CN101778068A - Frequency domain position-confirming method and device of positioning reference signal - Google Patents

Frequency domain position-confirming method and device of positioning reference signal Download PDF

Info

Publication number
CN101778068A
CN101778068A CN200910265590A CN200910265590A CN101778068A CN 101778068 A CN101778068 A CN 101778068A CN 200910265590 A CN200910265590 A CN 200910265590A CN 200910265590 A CN200910265590 A CN 200910265590A CN 101778068 A CN101778068 A CN 101778068A
Authority
CN
China
Prior art keywords
mrow
prs
msubsup
msub
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910265590A
Other languages
Chinese (zh)
Other versions
CN101778068B (en
Inventor
戴博
郁光辉
左志松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZTE Corp
Original Assignee
ZTE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZTE Corp filed Critical ZTE Corp
Priority to CN200910265590.XA priority Critical patent/CN101778068B/en
Priority to PCT/CN2010/074645 priority patent/WO2011075995A1/en
Publication of CN101778068A publication Critical patent/CN101778068A/en
Application granted granted Critical
Publication of CN101778068B publication Critical patent/CN101778068B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention discloses frequency domain position-confirming method and device of a positioning reference signal. The method comprises the following step of: confirming a start physical resource block position h of a positioning reference signal on a time-domain orthogonal-frequency division multiplexing (OFDM) signal according to the following formula, wherein h is equal to N<DL>RB-N<PRS>RB or floor((N<DL>RB-N<PRS>RB)/2), NRBDL presents a downlink configured bandwidth by using continuous subcarriers in a frequency domain as a unit, NRBPRS is a PRS bandwidth, and [] presents downward rounding. The invention ensures the whole performance of the system.

Description

Method and device for determining frequency domain position of positioning reference signal
Technical Field
The invention relates to the field of communication, in particular to a method and a device for determining the frequency domain position of a positioning reference signal.
Background
Orthogonal Frequency Division Multiplexing (OFDM) technology is essentially a multi-carrier modulation communication technology, which is one of the core technologies in fourth generation mobile communication. In order to overcome the frequency selective fading characteristic, the channel is divided into a plurality of sub-channels in the frequency domain, the frequency spectrum characteristic of each sub-channel is approximately flat, and the sub-channels of the OFDM are orthogonal to each other, so that the frequency spectrums of the sub-channels are allowed to overlap with each other, and the frequency spectrum resources can be utilized to a large extent.
The Long Term Evolution (LTE) system is an important project for the third generation partnership. Fig. 1 is a diagram illustrating a radio frame structure of an LTE system according to the related art, in a Frequency Division Duplex (FDD) mode of the LTE system, a 10ms radio frame (radio frame) is composed of twenty slots (slots) with a length of 0.5ms and numbering ranges from 0 to 19, and slots 2i and 2i +1 are composed of subframes (subframes) i with a length of 1 ms. When the system adopts the normal cyclic prefix, a time slot comprises uplink/downlink symbols with the length of 7, and when the system adopts the extended cyclic prefix, a time slot comprises uplink/downlink symbols with the length of 6. Fig. 2 is a schematic diagram of a physical Resource Block of an LTE system with a system bandwidth of 5MHz according to the related art, and as shown in fig. 2, one Resource Element (RE) is one subcarrier in one OFDM symbol, and one downlink Resource Block (RB) is composed of 12 consecutive subcarriers and 7 consecutive (6 when a cyclic prefix is extended) OFDM symbols, and is 180kHz in a frequency domain and a time length of one general slot in a time domain. In resource allocation, allocation is performed by using resource blocks as basic units.
The LTE system supports Multiple Input Multiple Output (MIMO) applications with 4 antennas, and the corresponding antenna ports #0, #1, #2, and #3 use full-bandwidth Cell-specific reference signals (CRS), where when the cyclic prefix is a normal cyclic prefix, the positions of the common reference signals in the physical resource block are shown in fig. 3a, and when the cyclic prefix is an extended cyclic prefix, the positions of the common reference signals in the physical resource block are shown in fig. 3 b.
In addition, there is also a user-specific reference signal (UE-specific reference signals), which is transmitted only at a time-frequency domain position where a user-specific physical shared channel (PDSCH) is located, where the cell-common reference signal function includes downlink channel quality measurement and downlink channel estimation (demodulation), and an initial position of the cell-common reference signal in the physical resource block is a downlink channel quality measurement and downlink channel estimation (demodulation), where the initial position of the cell-common reference signal in the physical resource block is v shift = N Cell ID mod 6 , Wherein N isID cellIndicating the identity of the cell. The common reference signals of the adjacent cells are different through cell planning, so that the purpose of reducing the interference of the adjacent cells is achieved.
A base station needs to measure a location of a terminal (User Equipment, abbreviated as UE) in a cell, so as to perform effective configuration and scheduling on the UE, and currently, the measurement of the terminal by using a CRS reference signal has the following limitations:
each frame of a CRS sequence is repeated, and the cross correlation is poor;
when two antennas transmit, the maximum multiplexing factor is 3, and the interference between adjacent cells is large;
CRS power semi-static configuration and positioning performance limitation.
Currently, a solution to solve the above problem is to transmit a Positioning Reference Signal (PRS) for positioning, so as to ensure the positioning accuracy of the UE, where a transmission period of the PRS is 160ms, 320ms, 640ms, and 1280ms, and a number of consecutive subframes transmitted by the PRS is 1, 2, 4, and 6.
PRS sequences
Figure G200910265590XD00031
Defined according to the following formula:
<math><mrow><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>j</mi><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math> m = 0,1 , . . . , 2 N RB max , DL - 1
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to <math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mn>30</mn></msubsup><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msup><mn>2</mn><mi>i</mi></msup></mrow></math> Generation of cinitGenerated according to the following formula:
<math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msup><mn>2</mn><mn>10</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>7</mn><mo>&CenterDot;</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>s</mi></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><msub><mi>N</mi><mi>CP</mi></msub><mo>,</mo></mrow></math>
Figure G200910265590XD00036
wherein n issIs the index of a slot in a radio frame, l is the index of an OFDM symbol in a slot, k is the index of a subcarrier on the OFDM symbol l, NRB PRSIs the PRS bandwidth configured for higher layer signaling. The pseudo-random sequence c (i) can be generated according to the above formula, NID cellIndicating the identity of the cell.
PRS sequence
Figure G200910265590XD00037
Mapping to a time slot n according to the following formulasModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)The method comprises the following steps:
<math><mrow><msubsup><mi>a</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><msup><mi>m</mi><mo>&prime;</mo></msup><mo>)</mo></mrow></mrow></math>
when the system cyclic prefix is a normal cyclic prefix:
k = 6 ( m + N RB DL - N RB PRS ) + ( 6 - l + v shift ) mod 6
Figure G200910265590XD00043
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn></mrow></math>
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup></mrow></math>
when the system cyclic prefix is an extended cyclic prefix:
k = 6 ( m + N RB DL - N RB PRS ) + ( 5 - l + v shift ) mod 6
Figure G200910265590XD00047
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn></mrow></math>
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup></mrow></math>
wherein, v shift = N Cell ID mod 6 , NRB max,DLrepresents the maximum bandwidth that can be configured downstream, NRB DLIndicating the bandwidth of the downstream configuration, NRB max,DLAnd NRB DLAre all expressed by taking 12 continuous subcarriers in the frequency domain as units, and the time-frequency position of the PRS in the physical resource block is shown in fig. 4a and fig. 4 b.
When N is presentRB DL-NRB PRSWhen the number of the positioning reference signals PRS is odd, the starting physical resource block position h of the positioning reference signals PRS on the time domain orthogonal frequency division multiplexing OFDM symbol is according to h = ( N RB DL - N RB PRS ) / 2 , Due to NRB DL-NRB PRSThe number of the PRSs is an odd number, and the starting Physical resource block position is determined by taking 0.5 RB as a unit at this time, so that only one PRS is located in the first PRB and the last PRB where the PRS is located on one PRS time domain OFDM symbol, and two PRSs are located in the PRBs where other PRSs are located, which may cause the distribution of PRSs to be uneven, and in addition, since the resource allocation of a Physical downlink shared channel (PDSCH for short) is performed by taking a resource block as a unit, this also affects the scheduling of the PDSCH, which causes the system to be scheduledThe overall performance is degraded.
Disclosure of Invention
It is a primary object of the present invention to provide a positioning reference signal frequency domain position determination scheme to solve at least the above problems.
According to an aspect of the present invention, there is provided a method for determining a frequency domain position of a positioning reference signal, including: determining a starting physical resource block position h of a positioning reference signal PRS on a time domain Orthogonal Frequency Division Multiplexing (OFDM) symbol according to the following formula: h = N RB DL - N RB PRS , or,
Figure G200910265590XD00052
wherein N isRB DLIndicating the bandwidth of the downstream configuration, NRB DLExpressed in units of 12 subcarriers in succession in the frequency domain, NRB PRSIs the bandwidth of the PRS, wherein,
Figure G200910265590XD00053
indicating a rounding down.
Preferably, the subcarrier k on the time domain OFDM symbol l where the PRS is located in one subframe is determined according to the following formula: when the system cyclic prefix is a normal cyclic prefix:
k=6(m+2×h)+(6-l+vshift)mod6
when the system cyclic prefix is an extended cyclic prefix:
k=6(m+2×h)+(5-l+vshift)mod 6
Figure G200910265590XD00055
wherein,
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn><mo>;</mo></mrow></math>
v shift = N Cell ID mod 6
NRB max,DLrepresents the maximum bandwidth that can be configured downstream, NRB max,DLAnd NRB DLAre all expressed by taking 12 continuous subcarriers in the frequency domain as a unit, nsIs the slot index in one radio frame.
Preferably, the PRS sequence is determined according to the following formula
Figure G200910265590XD00063
Mapping to a time slot nsModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)The method of the above, wherein,
<math><mrow><msubsup><mi>a</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><msup><mi>m</mi><mo>&prime;</mo></msup><mo>)</mo></mrow><mo>:</mo></mrow></math>
<math><mrow><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>j</mi><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math> m = 0,1 , . . . , 2 N RB max , DL - 1
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>,</mo></mrow></math> or, <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow><mo>,</mo></mrow></math> or,
Figure G200910265590XD00069
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to <math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mn>30</mn></msubsup><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msup><mn>2</mn><mi>i</mi></msup></mrow></math> Generation of cinitGenerated according to the following equation:
<math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msup><mn>2</mn><mn>10</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>7</mn><mo>&CenterDot;</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>s</mi></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><msub><mi>N</mi><mi>CP</mi></msub><mo>,</mo></mrow></math>
Figure G200910265590XD000612
wherein n issIs the slot index in a radio frame, t is the index of the OFDM symbol in a slot, k is the subcarrier index on OFDM symbol l, NID cellDenotes the identity of the cell, nsIs the slot index in one radio frame.
Preferably, the method further comprises: and mapping the PRS on a physical resource according to the starting physical resource block position h.
According to another aspect of the present invention, there is also provided a positioning reference signal frequency domain position determining apparatus, including: a first determining module, configured to determine a starting physical resource block position h of a positioning reference signal PRS on a time domain orthogonal frequency division multiplexing, OFDM, symbol according to the following formula: h = N RB DL - N RB PRS , or,
Figure G200910265590XD00072
wherein N isRB DLIndicating the bandwidth of the downstream configuration, NRB DLExpressed in units of 12 subcarriers in succession in the frequency domain, NRB PRSIs the bandwidth of the PRS.
Preferably, the above apparatus further comprises: a second determining module, configured to determine a subcarrier k on a time domain OFDM symbol l where the PRS is located in one subframe according to the following formula:
when the system cyclic prefix is a normal cyclic prefix:
k=6(m+2×h)+(6-l+vshift)mod6
Figure G200910265590XD00073
when the system cyclic prefix is an extended cyclic prefix:
k=6(m+2×h)+(5-l+vshift)mod6
wherein,
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn><mo>;</mo></mrow></math>
v shift = N Cell ID mod 6
NRB max,DLrepresents the maximum bandwidth that can be configured downstream, NRB max,DLAnd NRB DLAre all expressed by taking 12 continuous subcarriers in the frequency domain as a unit, nsIs the slot index in one radio frame.
Preferably, the above apparatus further comprises:
a mapping module for mapping the PRS sequence
Figure G200910265590XD00084
Mapping to a slot n according to the following formulasModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)To above, itIn (1),
<math><mrow><msubsup><mi>a</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><msup><mi>m</mi><mo>&prime;</mo></msup><mo>)</mo></mrow><mo>:</mo></mrow></math>
<math><mrow><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>j</mi><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo><mi>m</mi><mo>=</mo><mn>0,2</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><msubsup><mrow><mn>2</mn><mi>N</mi></mrow><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><mn>1</mn></mrow></math>
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>,</mo></mrow></math> or, <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow><mo>,</mo></mrow></math> or,
Figure G200910265590XD00089
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to <math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mn>30</mn></msubsup><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msup><mn>2</mn><mi>i</mi></msup></mrow></math> Generation of cinitGenerated according to the following equation:
<math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msup><mn>2</mn><mn>10</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>7</mn><mo>&CenterDot;</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>s</mi></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>t</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><msub><mi>N</mi><mi>CP</mi></msub><mo>,</mo></mrow></math>
Figure G200910265590XD00092
wherein n issIs the slot index in a radio frame, t is the index of the OFDM symbol in a slot, k is the subcarrier index on OFDM symbol l, NID cellDenotes the identity of the cell, nsIs the slot index in one radio frame.
By adopting the invention, the positions of the starting physical resource blocks of the PRS on the OFDM symbol are all even numbers, thereby solving the problem that N is caused in the related technologyRB DL-NRB PRSThe scheduling of the PDSCH is affected by the uneven distribution of PRSs due to odd numbers, so that the uniform distribution of PRSs in each RB is ensured, the influence on the PDSCH is reduced, and the overall performance of the system is ensured.
Drawings
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiment(s) of the invention and together with the description serve to explain the invention without limiting the invention. In the drawings:
fig. 1 is a schematic diagram of a radio frame structure of an LTE system according to the related art;
fig. 2 is a schematic diagram of physical resource blocks of an LTE system having a system bandwidth of 5MHz according to the related art;
fig. 3a is a diagram illustrating a location of a reference signal common to cells of an LTE system in a physical resource block according to the related art;
FIG. 3b is a diagram of a location of a reference signal common to cells of an LTE system in a physical resource block according to the related art;
FIG. 4a is a diagram illustrating a position of a PRS in a physical resource block when a system cyclic prefix is an extended cyclic prefix, according to the related art;
FIG. 4b is a diagram illustrating a position of a PRS in a physical resource block when a system cyclic prefix is a normal cyclic prefix according to the related art;
fig. 5 is a block diagram of a preferred structure of a positioning reference signal frequency domain position determining apparatus according to an embodiment of the present invention.
Detailed Description
The invention will be described in detail hereinafter with reference to the accompanying drawings in conjunction with embodiments. It should be noted that the embodiments and features of the embodiments in the present application may be combined with each other without conflict.
In this embodiment, a method for determining a frequency domain position of a positioning reference signal is provided, where the method is used to map a positioning reference signal sequence onto a physical resource, and the method includes: determining the initial physical resource block position h where the positioning reference signal is located on one time domain OFDM symbol according to the following expression:
h = N RB DL - N RB PRS , or,
Figure G200910265590XD00102
formula (1)
Wherein N isRB DLIndicating the bandwidth of the downstream configuration, NRB DLExpressed in units of 12 subcarriers in succession in the frequency domain, NRB PRSIs the PRS bandwidth configured for higher layer signaling,
Figure G200910265590XD00103
indicating a rounding down.
Preferably, the subcarriers on the time domain OFDM symbol l where the positioning reference signal is located in one subframe are:
when the system cyclic prefix is a normal cyclic prefix:
k=6(m+2×h)+(6-l+vshift) mod6, equation (2-1)
When the system cyclic prefix is an extended cyclic prefix:
k=6(m+2×h)+(5-l+vshift) mod6, equation (2-2)
Figure G200910265590XD00112
Wherein,
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn><mo>;</mo></mrow></math>
v shift = N Cell ID mod 6
NRB PRSPRS Bandwidth, N, being a higher layer Signaling configurationRB max,DLIndicating maximum band configurable downstreamWidth, NRB DLIndicating the bandwidth of the downstream configuration, NRB max,DLAnd NRB DLAre all expressed by taking 12 continuous subcarriers in the frequency domain as a unit, nsIs the slot index in one radio frame.
The calculation value of the starting physical resource position h is multiplied by 2 or rounded down, so that the starting physical resource position is prevented from being determined by taking 0.5 RB as a unit, and the problem that N is generated in the prior art can be solvedRB DL-NRB PRSThe scheduling of the PDSCH is affected by the uneven distribution of PRSs due to odd numbers, and the system performance is ensured.
Preferably, the PRS sequence is divided into two parts
Figure G200910265590XD00115
Mapping to slot n as followssModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)In the above-mentioned manner, <math><mrow><msubsup><mi>a</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><msup><mi>m</mi><mo>&prime;</mo></msup><mo>)</mo></mrow><mo>,</mo></mrow></math> the method comprises the following steps of (1) preparing,
<math><mrow><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>j</mi><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math> <math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><mn>1</mn></mrow></math>
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>,</mo></mrow></math> or, <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow><mo>,</mo></mrow></math> or,
Figure G200910265590XD00123
the formula in the upper group is formula (3);
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to <math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mn>30</mn></msubsup><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msup><mn>2</mn><mi>i</mi></msup></mrow></math> Production ofinitProduced according to the following formula,
<math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msup><mn>2</mn><mn>10</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>7</mn><mo>&CenterDot;</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>s</mi></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><msub><mi>N</mi><mi>CP</mi></msub><mo>,</mo></mrow></math>
Figure G200910265590XD00126
nsis the slot index in a radio frame, t is the index of the OFDM symbol in a slot, k is the subcarrier index on OFDM symbol l, NRB PRSPRS Bandwidth, N, being a higher layer Signaling configurationID cellIndicating the identity of the cell.
It is noted that
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>,</mo></mrow></math> Or, <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow><mo>,</mo></mrow></math> however, when <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow></mrow></math> Time, and formula h = N RB DL - N RB PRS , In response, whenTime, and formula
Figure G200910265590XD001212
Accordingly, a relatively good effect can be obtained.
In correspondence with the above description, there is also provided a positioning reference signal frequency domain position determining apparatus in the embodiment of the present invention, and fig. 5 is a block diagram of a preferred structure of the positioning reference signal frequency domain position determining apparatus according to the embodiment of the present invention, as shown in fig. 5, the apparatus includes a first determining module 52 for executing formula (1). A setting module 54 may also be included for setting the value of n to 1.
As shown in fig. 5, the apparatus further includes: a second determination module 56 for executing the formula (2-1) or the formula (2-2); and a mapping module 50 for mapping according to the formula (3). The above formula has already been described in detail, and is not described herein again.
The present embodiment will be described in detail with reference to preferred examples.
Example 1
PRS sequencesDefined according to the following formula:
<math><mrow><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>j</mi><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math> m = 0,1 , . . . , 2 N RB max , DL - 1
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to <math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mn>30</mn></msubsup><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msup><mn>2</mn><mi>i</mi></msup></mrow></math> Generation of cinitProduced according to the following formula:
<math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msup><mn>2</mn><mn>10</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>7</mn><mo>&CenterDot;</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>s</mi></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><msub><mi>N</mi><mi>CP</mi></msub><mo>,</mo></mrow></math>
Figure G200910265590XD00136
nsis the slot index in a radio frame, t is the index of the OFDM symbol in a slot, k is the subcarrier index on OFDM symbol l, NRB PRSIs the PRS bandwidth configured for higher layer signaling. The pseudo-random sequence c (i) is generated by the following formula, NID cellIndicating the identity of the cell.
PRS sequence
Figure G200910265590XD00141
Mapping to slot n as followssModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)The method comprises the following steps:
<math><mrow><msubsup><mi>a</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><msup><mi>m</mi><mo>&prime;</mo></msup><mo>)</mo></mrow></mrow></math>
when the system cyclic prefix is a normal cyclic prefix:
<math><mrow><mi>k</mi><mo>=</mo><mn>6</mn><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mi>DL</mi></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo><mo>)</mo></mrow></mrow><mo>+</mo><mrow><mo>(</mo><mn>6</mn><mo>-</mo><mi>l</mi><mo>+</mo><msub><mi>v</mi><mi>shift</mi></msub><mo>)</mo></mrow><mi>mod</mi><mn>6</mn></mrow></math>
Figure G200910265590XD00144
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn></mrow></math>
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup></mrow></math>
or, <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow></mrow></math>
when the system cyclic prefix is an extended cyclic prefix:
<math><mrow><mi>k</mi><mo>=</mo><mn>6</mn><mrow><mo>(</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mi>DL</mi></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>5</mn><mo>-</mo><mi>l</mi><mo>+</mo><msub><mi>v</mi><mi>shift</mi></msub><mo>)</mo></mrow><mi>mod</mi><mn>6</mn></mrow></math>
Figure G200910265590XD00149
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn></mrow></math>
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup></mrow></math>
or, <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow><mo>,</mo></mrow></math>
wherein, v shift = N Cell ID mod 6 , NRB max,DLrepresents the maximum bandwidth that can be configured downstream, NRB DLIndicating the bandwidth of the downstream configuration, NRB max,DLAnd NRB DLAre expressed in units of 12 consecutive subcarriers in the frequency domain.
Example 2
PRS sequences
Figure G200910265590XD001414
Defined according to the following formula:
<math><mrow><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>j</mi><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mo>&CenterDot;</mo><mi>c</mi><mrow><mo>(</mo><mn>2</mn><mi>m</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math> m = 0,1 , . . . , 2 N RB max , DL - 1
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to <math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mn>30</mn></msubsup><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>&CenterDot;</mo><msup><mn>2</mn><mi>i</mi></msup></mrow></math> Generation of cinitProduced according to the following formula:
<math><mrow><msub><mi>c</mi><mi>init</mi></msub><mo>=</mo><msup><mn>2</mn><mn>10</mn></msup><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>7</mn><mo>&CenterDot;</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>s</mi></msub><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mi>l</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>&CenterDot;</mo><mrow><mo>(</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>+</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>ID</mi><mi>cell</mi></msubsup><mo>+</mo><msub><mi>N</mi><mi>CP</mi></msub><mo>,</mo></mrow></math>
Figure G200910265590XD00155
nsis the slot index in a radio frame, t is the index of the OFDM symbol in a slot, k is the subcarrier index on OFDM symbol l, NRB PRSIs the PRS bandwidth configured for higher layer signaling. The pseudo-random sequence c (i) is generated by the following formula, NID cellIndicating the identity of the cell.
PRS sequence
Figure G200910265590XD00156
Mapping to slot n as followssModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)The method comprises the following steps:
<math><mrow><msubsup><mi>a</mi><mrow><mi>k</mi><mo>,</mo><mi>l</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></msubsup><mo>=</mo><msub><mi>r</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>n</mi><mi>s</mi></msub></mrow></msub><mrow><mo>(</mo><msup><mi>m</mi><mo>&prime;</mo></msup><mo>)</mo></mrow></mrow></math>
when the system cyclic prefix is a normal cyclic prefix:
Figure G200910265590XD00161
Figure G200910265590XD00162
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn></mrow></math>
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup></mrow></math>
or, <math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><mn>2</mn><mo>&times;</mo><mrow><mo>(</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>)</mo></mrow></mrow></math>
when the system cyclic prefix is an extended cyclic prefix:
Figure G200910265590XD00166
Figure G200910265590XD00167
<math><mrow><mi>m</mi><mo>=</mo><mn>0,1</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mn>2</mn><mo>&CenterDot;</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup><mo>-</mo><mn>1</mn></mrow></math>
<math><mrow><msup><mi>m</mi><mo>&prime;</mo></msup><mo>=</mo><mi>m</mi><mo>+</mo><msubsup><mi>N</mi><mi>RB</mi><mrow><mi>max</mi><mo>,</mo><mi>DL</mi></mrow></msubsup><mo>-</mo><msubsup><mi>N</mi><mi>RB</mi><mi>PRS</mi></msubsup></mrow></math>
or,
Figure G200910265590XD001610
wherein, v shift = N Cell ID mod 6 , NRB max,DLrepresents the maximum bandwidth that can be configured downstream, NRB DLIndicating the bandwidth of the downstream configuration, NRB max,DLAnd NRB DLAre expressed in units of 12 consecutive subcarriers in the frequency domain.
In summary, the embodiments of the present invention provide a positioning reference signal frequency domain position determination scheme, so as to ensure uniform distribution of PRS in each RB, reduce the influence on PDSCH, and ensure the overall performance of the system.
It will be apparent to those skilled in the art that the modules or steps of the present invention described above may be implemented by a general purpose computing device, they may be centralized on a single computing device or distributed across a network of multiple computing devices, and alternatively, they may be implemented by program code executable by a computing device, such that they may be stored in a storage device and executed by a computing device, and in some cases, the steps shown or described may be performed in an order different than that described herein, or they may be separately fabricated into individual integrated circuit modules, or multiple ones of them may be fabricated into a single integrated circuit module. Thus, the present invention is not limited to any specific combination of hardware and software.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (6)

1. A method for determining the frequency domain position of a positioning reference signal (SRS), comprising:
determining a starting physical resource block position h of a positioning reference signal PRS on a time domain Orthogonal Frequency Division Multiplexing (OFDM) symbol according to the following formula:
Figure F200910265590XC00011
or,
Figure F200910265590XC00012
wherein,NRB DLindicating the bandwidth of the downstream configuration, NRB DLExpressed in units of 12 subcarriers in succession in the frequency domain, NRB PRSIs the bandwidth of the PRS, wherein,
Figure F200910265590XC00013
indicating a rounding down.
2. The method of claim 1, wherein a subcarrier k on a time domain OFDM symbol l where the PRS is located in a subframe is determined according to the following formula:
when the system cyclic prefix is a normal cyclic prefix:
k=6(m+2×h)+(6-l+vshift)mod6
Figure F200910265590XC00014
when the system cyclic prefix is an extended cyclic prefix:
k=6(m+2×h)+(5-l+vshift)mod 6
Figure F200910265590XC00015
wherein,
Figure F200910265590XC00021
Figure F200910265590XC00022
NRB max,DLrepresents the maximum bandwidth that can be configured downstream, NRB max,DLAnd NRB DLAre all expressed by taking 12 continuous subcarriers in the frequency domain as a unit, nsIs oneSlot index in radio frame.
3. Method according to claim 1 or 2, characterized in that the PRS sequence is defined according to the following formulaMapping to a time slot nsModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)The method of the above, wherein,
Figure F200910265590XC00024
Figure F200910265590XC00025
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
Figure F200910265590XC00026
or,
Figure F200910265590XC00027
or,
Figure F200910265590XC00028
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to
Figure F200910265590XC00029
Generation of cinitGenerated according to the following equation:
Figure F200910265590XC000210
Figure F200910265590XC000211
wherein n issIs the slot index in a radio frame, t is the index of the OFDM symbol in a slot, k is the subcarrier index on OFDM symbol l, NID cellDenotes the identity of the cell, nsIs the slot index in one radio frame.
4. The method of claim 1 or 2, further comprising:
and mapping the PRS on a physical resource according to the starting physical resource block position h.
5. A positioning reference signal frequency domain position determination apparatus, comprising:
a first determining module, configured to determine a starting physical resource block position h of a positioning reference signal PRS on a time domain orthogonal frequency division multiplexing, OFDM, symbol according to the following formula:
or,
Figure F200910265590XC00032
wherein N isRB DLIndicating the bandwidth of the downstream configuration, NRB DLExpressed in units of 12 subcarriers in succession in the frequency domain, NRB PRSIs the bandwidth of the PRS.
6. The apparatus of claim 5, further comprising:
a second determining module, configured to determine a subcarrier k on a time domain OFDM symbol l where the PRS is located in one subframe according to the following formula:
when the system cyclic prefix is a normal cyclic prefix:
k=6(m+2×h)+(6-l+vshift)mod6
Figure F200910265590XC00033
when the system cyclic prefix is an extended cyclic prefix:
k=6(m+2×h)+(5-l+vshift)mod 6
Figure F200910265590XC00034
wherein,
Figure F200910265590XC00041
NRB max,DLrepresents the maximum bandwidth that can be configured downstream, NRB max,DLAnd NRB DLAre all expressed by taking 12 continuous subcarriers in the frequency domain as a unit, nsIs the slot index in one radio frame.
7. The apparatus of claim 5 or 6, further comprising:
a mapping module for mapping the PRS sequence
Figure F200910265590XC00043
Mapping to a slot n according to the following formulasModulation symbol a of subcarrier k of which antenna port p is 6 and OFDM symbol is lk,l (p)The method of the above, wherein,
Figure F200910265590XC00044
Figure F200910265590XC00045
c(n)=(x1(n+NC)+x2(n+NC))mod2
x1(n+31)=(x1(n+3)+x1(n))mod2
x2(n+31)=(x2(n+3)+x2(n+2)+x2(n+1)+x2(n))mod2,
or,
Figure F200910265590XC00047
or,
Figure F200910265590XC00048
wherein N isC=1600,x1(0)=1,x1(n)=0,n=1,2,...,30,x2According to
Figure F200910265590XC00049
Generation of cinitGenerated according to the following equation:
Figure F200910265590XC000410
Figure F200910265590XC000411
wherein n issIs the slot index in a radio frame, t is the index of the OFDM symbol in a slot, k is the subcarrier index on OFDM symbol l, NID cellDenotes the identity of the cell, nsIs the slot index in one radio frame.
CN200910265590.XA 2009-12-25 2009-12-25 Frequency domain position-confirming method and device of positioning reference signal Active CN101778068B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200910265590.XA CN101778068B (en) 2009-12-25 2009-12-25 Frequency domain position-confirming method and device of positioning reference signal
PCT/CN2010/074645 WO2011075995A1 (en) 2009-12-25 2010-06-28 Method and device for determining frequency domain position of position reference signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910265590.XA CN101778068B (en) 2009-12-25 2009-12-25 Frequency domain position-confirming method and device of positioning reference signal

Publications (2)

Publication Number Publication Date
CN101778068A true CN101778068A (en) 2010-07-14
CN101778068B CN101778068B (en) 2014-01-01

Family

ID=42514399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910265590.XA Active CN101778068B (en) 2009-12-25 2009-12-25 Frequency domain position-confirming method and device of positioning reference signal

Country Status (2)

Country Link
CN (1) CN101778068B (en)
WO (1) WO2011075995A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2879304A4 (en) * 2012-09-04 2015-07-22 Huawei Tech Co Ltd Method and device for transmitting reference signal
CN106656446A (en) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 Reference signal transmitting method and device and receiving method and device
CN107040997A (en) * 2016-02-03 2017-08-11 中兴通讯股份有限公司 The method and device of resource distribution
CN107465497A (en) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 The transmission method and device of location reference signals
CN107889212A (en) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 A kind of method and apparatus of positioning
CN108365935A (en) * 2017-01-26 2018-08-03 华为技术有限公司 A kind of reference signal configuration method, base station and terminal
CN108702275A (en) * 2016-02-16 2018-10-23 高通股份有限公司 Positioning signal technology for narrow-band devices
CN109076484A (en) * 2016-05-03 2018-12-21 华为技术有限公司 A kind of resource allocation methods, network side equipment and terminal device
WO2019196666A1 (en) * 2018-04-09 2019-10-17 电信科学技术研究院有限公司 Method and device for transmitting positioning reference signal
CN110475352A (en) * 2018-05-11 2019-11-19 华为技术有限公司 A kind of reference signal transmission method and communication equipment
CN110535578A (en) * 2018-05-25 2019-12-03 电信科学技术研究院有限公司 Method for transmitting signals and device
CN110768761A (en) * 2018-07-26 2020-02-07 中兴通讯股份有限公司 Method and device for generating positioning reference signal, base station and readable storage medium
CN111132221A (en) * 2018-11-01 2020-05-08 华为技术有限公司 Method and apparatus for transmitting reference signal
CN112566010A (en) * 2019-09-26 2021-03-26 大唐移动通信设备有限公司 Signal sending and receiving method, network equipment and terminal equipment
CN114079545A (en) * 2020-08-11 2022-02-22 北京紫光展锐通信技术有限公司 Method, device, equipment and storage medium for sending positioning reference signal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340227A (en) * 2008-08-15 2009-01-07 中兴通讯股份有限公司 Transmitting method and apparatus of downlink reference signal
CN101534285A (en) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 A sending method for reference signals
CN101594336A (en) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 A kind of sending method of location reference signals
CN101594335A (en) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 The mapping method of reference signal and Physical Resource Block

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340227A (en) * 2008-08-15 2009-01-07 中兴通讯股份有限公司 Transmitting method and apparatus of downlink reference signal
CN101534285A (en) * 2009-04-09 2009-09-16 中兴通讯股份有限公司 A sending method for reference signals
CN101594336A (en) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 A kind of sending method of location reference signals
CN101594335A (en) * 2009-06-19 2009-12-02 中兴通讯股份有限公司 The mapping method of reference signal and Physical Resource Block

