-24 2014-03-05 东莞上海大学纳米技术研究院 Preparation method and application of nano sol modified waterborne polyurethane emulsion
CN102653628A (en) * 2012-04-24 2012-09-05 上海大学 Preparation method and application of nano sol modified waterborne polyurethane emulsion
CN103449736B (en) * 2012-05-28 2015-11-18 中国科学院兰州化学物理研究所 Preparation of self-repairing polyurethane coating superhydrophobic
CN103449736A (en) * 2012-05-28 2013-12-18 中国科学院兰州化学物理研究所 Preparation method of self-repair super-hydrophobic polyurethane coating
US9828521B2 (en) 2012-09-28 2017-11-28 Ut-Battelle, Llc Durable superhydrophobic coatings
CN105102558A (en) * 2013-01-30 2015-11-25 伊利诺斯工具制品有限公司 Super hydrophobic coating
CN104046217A (en) * 2013-03-12 2014-09-17 无锡市顺业科技有限公司 Preparation method of high strength superhydrophobic coating
CN104117396A (en) * 2013-04-26 2014-10-29 中国科学院化学研究所 Super-hydrophobic pipette gun head and preparation method thereof
CN104117396B (en) * 2013-04-26 2016-08-10 中国科学院化学研究所 Pipette tip and preparation of superhydrophobic
CN103342953B (en) * 2013-06-19 2016-05-04 北京大学 Aerospace coatings, their preparation and method of forming a coating aviation
CN103342953A (en) * 2013-06-19 2013-10-09 北京大学 Aircraft coating and preparation method thereof, and method for forming aircraft coating
CN103555184B (en) * 2013-10-23 2016-04-20 三棵树涂料股份有限公司 Super finishing varnish amphiphobic nanocomposite and its preparation method
CN103555184A (en) * 2013-10-23 2014-02-05 三棵树涂料股份有限公司 Super-amphiphobic nano composite finish varnish, and preparation method thereof
CN103642378A (en) * 2013-11-14 2014-03-19 重庆大学 Antiseptic super-hydrophobic paint for electric power system fittings and preparation method
CN103642378B (en) * 2013-11-14 2016-03-30 重庆大学 Superhydrophobic coating and preparation method of preserving power system fittings
CN104649711B (en) * 2013-11-18 2016-08-17 纳米及先进材料研发院有限公司 Hydrophobic coating composition and method of administration hydrophobic surface
CN104649711A (en) * 2013-11-18 2015-05-27 纳米及先进材料研发院有限公司 Hydrophobic coating composition and method of imparting hydrophobicity onto a surface
CN103614063B (en) * 2013-12-02 2016-01-20 苏州市姑苏新型建材有限公司 A building with a transparent water-based waterproof coating and preparation method
CN103614063A (en) * 2013-12-02 2014-03-05 苏州市姑苏新型建材有限公司 Transparent waterborne waterproof coating for building and preparation method thereof
CN104017489A (en) * 2014-05-29 2014-09-03 中国石油大学(华东) Nano-TiO2 modified acrylic polyurethane finish paint and preparation method thereof
CN104210197A (en) * 2014-09-25 2014-12-17 海安浩驰科技有限公司 Super-hydrophobic film and preparation method and application thereof
CN104387889A (en) * 2014-11-19 2015-03-04 广西大学 Preparation method of silicon-dioxide particle acrylonitrile silicone copolymerized resin coating
CN104449357B (en) * 2014-11-26 2017-01-04 浙江大学 A transparent superhydrophobic coating material and a preparation method of a transparent superhydrophobic coating
CN104449357A (en) * 2014-11-26 2015-03-25 浙江大学 Transparent super-hydrophobic coating material and method for preparing transparent super-hydrophobic coating by transparent super-hydrophobic coating material
CN104987520A (en) * 2015-07-09 2015-10-21 北京航空航天大学 Super-hydrophobic nanometer transparent coating and preparation method thereof
WO2017092674A1 (en) * 2015-11-30 2017-06-08 Dazzeon Technology Co., Ltd. Electrical device capable of water-resisting, vapor resistant and electrically conducting in moisture-containing environment and method for making the same
CN105399979A (en) * 2015-12-22 2016-03-16 上海仪耐新材料科技有限公司 Oleophylic hydrophobic cellulose sponge and preparation method thereof
CN106189706A (en) * 2016-08-09 2016-12-07 河南大学 Preparation method of super-hydrophobic resin coating

Also Published As

Publication number Publication date Type
CN101838496B (en) 2013-02-06 grant

Similar Documents

Publication Publication Date Title
Rao et al. Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate
Shirtcliffe et al. Intrinsically superhydrophobic organosilica sol− gel foams
Liu et al. Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres
Pathak et al. Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy
Li et al. A Hierarchically Ordered TiO2 Hemispherical Particle Array with Hexagonal‐Non‐Close‐Packed Tops: Synthesis and Stable Superhydrophilicity Without UV Irradiation
Li et al. Superhydrophobic surfaces prepared from water glass and non-fluorinated alkylsilane on cotton substrates
Xiu et al. UV and thermally stable superhydrophobic coatings from sol–gel processing
Ebert et al. Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles
Chen et al. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging
Tadanaga et al. Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method
Wang et al. Fabrication of superhydrophobic wood surface by a sol–gel process
CN102174289A (en) Surface anti-corrosion sol for aeronautic aluminum alloy material and treatment method thereof
Xu et al. A superhydrophobic coating on aluminium foil with an anti-corrosive property
US4882133A (en) Method for producing a flaky material
CN101045833A (en) Preparation metod of modified ultroviolet light solidified wooden articles paint by in-situ method
CN101962514A (en) High-durability super-hydrophobic self-cleaning coating material and preparation method thereof
Rao et al. Water repellent porous silica films by sol–gel dip coating method
CN101580653A (en) Organic-inorganic hybrid nanometer film coating aluminum powder pigment and preparation method and application thereof
CN1817990A (en) Interface paint with high hydrophobicity, heat conductivity and adhesion
US20100304086A1 (en) Super non-wetting, anti-fingerprinting coatings for glass
CN101575478A (en) Method for preparing epoxy resin super-hydrophobic coat
JP2005015309A (en) Porous silica film and laminated body having it
CN1931448A (en) Method of forming hydrophobic transparent film on the surface of different substrates
CN101445396A (en) Method for preparing porcelain insulator surface super-hydrophobic coating
Zhu et al. Film characterization of poly (styrene-butylacrylate-acrylic acid)–silica nanocomposite

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted