CN101777603A - Method for manufacturing back contact solar energy batteries - Google Patents

Method for manufacturing back contact solar energy batteries Download PDF

Info

Publication number
CN101777603A
CN101777603A CN 200910076264 CN200910076264A CN101777603A CN 101777603 A CN101777603 A CN 101777603A CN 200910076264 CN200910076264 CN 200910076264 CN 200910076264 A CN200910076264 A CN 200910076264A CN 101777603 A CN101777603 A CN 101777603A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
type
method
manufacturing
solar cell
substrate
Prior art date
Application number
CN 200910076264
Other languages
Chinese (zh)
Other versions
CN101777603B (en )
Inventor
肖青平
Original Assignee
北京北方微电子基地设备工艺研究中心有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

The invention discloses a method for manufacturing back contact solar energy batteries, comprises the following steps of: firstly growing a P type doped silicon dioxide layer on an N type silicon chip; then growing a non-doped silicon dioxide layer on a P type doped layer; after that, printing a corrosive agent or an anti corrosive agent on the non-doped silicon dioxide layer to corrode the P type doped silicon dioxide layer and the non-doped silicon dioxide layer so as to form required patterns; and finally carrying out N type adulteration on the back face and the front face of the silicon chip to form an N type doped layer. The P type doped layer is protected by the non-doped silicon dioxide layer, and an N front surface field on the front face of the battery and a PN alternating doped layer on the back face of the battery are realized in the N type doped step at the same time, thereby reducing the diffusion step, reducing the cost and simplifying the process.

Description

背接触太阳能电池的制造方法 A method of manufacturing a back contact solar cell

技术领域 FIELD

[0001] 本发明涉及一种太阳能电池制造技术,尤其涉及一种背接触太阳能电池的制造方法。 [0001] The present invention relates to a solar cell manufacturing technology, particularly to a method of manufacturing a back contact solar cell.

背景技术 Background technique

[0002] 太阳能电池是一种通过光伏效应将太阳能转化为电能的半导体器件,主要以半导体材料为基础制作,其工作原理是光电材料吸收光能后发生光电子反应而产生电流,目前广泛采用的是硅太阳能电池。 [0002] The solar cell is a solar energy by the photovoltaic effect of the semiconductor device into electrical energy, mainly based semiconductor material production, its working principle is the reaction photoelectrons generated after the photoelectric current generation material absorbs the light energy, is now widely used silicon solar cell. 硅太阳能电池的基本结构为PN结,当光线入射到电池中时, 由于光电效应产生电子-空穴对,这些少数载流子(以下简称少子)由PN结的内建电场加速,被正负电极收集作为电能存储起来。 The basic structure of a silicon solar cell a PN junction, when light is incident on the cell, since the photoelectric effect produced electron - hole pairs, the minority carriers (hereinafter referred to as minority carriers) are accelerated by the internal electric field of the PN junction, the positive and negative collecting electrodes as electrical energy stored.

[0003] 如图1所示,现有技术一中,传统的太阳能电池在P型材料2表面扩散一层N型掺杂层3形成PN结,当太阳光透过减反射膜5入射到电池中时,在电池的PN结两边产生电子_空穴对(electron-hole),由PN结两边的金属电极1 、4分别将电子和空穴收集起来,提供给外电路。 [0003] As shown in FIG. 1, a prior art, the conventional solar cell doped layer 3 form a PN junction in an N-type diffusion layer 2 surface of a P-type material, when sunlight is incident through the antireflection film 5 to the battery when the generated electron-hole pairs _ (electron-hole), 1, 4 are collected by the metal electrodes on both sides of the PN junction the electrons and holes up in the external circuit is supplied to both sides of the PN junction cell.

[0004] 背接触太阳能电池是一种的单晶硅高转换效率的硅太阳能电池,电池的正负极都设在电池的背面,其特点是:正表面无栅线,无遮光损失;将重掺杂的电极接触区移至背表面,避免了俄歇复合对电池效率的影响;正面的织构化和背表面的金属电极反射能形成良好的陷光作用。 [0004] The back contact is a single crystal silicon solar cell having high conversion efficiency silicon solar cell, the battery positive and negative electrodes are located in the back of the battery, which is characterized by: the front surface of the gate line No, no shading loss; heavy doped contact region moves to the back surface electrode, to avoid the influence of the Auger recombination cell efficiency; textured front surface and a back surface of the reflective metal electrode can form a good light trapping.

[0005] 如图2所示,现有技术二中,背接触电池的典型结构从上到下依次为减反射膜6, 二氧化硅钝化膜7, N型掺杂的前表面场8, N型晶体硅基体9, N型/P型交替掺杂区域10, 二氧化硅钝化层11,N型/P型交替金属电极12。 [0005] 2, the second prior art, a typical structure of a back-contact cell is from top to bottom anti-reflective film 6, the silica passivation film 7, N-type doped front surface field 8, N-type crystalline silicon substrate. 9, N type well / P-doped region 10 alternately, a passivation layer is silicon dioxide. 11, N-type / P-type metal electrode 12 are alternately.

[0006] 与现有技术一中的传统电池结构相比较,背接触电池背面需要形成N型/P型交替掺杂,需要有两道扩散工序,N型扩散和P型扩散。 [0006] Compared with the prior art in a conventional cell structure, the back of a back-contact cell is necessary to form the N-type / P type dopant alternately, it requires prescribe diffusion process, diffusion of N-type and P-type diffusion.

[0007] 现有技术中,背接触N型太阳能电池的制备方法中,首先,在N型硅衬底的正反两表面同时进行P0C13掺杂,形成N型掺杂区,并在正、背两面均形成Si02层;然后,对基片背面进行光刻形成图形,并进行刻蚀和P型掺杂及印刷正负电极等,同时,对基片的正面进行相应的处理。 [0007] In the prior art, the N-type back contact solar cell production method, first, P0C13 simultaneously doping both surfaces of the positive and negative N type silicon substrate, an N-type doped regions, and positive back Si02 layer is formed on both sides; then, the back surface of the substrate patterned photolithography, and etched and P-type doped and printing the positive and negative electrodes, while, on the front surface of the substrate corresponding treatment.

[0008] 上述现有技术至少存在以下缺点:P型扩散技术实现困难、技术成本高。 [0008] The prior art has at least the following disadvantages: P-type diffusion technology difficulties, the high cost of the technology. 发明内容 SUMMARY

[0009] 本发明的目的是提供一种工艺简单、成本低、易实现的背接触太阳能电池的制造方法。 [0009] The object of the present invention is to provide a simple process, low cost, easy to implement method of manufacturing a back contact solar cell.

[0010] 本发明的目的是通过以下技术方案实现的: [0010] The object of the present invention is achieved by the following technical solution:

[0011] 本发明的背接触太阳能电池的制造方法,包括P型掺杂、N型掺杂,所述P型掺杂包括步骤:A、在N型硅基片的背面生长二氧化硅层,并同时引入P型掺杂源,形成P型掺杂 [0011] The method of manufacturing a back contact solar cell according to the present invention, includes a P-type doped, doped N-type, P-type dopant comprising the steps of: A, N-type silicon substrate on the back surface of the grown silicon dioxide layer, and simultaneously introducing P-type dopant source, a P-type dopant is formed

二氧化硅层。 Silicon dioxide layer. [0012] 由上述本发明提供的技术方案可以看出,本发明所述的背接触太阳能电池的制造方法,由于P型掺杂采用在N型硅基片的背面生长P型掺杂二氧化硅层的方法,使P型掺杂的工艺简化、易实现、成本降低。 [0012] provided by the present invention of the above it can be seen, a back contact solar cell manufacturing method according to the present invention, since the P-doped P-type growth in the use of the back surface of the silicon substrate of N-type doped silicon dioxide method layer, simplifying the process to make P-type doped, and easy to implement cost reduction.

附图说明 BRIEF DESCRIPTION

[0013] 图1为现有技术一中传统的太阳能电池的结构示意图; [0014] 图2为现有技术二中背接触太阳能电池的结构示意图; [0013] FIG. 1 is a schematic view of a traditional prior art solar cell; [0014] FIG. 2 is a schematic structural diagram of the prior art two back-contact solar cell;

[0015] 图3为本发明的背接触太阳能电池的制造方法的具体实施例的流程示意图。 Specific flow schematic diagram of [0015] FIG. 3 of the present invention a method for manufacturing a back contact solar cell of the embodiment. 具体实施方式 detailed description

[0016] 本发明的背接触太阳能电池的制造方法,其较佳的具体实施方式是,包括P型掺杂、N型掺杂,其中,P型掺杂包括: [0016] The method of manufacturing a back contact solar cell of the present invention, preferred embodiments are provided, comprising a P-type doped, N-type dopant, wherein, P-type doped comprising:

[0017] 步骤A、在N型硅基片的背面生长P型掺杂二氧化硅层,具体可以在N型硅基片的背面生长二氧化硅层,并同时引入P型掺杂源,形成P型掺杂二氧化硅层;之后,可以进行: [0018] 步骤B、在所述P型掺杂层上生长不掺杂的二氧化硅层; [0017] Step A, in the growth of the P-type silicon substrate back surface of N-type doped silicon dioxide layer, particularly silicon dioxide layer may be grown on the back surface of the N type silicon substrate, and simultaneously introducing P-type dopant source to form P-type doped silicon dioxide layer; then, may be performed: [0018] Procedure B, the growth of an undoped silicon dioxide layer on the P-type doped layer;

[0019] 步骤C、在所述不掺杂的二氧化硅层上印刷腐蚀剂或抗腐蚀剂,将所述P型掺杂二 [0019] Procedure C, on the non-doped silicon dioxide layers of the printed etchant or anticorrosion agents, the P-type doped

氧化硅层和所述不掺杂的二氧化硅层腐蚀形成需要的图形; Silicon oxide layer and said undoped silicon dioxide layer is etched to form the pattern required;

[0020] 步骤D、在所述基片的正、背两面进行N型掺杂,形成N型掺杂层。 [0020] Procedure D, the N-type dopant in the n-substrate, and back surfaces, an N-type doped layer.

[0021] 上述的步骤A中,生长P型掺杂二氧化硅层可以采用常压化学气相沉积法或等离 [0021] Step A above, P-type doped grown silicon dioxide layer may be atmospheric pressure chemical vapor deposition method or a plasma using

子体增强化学气相沉积法实现,也可以采用其它的方法沉积。 -Enhanced chemical vapor deposition implemented, it may be deposited using other methods. 其中,P型掺杂二氧化硅层的 Wherein, P-type doped silicon dioxide layer

厚度可以为30〜150nm。 Thickness of 30~150nm. 掺杂源可以包括硼或其它的P型掺杂源。 Doping source may include boron or other P-type dopant source.

[0022] 上述的步骤B可以与步骤A采用同一设备实现,其中,不掺杂的二氧化硅层的厚度可以为50〜lOOnm。 [0022] Step B above in step A may be implemented using the same apparatus, wherein the undoped silica layer thickness may be 50~lOOnm.

[0023] 上述的步骤C中,腐蚀剂可以包括浓度为10%〜27%的氟化氢铵;抗蚀剂可以包括耐腐蚀的有机溶剂等。 [0023] Step C above, the etchant may include a concentration of 10% ~27% of ammonium bifluoride; resist corrosion may include an organic solvent. 具体是将腐蚀剂涂在需腐蚀的地方或将抗腐蚀剂涂在不需腐蚀的地方,腐蚀出需要的图形。 The particular etchant is applied to the need to corrosive or anti-corrosive coating in place without etching, etching the desired pattern.

[0024] 上述的步骤D包括:将基片放置在高温扩散炉之中,通入P0Cl3,对基片正、背两面进行N型掺杂,使基片正面形成N型掺杂前表面场;使基片的背面形成N型/P型交替掺杂区。 [0024] Step D above comprises: placing the substrate in high temperature diffusion furnace, into P0Cl3, n for the substrate, doped N-type rear surfaces of the front substrate is formed of N-type doped front surface field; the back surface of the substrate to form an N-type well / P-doped region are alternately. 其中,N型掺杂前表面场的表面方块电阻可以为10〜60Q / □。 Wherein, N-type doped surface sheet resistance of the front surface field may 10~60Q / □.

[0025] 在步骤D之后还可以包括在基片的正、背两面生长二氧化硅层,用于对基片的表面进行钝化; [0025] After step D may further include n-substrate, both surfaces of the back layer is grown silicon dioxide, for passivating the surface of the substrate;

[0026] 对所述基片的表面进行钝化之后还可以包括在基片的正面或正、背两面沉积减反射膜。 [0026] After the passivation of the surface of the substrate may further include a front surface of the substrate or positive back surfaces deposited antireflection film. 减反射膜可以包括厚度为50〜200nm的SiN或Ti02薄膜。 The antireflection film may have a thickness of 50~200nm film of SiN or Ti02. 之后,在基片的背面制作金属电极。 Thereafter, the back surface of the substrate to prepare a metal electrode. 具体可以首先腐蚀电池背面的二氧化硅层,露出需要形成背面电极接触的区域; 然后在该区域印刷正负电极、并进行烧结。 Specific first etching silicon dioxide layer on the back of the battery, the exposed areas of the back electrode in contact to be formed; and positive and negative electrodes in the region printed, and sintered.

[0027] 上述的步骤A之前还可以包括对N型硅基片进行表面制绒,具体包括用KOH和IPA 混合溶液将N型硅基片的正面制成倒金字塔型绒面。 [0027] before the above step A may further include an N type silicon substrate is surface texturing, specifically comprises a mixed solution of KOH and IPA front N-type silicon substrate is made of suede inverted pyramid. 在表面制绒之前还可以包括对N型硅基片进行清洗,具体可以采用质量分数为2%〜15% 、温度为60°C〜90°C的NaOH溶液进行清洗。 Prior to surface texturing may further comprise an N-type silicon substrate to be cleaned, can be used particularly mass fraction of 2% ~ 15% NaOH solution to a temperature of 60 ° C~90 ° C is cleaned. [0028] N型硅基片可以选用厚度为220〜280um的区熔N型单晶硅片,也可以选用其它的硅片。 [0028] N-type silicon substrate having a thickness of 220~280um can use the N-type FZ silicon wafer, a silicon wafer may also use other.

[0029] 具体实施例,如图3所示,工艺流程包括步骤:[0030] 步骤1、硅片清洗,表面制绒: [0029] In particular embodiments, as shown in FIG. 3 the process comprising the steps of: [0030] Step 1, wafer cleaning, surface texturing:

[0031] 选用厚度为220〜280um之间的区熔N型单晶硅片为基体材料,采用质量分数为2%〜15% ,温度在60°C〜90°C之间的NaOH溶液清洗硅片,去除硅片表面损伤,并用KOH和IPA(异丙醇)混合溶液将硅片正面制成倒金字塔绒面。 [0031] The choice of thickness of the melt region between 220~280um N type single crystal silicon substrate as a base material, using mass fraction of 2% ~ 15%, temperature of the cleaning silicon NaOH solution between 60 ° C~90 ° C sheet, damage the wafer surface is removed, and treated with KOH and IPA (isopropyl alcohol) mixed solution of the wafer front surface is made of suede inverted pyramid. [0032] 步骤2 、生长P型掺杂二氧化硅层: [0032] Step 2, P-type doped silicon dioxide layer is grown:

[0033] 在基片背面生长P型掺杂层,掺杂源可以是硼或者其他P型掺杂物,该P型掺杂层可以通过常压化学气相沉积法、等离子体增强化学气相沉积法等常规技术的各种沉积方法沉积,厚度在30〜150nm之间。 [0033] In the back of the substrate grown P type doped layer doped with boron or other source may be a P-type dopant, the P-type doped layer by atmospheric pressure chemical vapor deposition, plasma enhanced chemical vapor deposition other deposition methods conventional art, a thickness of between 30~150nm.

[0034] 用该方法来代替现有技术中的双面P型扩散,既能对掺杂浓度和生长速度进行良好的控制,也能保护其另一面不受掺杂。 [0034] The method used to replace the double-sided P-type diffusion in the prior art, the doping concentrations of both the growth rate and good control, but also to protect the other surface is not doped. [0035] 步骤3、生长不掺杂的二氧化硅层: [0035] Step 3, the growth of an undoped silicon dioxide layer:

[0036] 可以与步骤2采用同一设备,在沉积过程中不引入掺杂源,在基片背面生长P型掺杂层shang生长一层不掺杂的二氧化硅层,该层厚度在50〜100nm之间。 [0036] Step 2 may use the same equipment, without introducing dopant source during the deposition process, the back surface of the substrate layer grown P type doped layer shang grown undoped silicon dioxide layer, the layer thickness 50~ between 100nm. 该层将在后续步骤中作为上述P型掺杂二氧化硅层的扩散保护层。 The protective layer is a diffusion layer of silicon dioxide layer is doped in the subsequent step as the P-type. [0037] 步骤4、腐蚀P型掺杂二氧化硅层和不掺杂的二氧化硅层: [0037] Step 4, P-type doped silicon dioxide corrosion layer and undoped silicon dioxide layer:

[0038] 在基片背面的Si(^层上采用印刷工艺印刷腐蚀剂,腐蚀形成图形,清洗硅片,去除腐蚀剂;也可以在晶体硅背面的Si(^层上采用印刷工艺印刷抗蚀剂,未涂抗蚀剂的部分被腐蚀掉,抗蚀剂可以通过加热或者紫外光照射去除。 [0038] In the rear surface of the Si substrate using the (^ printing process printing layer etchant, etching pattern is formed, wafer cleaning, removal of the etchant; may be the back of the Si crystal silicon (^ printing using a printing process on the resist layer, uncoated portions of the resist are etched, the resist may be removed by heating or UV irradiation.

[0039] 所述腐蚀剂主要成分为浓度为10%〜27%的氟化氢铵,抗蚀剂为耐腐蚀的有机溶剂。 [0039] The main component of etchant concentration of 10% ~27% of ammonium bifluoride, corrosion resist agent is an organic solvent.

[0040] 步骤5、双面N型扩散: [0040] Step 5, the N-type diffusion duplex:

[0041] 将基片放置在高温扩散炉之中,通入P0Cl3,对基片正、背两面进行N型掺杂,使正、背两面形成N型掺杂层。 [0041] The substrate is placed in a high temperature diffusion furnace into P0Cl3, n for the substrate, N-type dopant and rear surfaces, the positive, and back surfaces form an N-type doped layer.

[0042] 基片正面N型掺杂层作为前表面场有助于提高电池的效率,该层的表面方块电阻控制在10〜60Q/ 口之间。 [0042] N-type doped substrate front surface as a front surface field layer improves efficiency of the battery, a surface sheet resistance of the layer between the control 10~60Q / port. 同时背面有未掺杂二氧化硅掩盖的P型掺杂二氧化硅层中的掺杂源在高温环境中也扩散进入硅片,从而与背面的N型掺杂区域在电池背面形成PN交替的图形。 While the back cover of undoped silica doped P-type dopant source layers of silica in the high temperature environment to diffuse into the silicon wafer, whereby the back surface of the N-type doped region are alternately formed on the rear surface of the battery PN graphics.

[0043] 步骤6 、双面生长二氧化硅层: [0043] Step 6, the double-sided layer of grown silicon dioxide:

[0044] 为了对电池表面进行钝化,需要在正、背两面生长二氧化硅层。 [0044] For passivation of the cell surface requires the positive and back surfaces grown silicon dioxide layer.

[0045] 本步骤可以在步骤5中同一扩散炉中实现,也可以采用步骤2中的同一二氧化硅 [0045] This step may be implemented in the same step, the diffusion furnace 5, the same silica may be used in Step 2

生长设备实现。 The growth of devices.

[0046] 采用步骤5中的扩散炉设备时,在双面N型扩散完毕之后,在高温环境下双面生长热氧化层(二氧化硅层),但生长速度相对较慢; When [0046] using a step diffusion furnace apparatus 5, after completion of double-side N-type diffusion at high temperature double-sided thermally grown oxide layer (silicon dioxide layer), but the growth rate is relatively slow;

[0047] 采用步骤2中的二氧化硅生长设备时,由于只能单面沉积,需要分别沉积正面和 When [0047] using silica growth apparatus in step 2, since only one side of the deposition, the deposition, respectively front and need

背面的二氧化硅层,但是生长速度较快。 The back of the silicon dioxide layer, but grow faster. [0048] 步骤7、沉积减反射膜:[0049] 在基片正面采用常规技术沉积减反射膜,该减反射膜可以是SiN或者Ti02薄膜,厚度在50〜200nm之间。 [0048] Step 7 is deposited antireflection film: [0049] using conventional techniques antireflection film deposited on the front surface of the substrate, the antireflection film may be SiN or Ti02 film thickness between 50~200nm. 也可以正背两面都沉积减反射膜。 It may be deposited back surfaces are antireflection film. [0050] 步骤8、腐蚀二氧化硅: [0050] Step 8, the silica-corrosion:

[0051] 腐蚀电池背面的二氧化硅,露出将要形成背面电极接触的区域,过程同步骤4。 Region [0051] etching back of the battery silica, will be formed to expose the back surface electrode in contact, with the process step 4. [0052] 步骤9、印刷正负电极、烧结: [0052] Step 9, the printed positive and negative electrodes, sintering:

[0053] 采用工业上已经成熟的丝网印刷技术在硅片背面印刷正负电极,电极材料可以为Al、Ag或者其他合金。 [0053] The industry has matured using screen printing techniques in wafer backside positive and negative electrodes, the electrode material may be Al, Ag, or other alloys.

[0054] 本发明采用沉积P型掺杂层来代替高温扩散炉进行P型掺杂,降低了工艺技术难度,简单可行;采用未掺杂的二氧化硅层对P型掺杂层进行保护,最终在仅有的一次N型扩散步骤中同时实现了电池正面的N型表面场和电池背面的PN交替掺杂,减少了扩散步骤,降低了能耗以及高温环境对硅片的损害,使成本降低,工艺简化。 [0054] The present invention employs a P-type doped layer is deposited in place of the P-type high-temperature diffusion furnace doping technology reduces the difficulty, simple and feasible; using an undoped silicon dioxide layer on the P-type doped layer for protection, finally only the N-type first diffusion step while achieving a cell-type front surface field and the PN N alternating doped back of the battery, reducing the diffusion step, to reduce energy consumption and damage to the wafer temperature environment, so that the cost of reduced, simplifying the process.

[0055] 以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。 [0055] The above are only the preferred specific embodiments of the invention, but the scope of the present invention is not limited thereto, any skilled in the art in the art within the scope of the invention disclosed can be easily thought variations or replacements shall fall within the protection scope of the present invention.

7 7

Claims (17)

  1. 一种背接触太阳能电池的制造方法,包括P型掺杂、N型掺杂,其特征在于,所述P型掺杂包括步骤:A、在N型硅基片的背面生长二氧化硅层,并同时引入P型掺杂源,形成P型掺杂二氧化硅层。 One kind of method for manufacturing a back contact solar cell, comprising a P-type doped, N-type dopant, wherein said P-type dopant comprising the steps of: A, N-type silicon substrate on the back surface of the grown silicon dioxide layer, and simultaneously introducing P-type dopant source, a P-type doped silicon dioxide layer.
  2. 2. 根据权利要求1所述的背接触太阳能电池的制造方法,其特征在于,所述步骤A中, 生长P型掺杂二氧化硅层采用常压化学气相沉积法或等离子体增强化学气相沉积法实现。 The method of manufacturing a back contact solar cell according to claim 1, wherein said step A, the P-type doped silicon dioxide layer is grown using atmospheric pressure chemical vapor deposition method or a plasma enhanced chemical vapor deposition realization method.
  3. 3. 根据权利要求2所述的背接触太阳能电池的制造方法,其特征在于,所述P型掺杂二氧化硅层的厚度为30〜150nm。 3. The method of manufacturing a back contact solar cell according to claim 2, wherein said P-doped silica layer thickness of 30~150nm.
  4. 4. 根据权利要求1、2或3所述的背接触太阳能电池的制造方法,其特征在于,所述步骤A中,所述P型掺杂源包括硼。 The method of manufacturing a back contact solar cell of claim 2 or claim 3, wherein, in said step A, the P-type dopant source comprises boron.
  5. 5. 根据权利要求1所述的背接触太阳能电池的制造方法,其特征在于,所述步骤A之后进行步骤:B、 在所述P型掺杂层上生长不掺杂的二氧化硅层;C、 在所述不掺杂的二氧化硅层上印刷腐蚀剂或抗腐蚀剂,将所述P型掺杂二氧化硅层和所述不掺杂的二氧化硅层腐蚀形成需要的图形;D、 在所述基片的正、背两面进行N型掺杂,形成N型掺杂层。 The method of manufacturing a back contact solar cell according to claim 1, wherein, after said step of Step A: B, undoped silicon dioxide layer is grown on the P-type doped layer; C, printed on the undoped silicon dioxide layer or an anti-corrosive etchant, the P-type doped silicon dioxide layer and etched to form the desired pattern undoped silicon dioxide layer; D, N-type doping of the n-substrate, and back surfaces, an N-type doped layer.
  6. 6. 根据权利要求5所述的背接触太阳能电池的制造方法,其特征在于,所述步骤B与所述步骤A采用同一设备实现。 6. The method of manufacturing a back contact solar cell according to claim 5, wherein said step B, said step A using the same device implementation.
  7. 7. 根据权利要求5或6所述的背接触太阳能电池的制造方法,其特征在于,所述不掺杂的二氧化硅层的厚度为50〜100nm。 The method of manufacturing a back contact solar cell of claim 5 or claim 6, wherein a thickness of said undoped silicon dioxide layer is 50~100nm.
  8. 8. 根据权利要求5所述的背接触太阳能电池的制造方法,其特征在于,所述步骤C中, 所述腐蚀剂包括浓度为10%〜27%的氟化氢铵;所述抗蚀剂包括耐腐蚀的有机溶剂。 8. A method of manufacturing a back contact solar cell according to claim 5, wherein said step C, the etchant comprises a concentration of 10% ~27% of ammonium bifluoride; the corrosion resist agent comprising organic solvent.
  9. 9. 根据权利要求5所述的背接触太阳能电池的制造方法,其特征在于,所述步骤D包括:将基片放置在高温扩散炉之中,通入P0Cl3,对基片正、背两面进行N型掺杂,使基片正面形成N型掺杂前表面场;使基片的背面形成N型/P型交替掺杂区。 9. A method of manufacturing a back contact solar cell according to claim 5, wherein the step D comprises: placing the substrate in high temperature diffusion furnace, into P0Cl3, on the substrate sheet, for rear surfaces N-type doped, so that the front substrate is formed of N-type doped front surface field; the back surface of the N-type substrate / P-type doped regions alternate.
  10. 10. 根据权利要求9所述的背接触太阳能电池的制造方法,其特征在于,所述N型掺杂前表面场的表面方块电阻为10〜60Q / □。 10. A method of manufacturing a back contact solar cell according to claim 9, wherein said N-type doped surface sheet resistance of the front surface field 10~60Q / □.
  11. 11. 根据权利要求1所述的背接触太阳能电池的制造方法,其特征在于,所述步骤A之前包括对所述N型硅基片进行表面制绒,具体包括用KOH和IPA混合溶液将所述N型硅基片的正面制成倒金字塔型绒面。 11. A method of manufacturing a back contact solar cell according to claim 1, characterized in that it comprises the N-type silicon substrate surface prior to the texturing step A, comprises a mixed solution of KOH and IPA The N-type silicon substrate above the front side of the inverted pyramid is made of suede.
  12. 12. 根据权利要求11所述的背接触太阳能电池的制造方法,其特征在于,所述表面制绒之前包括对所述N型硅基片进行清洗,具体采用质量分数为2X〜15X、温度为6(TC〜 9(TC的NaOH溶液进行清洗。 12. A method of manufacturing a back contact solar cell according to claim 11, wherein said surface texturing comprising prior to said N-type silicon substrate is cleaned, using specific mass fraction 2X~15X, temperature 6 (TC~ 9 (TC NaOH solution was washed.
  13. 13. 根据权利要求1所述的背接触太阳能电池的制造方法,其特征在于,所述N型硅基片为厚度为220〜280um的区熔N型单晶硅片。 13. A method of manufacturing a back contact solar cell according to claim 1, wherein said N-type silicon substrate having a thickness of zone melting 220~280um N type single crystal silicon.
  14. 14. 根据权利要求5所述的背接触太阳能电池的制造方法,其特征在于,所述步骤D之后包括在所述基片的正、背两面生长二氧化硅层,用于对所述基片的表面进行钝化。 14. A method of manufacturing a back contact solar cell according to claim 5, wherein, after said step D comprises the substrate n, grown silicon dioxide layer and back surfaces, said substrate for surface passivation.
  15. 15. 根据权利要求14所述的背接触太阳能电池的制造方法,其特征在于,对所述基片的表面进行钝化之后包括:在所述基片的正面或正、背两面沉积减反射膜。 15. A method of manufacturing a back contact solar cell according to claim 14, characterized in that, after the surface of the passivated substrate comprising: a front surface of the substrate or positive, anti-reflection film is deposited back surfaces .
  16. 16. 根据权利要求15所述的背接触太阳能电池的制造方法,其特征在于,所述减反射膜包括厚度为50〜200nm的SiN或Ti02薄膜。 16. A method of manufacturing a back contact solar cell according to claim 15, wherein the antireflection film comprises a thickness of 50~200nm film of SiN or Ti02.
  17. 17. 根据权利要求15所述的背接触太阳能电池的制造方法,其特征在于,在所述基片的正面或正、背两面沉积减反射膜之后包括在所述基片的背面制作金属电极,具体包括:首先腐蚀电池背面的二氧化硅层,露出需要形成背面电极接触的区域;然后在该区域印刷正负电极、并进行烧结。 17. A method of manufacturing a back contact solar cell according to claim 15, wherein the front surface of the substrate or positive, after the antireflection film is deposited back surfaces including making a metal electrode on the back surface of the substrate, comprises: etching first silicon dioxide layer on the back of the battery, the exposed areas of the back electrode in contact to be formed; and positive and negative electrodes in the region printed, and sintered.
CN 200910076264 2009-01-08 2009-01-08 Method for manufacturing back contact solar energy batteries CN101777603B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910076264 CN101777603B (en) 2009-01-08 2009-01-08 Method for manufacturing back contact solar energy batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910076264 CN101777603B (en) 2009-01-08 2009-01-08 Method for manufacturing back contact solar energy batteries

Publications (2)

Publication Number Publication Date
CN101777603A true true CN101777603A (en) 2010-07-14
CN101777603B CN101777603B (en) 2012-03-07

Family

ID=42513993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910076264 CN101777603B (en) 2009-01-08 2009-01-08 Method for manufacturing back contact solar energy batteries

Country Status (1)

Country Link
CN (1) CN101777603B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101976711A (en) * 2010-10-27 2011-02-16 晶澳太阳能有限公司 Method for making solar batteries by adopting ion injection method
CN102148291A (en) * 2011-03-18 2011-08-10 保定天威集团有限公司 Manufacturing method of back contact battery in low ohmic contact
CN102185030A (en) * 2011-04-13 2011-09-14 山东力诺太阳能电力股份有限公司 Preparation method of back contact HIT solar battery based on N-type silicon wafer
CN102185031A (en) * 2011-04-13 2011-09-14 山东力诺太阳能电力股份有限公司 Method for manufacturing back contact HIT (Heterojunction with Intrinsic Thin Layer) solar cell based on P-type silicon chip
CN102201481A (en) * 2011-06-07 2011-09-28 合肥海润光伏科技有限公司 Novel N-type silicon hetero-junction battery with IBC (interdigitated back-contacted) structure and fabrication method thereof
WO2012031371A1 (en) * 2010-09-06 2012-03-15 无锡尚德太阳能电力有限公司 Metal wrap through back contact solar cell and manufacturing method thereof and module thereof
CN102569518A (en) * 2012-01-17 2012-07-11 杨正刚 Production process of N-type back contact solar cell
CN102637767A (en) * 2011-02-15 2012-08-15 上海凯世通半导体有限公司 Solar cell manufacturing method and solar cell
CN103208557A (en) * 2012-01-13 2013-07-17 上海凯世通半导体有限公司 Solar cell manufacturing method and solar cell
CN103681963A (en) * 2013-11-29 2014-03-26 奥特斯维能源(太仓)有限公司 Back-junction back-contact crystalline silicon solar cell manufacturing method
CN103746004A (en) * 2014-01-13 2014-04-23 英利集团有限公司 Preparing method of solar cell piece
CN103794678A (en) * 2013-11-29 2014-05-14 奥特斯维能源(太仓)有限公司 Back junction-back contact solar cell front surface field preparation method
CN103811591A (en) * 2014-02-27 2014-05-21 友达光电股份有限公司 Manufacturing method of back contact solar cell
CN103858239A (en) * 2011-11-16 2014-06-11 天合光能发展有限公司 All-black-contact solar cell and fabrication method
CN103904138A (en) * 2012-12-27 2014-07-02 北京汉能创昱科技有限公司 Full back side contact crystalline silicon cell and preparation method thereof
CN103943711A (en) * 2014-04-30 2014-07-23 山东力诺太阳能电力股份有限公司 Back contact-type solar cell structure based on N-type silicon substrate and manufacturing method
CN103975284A (en) * 2011-10-27 2014-08-06 太阳能公司 Master-slave architecture for controlling operation of photovoltaic power plants
CN104011881A (en) * 2011-12-21 2014-08-27 太阳能公司 Hybrid polysilicon heterojunction back contact cell
CN104064630A (en) * 2014-07-15 2014-09-24 苏州阿特斯阳光电力科技有限公司 Method for preparing N type IBC solar battery piece
CN104269457A (en) * 2014-09-05 2015-01-07 奥特斯维能源(太仓)有限公司 n-type IBC silicon solar cell manufacturing method based on ion implantation technology
CN104347751A (en) * 2013-07-29 2015-02-11 上海凯世通半导体有限公司 Manufacturing method for solar cell
CN105322042A (en) * 2014-07-28 2016-02-10 Lg电子株式会社 Solar cell and method for manufacturing the same
US9466750B2 (en) 2011-12-21 2016-10-11 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
WO2017020690A1 (en) * 2015-08-06 2017-02-09 王能青 Back-contact solar cell based on p-type silicon substrate
CN104885232B (en) * 2012-12-19 2017-03-15 太阳能公司 Mixed-type emitter full back-contact solar cell

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031371A1 (en) * 2010-09-06 2012-03-15 无锡尚德太阳能电力有限公司 Metal wrap through back contact solar cell and manufacturing method thereof and module thereof
CN101976711A (en) * 2010-10-27 2011-02-16 晶澳太阳能有限公司 Method for making solar batteries by adopting ion injection method
CN102637767A (en) * 2011-02-15 2012-08-15 上海凯世通半导体有限公司 Solar cell manufacturing method and solar cell
CN102637767B (en) * 2011-02-15 2015-03-18 上海凯世通半导体有限公司 Solar cell manufacturing method and solar cell
CN102148291A (en) * 2011-03-18 2011-08-10 保定天威集团有限公司 Manufacturing method of back contact battery in low ohmic contact
CN102185031A (en) * 2011-04-13 2011-09-14 山东力诺太阳能电力股份有限公司 Method for manufacturing back contact HIT (Heterojunction with Intrinsic Thin Layer) solar cell based on P-type silicon chip
CN102185030B (en) 2011-04-13 2013-08-21 山东力诺太阳能电力股份有限公司 Preparation method of back contact HIT solar battery based on N-type silicon wafer
CN102185030A (en) * 2011-04-13 2011-09-14 山东力诺太阳能电力股份有限公司 Preparation method of back contact HIT solar battery based on N-type silicon wafer
CN102185031B (en) 2011-04-13 2013-07-31 山东力诺太阳能电力股份有限公司 Method for manufacturing back contact HIT (Heterojunction with Intrinsic Thin Layer) solar cell based on P-type silicon chip
CN102201481A (en) * 2011-06-07 2011-09-28 合肥海润光伏科技有限公司 Novel N-type silicon hetero-junction battery with IBC (interdigitated back-contacted) structure and fabrication method thereof
CN103975284A (en) * 2011-10-27 2014-08-06 太阳能公司 Master-slave architecture for controlling operation of photovoltaic power plants
CN103858239A (en) * 2011-11-16 2014-06-11 天合光能发展有限公司 All-black-contact solar cell and fabrication method
CN104011881A (en) * 2011-12-21 2014-08-27 太阳能公司 Hybrid polysilicon heterojunction back contact cell
US9466750B2 (en) 2011-12-21 2016-10-11 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell
CN104011881B (en) * 2011-12-21 2016-05-04 太阳能公司 Mixed-type polycrystalline silicon heterojunction back-contact cell
CN103208557A (en) * 2012-01-13 2013-07-17 上海凯世通半导体有限公司 Solar cell manufacturing method and solar cell
CN102569518A (en) * 2012-01-17 2012-07-11 杨正刚 Production process of N-type back contact solar cell
CN104885232B (en) * 2012-12-19 2017-03-15 太阳能公司 Mixed-type emitter full back-contact solar cell
CN103904138A (en) * 2012-12-27 2014-07-02 北京汉能创昱科技有限公司 Full back side contact crystalline silicon cell and preparation method thereof
CN104347751A (en) * 2013-07-29 2015-02-11 上海凯世通半导体有限公司 Manufacturing method for solar cell
CN104347751B (en) * 2013-07-29 2016-10-05 上海凯世通半导体股份有限公司 The solar cell manufacturing method
CN103794678A (en) * 2013-11-29 2014-05-14 奥特斯维能源(太仓)有限公司 Back junction-back contact solar cell front surface field preparation method
CN103681963A (en) * 2013-11-29 2014-03-26 奥特斯维能源(太仓)有限公司 Back-junction back-contact crystalline silicon solar cell manufacturing method
CN103746004A (en) * 2014-01-13 2014-04-23 英利集团有限公司 Preparing method of solar cell piece
CN103746004B (en) * 2014-01-13 2016-08-24 英利集团有限公司 Preparation of solar cell
CN103811591A (en) * 2014-02-27 2014-05-21 友达光电股份有限公司 Manufacturing method of back contact solar cell
CN103811591B (en) * 2014-02-27 2016-10-05 友达光电股份有限公司 Method of manufacturing a back contact solar cell
CN103943711A (en) * 2014-04-30 2014-07-23 山东力诺太阳能电力股份有限公司 Back contact-type solar cell structure based on N-type silicon substrate and manufacturing method
CN104064630A (en) * 2014-07-15 2014-09-24 苏州阿特斯阳光电力科技有限公司 Method for preparing N type IBC solar battery piece
CN105322042A (en) * 2014-07-28 2016-02-10 Lg电子株式会社 Solar cell and method for manufacturing the same
CN105322042B (en) * 2014-07-28 2017-05-17 Lg电子株式会社 Solar cell and a method for producing
CN104269457A (en) * 2014-09-05 2015-01-07 奥特斯维能源(太仓)有限公司 n-type IBC silicon solar cell manufacturing method based on ion implantation technology
WO2017020690A1 (en) * 2015-08-06 2017-02-09 王能青 Back-contact solar cell based on p-type silicon substrate

Also Published As

Publication number Publication date Type
CN101777603B (en) 2012-03-07 grant

Similar Documents

Publication Publication Date Title
US20100084009A1 (en) Solar Cells
US20090056800A1 (en) Surface Passivation of Silicon Based Wafers
US20090293948A1 (en) Method of manufacturing an amorphous/crystalline silicon heterojunction solar cell
US20090211627A1 (en) Solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US20090317934A1 (en) Local heterostructure contacts
JP2004193350A (en) Solar battery cell and its manufacturing method
CN101548392A (en) Solar cell and method for manufacturing the same
CN101764179A (en) Manufacture method of selective front surface field N-type solar cell
CN201699033U (en) Two-sided illuminated crystalline silicon solar battery
CN101540350A (en) Process for preparing back point-contact crystalline-silicon solar cells
CN102222726A (en) Technology for manufacturing interlaced back contact (IBC) crystalline silicon solar battery with ion implantation
CN101976711A (en) Method for making solar batteries by adopting ion injection method
US20090211623A1 (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
CN101866991A (en) Preparation method of amorphous silicon/crystalline silicon heterojunction solar battery
CN101604711A (en) Method of preparing solar cell and solar cell prepared thereby
CN101814547A (en) Method for preparing selective emitter crystalline silicon solar cell
CN101937944A (en) Preparation method of double-sided passivated crystalline silicon solar cell
CN1719621A (en) Silicon solar battery structure and making method
CN101305472A (en) Solar cell of high efficiency and process for preparation of the same
CN101667602A (en) Polysilicon solar cell and preparation method thereof
CN101783374A (en) Method for manufacturing silicon solar cell
JP2011060971A (en) Crystal silicon solar cell and method of manufacturing the same
CN101740659A (en) Method for manufacturing buried-contact solar battery
CN101826573A (en) Method for preparing semiconductor secondary grid-metal primary grid crystalline silicon solar battery
CN101777603A (en) Method for manufacturing back contact solar energy batteries

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CP03