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729291B2 (en) 2012-09-04 2017-08-08 Huawei Technologies Co., Ltd. Method and device for transmitting reference signal
EP2879304A4 (en) * 2012-09-04 2015-07-22 Huawei Tech Co Ltd Method and device for transmitting reference signal
CN106656446B (en) * 2015-11-03 2020-06-26 中兴通讯股份有限公司 Reference signal sending method and device and reference signal receiving method and device
CN106656446A (en) * 2015-11-03 2017-05-10 中兴通讯股份有限公司 Reference signal transmitting method and device and receiving method and device
CN107040997A (en) * 2016-02-03 2017-08-11 中兴通讯股份有限公司 The method and device of resource distribution
CN107040997B (en) * 2016-02-03 2023-07-14 中兴通讯股份有限公司 Resource allocation method and device
CN108702275A (en) * 2016-02-16 2018-10-23 高通股份有限公司 Positioning signal technology for narrow-band devices
CN109076484B (en) * 2016-05-03 2020-07-21 华为技术有限公司 Resource allocation method, network side equipment and terminal equipment
CN109076484A (en) * 2016-05-03 2018-12-21 华为技术有限公司 A kind of resource allocation methods, network side equipment and terminal device
CN107465497B (en) * 2016-06-03 2021-08-06 中兴通讯股份有限公司 Transmission method and device for positioning reference signal
CN107465497A (en) * 2016-06-03 2017-12-12 中兴通讯股份有限公司 The transmission method and device of location reference signals
CN107889212A (en) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 A kind of method and apparatus of positioning
CN108365935A (en) * 2017-01-26 2018-08-03 华为技术有限公司 A kind of reference signal configuration method, base station and terminal
CN108365935B (en) * 2017-01-26 2020-01-03 华为技术有限公司 Reference signal configuration method, base station and terminal
WO2019196666A1 (en) * 2018-04-09 2019-10-17 电信科学技术研究院有限公司 Method and device for transmitting positioning reference signal
US11695525B2 (en) 2018-04-09 2023-07-04 Datang Mobile Communications Equipment Co., Ltd. Method and device for transmitting positioning reference signal
CN110365455B (en) * 2018-04-09 2021-07-30 大唐移动通信设备有限公司 Positioning reference signal transmission method and device
CN110365455A (en) * 2018-04-09 2019-10-22 电信科学技术研究院有限公司 A kind of location reference signals transmission method and device
US11425729B2 (en) 2018-05-11 2022-08-23 Huawei Technologies Co., Ltd. Reference signal transmission method and communications device
CN110475352A (en) * 2018-05-11 2019-11-19 华为技术有限公司 A kind of reference signal transmission method and communication equipment
CN110535578A (en) * 2018-05-25 2019-12-03 电信科学技术研究院有限公司 Method for transmitting signals and device
CN110535578B (en) * 2018-05-25 2021-08-03 大唐移动通信设备有限公司 Signal transmission method and device
US11515977B2 (en) 2018-05-25 2022-11-29 Datang Mobile Communications Equipment Co., Ltd. Signal transmission method and apparatus
CN110768761A (en) * 2018-07-26 2020-02-07 中兴通讯股份有限公司 Method and device for generating positioning reference signal, base station and readable storage medium
CN110768761B (en) * 2018-07-26 2022-07-15 中兴通讯股份有限公司 Method and device for generating positioning reference signal, base station and readable storage medium
CN111132221B (en) * 2018-11-01 2021-08-27 华为技术有限公司 Method and apparatus for transmitting reference signal
CN111132221A (en) * 2018-11-01 2020-05-08 华为技术有限公司 Method and apparatus for transmitting reference signal
CN112566010A (en) * 2019-09-26 2021-03-26 大唐移动通信设备有限公司 Signal sending and receiving method, network equipment and terminal equipment
CN114079545A (en) * 2020-08-11 2022-02-22 北京紫光展锐通信技术有限公司 Method, device, equipment and storage medium for sending positioning reference signal

Also Published As

Publication number Publication date
WO2011075995A1 (en) 2011-06-30
CN101778068B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
CN101778068B (en) Frequency domain position-confirming method and device of positioning reference signal
CN101594336B (en) Method for sending positioning reference signals
JP5478721B2 (en) Method and system for transmitting position determination reference signal
CN107483166B (en) A kind of method and apparatus in wireless communication
CN101795145B (en) Sending method and system for measuring reference signals
CN101808409B (en) Method and system for configuration of measurement reference signals in LTE-A system
US8867331B2 (en) Methods and devices for sending positioning reference signals, for sending data and for receiving data
CN103873215B (en) Strengthen physical hybrid automatic repeat request indicator channel transmission method and device
CN101719888B (en) System and method for mapping reference signal sequence in long term evolution-advanced (LTE-A) system
CN102916920B (en) Method and apparatus for sending pilot signals
CN102694637B (en) The sending method of measuring reference signals and device under tdd systems
CN101867403A (en) Multi-antenna transmission method of measurement reference signals, terminal and base station
CN103974418A (en) DMRS processing method and device
CN101997633B (en) Method and system for multiplexing channel measurement pilots from different cells
CN101765134A (en) Sending method and system of SRS configuring parameter for carrier aggregation
CN103313273B (en) A kind of channel sending method, detection method, base station and terminal
CN107547179A (en) Transport parameters for physical layer configuration, acquisition methods and device
US9172516B2 (en) Method, system and device for transmitting downlink pilots
US11356220B2 (en) Uplink transmission method, terminal, and base station
CN101330367B (en) Method for collocating physical upstream responding channel and method for transmitting signal on the channel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant