CN101685519A - Credit evaluation method and credit evaluation system - Google Patents
Credit evaluation method and credit evaluation system Download PDFInfo
- Publication number
- CN101685519A CN101685519A CN200810211455A CN200810211455A CN101685519A CN 101685519 A CN101685519 A CN 101685519A CN 200810211455 A CN200810211455 A CN 200810211455A CN 200810211455 A CN200810211455 A CN 200810211455A CN 101685519 A CN101685519 A CN 101685519A
- Authority
- CN
- China
- Prior art keywords
- credit
- data
- original
- credit data
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
Abstract
本发明提供一种信用评价方法及一种信用评价系统。其中,信用评价系统适用于不同的业务系统,包括:征信单元,用于通过与业务系统之间的接口,获得所述业务系统提供的原始信用数据;数据分析单元,用于分析所述征信单元获得的原始信用数据,得到分析结果;信用服务单元,用于根据所述数据分析单元得到的分析结果,展现信用情况。本发明的信用评价方法和信用评价系统都可以适用于不同的业务系统,这样,对应于每个业务系统都不需要再开发一个信用评价体系,从而节省了开发成本。
The invention provides a credit evaluation method and a credit evaluation system. Among them, the credit evaluation system is applicable to different business systems, including: a credit investigation unit, used to obtain the original credit data provided by the business system through the interface with the business system; a data analysis unit, used to analyze the The original credit data obtained by the information unit is used to obtain analysis results; the credit service unit is used to display credit information according to the analysis results obtained by the data analysis unit. Both the credit evaluation method and the credit evaluation system of the present invention can be applied to different business systems. In this way, there is no need to develop a credit evaluation system corresponding to each business system, thereby saving development costs.
Description
技术领域 technical field
本发明涉及电子商务技术,尤其涉及信用评价技术。The invention relates to e-commerce technology, in particular to credit evaluation technology.
背景技术 Background technique
信用作为电子商务领域中的一个重要指标,越来越受到电子商务领域中的用户的关注。例如,某个用户在通过电子交易系统与对方进行生意来往之前,一般都需要了解对方的信用,当确定对方的信用符合自己的要求后,这个用户才会与对方进行生意来往。Credit, as an important index in the field of electronic commerce, is more and more concerned by users in the field of electronic commerce. For example, before a user conducts business with the other party through the electronic trading system, he generally needs to know the credit of the other party. After confirming that the credit of the other party meets his own requirements, the user will conduct business with the other party.
随着用户对信用与日俱增的关注,如何进行信用评价已成为电子商务领域的一个热门技术问题。目前,电子商务领域中出现了多种信用评价技术。但是,这些信用评价技术都是针对特定的业务系统开发的。例如,在线书店对应于一个信用评价体系,商品交易平台对应于另一个信用评价体系。然而,这些信用评价体系不能互相通用,这样,对于每个需要具有信用评价体系的业务系统来说,技术开发人员必须开发出大量的信用评价体系,才能满足一个业务系统对应于一个信用评价体系的要求。As users pay more and more attention to credit, how to conduct credit evaluation has become a hot technical issue in the field of e-commerce. At present, a variety of credit evaluation technologies have emerged in the field of e-commerce. However, these credit evaluation technologies are all developed for specific business systems. For example, an online bookstore corresponds to one credit evaluation system, and a commodity trading platform corresponds to another credit evaluation system. However, these credit evaluation systems cannot be used in common with each other. In this way, for each business system that needs a credit evaluation system, technology developers must develop a large number of credit evaluation systems in order to meet the requirements of a business system corresponding to a credit evaluation system. Require.
由此可见,对应于每个业务系统都要开发一个信用评价体系会导致开发成本较高,所以,现有的信用评价技术的开发成本较高。It can be seen that developing a credit evaluation system corresponding to each business system will lead to high development costs, so the development costs of existing credit evaluation technologies are relatively high.
发明内容 Contents of the invention
本发明要解决的技术问题是提供信用评价方法及信用评价系统,用以降低信用评价技术的开发成本。The technical problem to be solved by the present invention is to provide a credit evaluation method and a credit evaluation system to reduce the development cost of credit evaluation technology.
本发明提供一种信用评价方法,适用于不同的业务系统,包括:通过与业务系统之间的接口,获得所述业务系统提供的原始信用数据;分析所述原始信用数据,得到分析结果;根据所述分析结果,展现信用情况。The present invention provides a credit evaluation method, which is applicable to different business systems, including: obtaining the original credit data provided by the business system through the interface with the business system; analyzing the original credit data to obtain the analysis result; according to The analysis result shows the credit situation.
本发明提供一种信用评价系统,适用于不同的业务系统,包括:征信单元,用于通过与业务系统之间的接口,获得所述业务系统提供的原始信用数据;数据分析单元,用于分析所述征信单元获得的原始信用数据,得到分析结果;信用服务单元,用于根据所述数据分析单元得到的分析结果,展现信用情况。The present invention provides a credit evaluation system, which is applicable to different business systems, including: a credit investigation unit, used to obtain the original credit data provided by the business system through an interface with the business system; a data analysis unit, used to Analyzing the original credit data obtained by the credit reference unit to obtain an analysis result; a credit service unit for displaying credit status according to the analysis result obtained by the data analysis unit.
本发明的信用评价方法和信用评价系统都可以适用于不同的业务系统,具体来说,可以通过与业务系统之间的接口,获得所述业务系统提供的原始信用数据,之后再分析原始信用数据,最后根据分析结果,展现信用情况。由此可见,本发明的信用评价方法和信用评价系统不仅仅适用于一种业务系统,而是可以适用于多种不同的业务系统,这样,对应于每个业务系统都不需要再开发一个信用评价体系,从而节省了开发成本。Both the credit evaluation method and the credit evaluation system of the present invention can be applied to different business systems. Specifically, the original credit data provided by the business system can be obtained through the interface with the business system, and then the original credit data can be analyzed , and finally show the credit status according to the analysis results. It can be seen that the credit evaluation method and credit evaluation system of the present invention are not only applicable to one business system, but can be applied to many different business systems. In this way, there is no need to develop a credit system for each business system. evaluation system, thereby saving development costs.
附图说明 Description of drawings
图1是本发明的一种信用评价方法的流程图;Fig. 1 is a flow chart of a credit evaluation method of the present invention;
图2是本发明的一种信用评价系统的结构示意图;Fig. 2 is a schematic structural diagram of a credit evaluation system of the present invention;
图3是图2中的数据分析单元的结构示意图。FIG. 3 is a schematic structural diagram of the data analysis unit in FIG. 2 .
具体实施方式 Detailed ways
首先对本发明的一种信用评价方法进行说明。这种信用评价方法适用于不同的业务系统,这里所述的业务系统是指有信用评价需求的业务系统。如图1所示,所述信用评价方法包括:First, a credit evaluation method of the present invention is described. This credit evaluation method is applicable to different business systems, and the business system mentioned here refers to a business system that requires credit evaluation. As shown in Figure 1, the credit evaluation method includes:
S101:通过与业务系统之间的接口,获得所述业务系统提供的原始信用数据;S101: Obtain the original credit data provided by the business system through an interface with the business system;
S102:分析所述原始信用数据,得到分析结果;S102: Analyze the original credit data to obtain an analysis result;
S103:根据所述分析结果,展现信用情况。S103: Present the credit situation according to the analysis result.
步骤S101、S102及S103的执行主体可以是独立于业务系统的装置或系统,这个执行主体可以通过与业务系统之间的接口获得原始信用数据,其中,这里所述的原始信用数据可以是指业务系统获得的针对评价对象的信用数据,例如,与评价对象接触过的用户对评价对象的评价情况(例如评分)。在实际应用中,图1所示的方法可以应用于任何一个业务系统,或者说,步骤S101、S102及S103的执行主体可以通过与任何一个业务系统之间的接口获得原始信用数据。The executor of steps S101, S102 and S103 may be a device or system independent of the business system, and this executor may obtain the original credit data through the interface with the business system, wherein the original credit data mentioned here may refer to the business The credit data of the evaluation object obtained by the system, for example, the evaluation status (such as rating) of the evaluation object by users who have contacted with the evaluation object. In practical application, the method shown in Fig. 1 can be applied to any business system, or in other words, the execution subject of steps S101, S102 and S103 can obtain the original credit data through the interface with any business system.
在不同的业务系统中,原始信用数据的类型可能不尽相同。例如,有些业务系统的原始信用数据只包括第三方认证、产品质量认证和管理质量认证这三项数据,而有些业务系统的原始信用数据只包括单次交易评分和产品质量认证这两项数据。这样,将图1所示的方法应用在一个业务系统之前,需要指定获得的原始信用数据的类型,当然,指定的类型是与所述业务系统相对应的类型。例如,如果将图1所示的方法应用在原始信用数据只包括单次交易评分和产品质量认证这两项数据的业务系统,则指定获得的原始信用数据的类型就是单次交易评分和产品质量认证。In different business systems, the types of original credit data may be different. For example, the original credit data of some business systems only include the three data of third-party certification, product quality certification and management quality certification, while the original credit data of some business systems only include the two data of single transaction score and product quality certification. In this way, before applying the method shown in FIG. 1 to a business system, it is necessary to specify the type of the obtained original credit data. Of course, the specified type is the type corresponding to the business system. For example, if the method shown in Figure 1 is applied to a business system whose original credit data only include single transaction score and product quality certification, the specified type of original credit data obtained is single transaction score and product quality certified.
另外,获得的原始信用数据既可以是针对一个评价对象的原始信用数据,也可以是针对多个评价对象的原始信用数据。例如,某次获得的原始信用数据可以是针对企业A的原始信用数据,也可以是针对企业A的原始信用数据和针对买家C的原始信用数据。In addition, the obtained original credit data can be original credit data for one evaluation object, or original credit data for multiple evaluation objects. For example, the original credit data obtained at a certain time may be the original credit data for enterprise A, or the original credit data for enterprise A and the original credit data for buyer C.
此外,获得的原始信用数据可以包括静态的原始信用数据和动态的原始信用数据。In addition, the obtained original credit data may include static original credit data and dynamic original credit data.
静态的原始信用数据一般是相对固定的,例如是:企业基本信息的完整程度的评分、成立年限的评分、高管素质的评分、银行授信的评分、证书认证的评分等。静态的原始信用数据可以是多个数据经过运算后的值,例如是企业基本信息的完整程度的评分、成立年限的评分、高管素质的评分、银行授信的评分、证书认证的评分等分数之和。Static original credit data is generally relatively fixed, such as: the score of the completeness of the basic information of the enterprise, the score of the establishment years, the score of the quality of executives, the score of bank credit, the score of certificate certification, etc. Static original credit data can be the value of multiple data after calculation, such as the score of the completeness of the basic information of the enterprise, the score of the establishment years, the score of the quality of executives, the score of bank credit, the score of certificate certification, etc. and.
动态的原始信用数据一般是动态变化的。例如,对于企业所提供的服务的质量的评分,就是随着企业所提供的服务的质量动态变化的。Dynamic original credit data generally change dynamically. For example, the score for the quality of the service provided by the enterprise changes dynamically along with the quality of the service provided by the enterprise.
动态的信用数据的计算一般需要关注两个问题:一是如何对单次交往进行评分;二是如何将多次交往的评分聚合成为动态的信用数据。The calculation of dynamic credit data generally requires attention to two issues: one is how to score a single transaction; the other is how to aggregate the scores of multiple transactions into dynamic credit data.
对于单次交往的评分,可以采用服务质量度量框架进行。通过制定详细和合理的评分准则,可以得到较为精确的评分结果。在本发明的实施例中,我们对单次交往的评分采用的是100分制,所以聚合后的动态的信用数据的最高值也是100。For the scoring of a single interaction, the service quality measurement framework can be used. By formulating detailed and reasonable scoring criteria, more accurate scoring results can be obtained. In the embodiment of the present invention, we use a 100-point system for scoring a single interaction, so the highest value of the aggregated dynamic credit data is also 100.
本发明的实施例运用了相关性、承诺、清晰度、影响力(CCCI,Corrqualities、Commitcriterion、Clearcriterion、Infcriterion)方法对单次交往进行评分。具体的,可自定义每个评定准则(评定方向),例如增加、删除评定方向,修改评定方向名称,调整每个评定方向权重。对于每个评定准则(评定方向),可配置其评定刻度及每个评定刻度对应的描述。例如对于“发货时间是否及时”这个评定方向,可配置为-1分、0分、1分用于CCCI,同时,每个分数可以配置相应的描述为“不及时”、“一般”、“及时”展现给用户。对于根据每个评定准则(评定方向)所得到的评分,还可以再与时间因子或金额因子等参数进行运算,这样,运算后得到的结果才作为对应于评定准则(评定方向)的评分。例如,时间因子表示交往的时间,金额因子表示交易的金额,根据每个评定准则(评定方向)所得到的评分可以与时间因子或金额因子等参数进行加权运算,加权后得到的结果作为对应于评定准则(评定方向)的评分。The embodiments of the present invention use correlation, commitment, clarity, and influence (CCCI, Corr qualities , Commit criterion , Clear criterion , Inf criterion ) methods to score a single interaction. Specifically, each evaluation criterion (evaluation direction) can be customized, such as adding or deleting an evaluation direction, modifying the name of an evaluation direction, and adjusting the weight of each evaluation direction. For each evaluation criterion (evaluation direction), its evaluation scale and description corresponding to each evaluation scale can be configured. For example, for the evaluation direction of "whether the delivery time is timely", it can be configured as -1 point, 0 point, and 1 point for CCCI. At the same time, each score can be configured as "not in time", "general", "Timely" displayed to the user. For the score obtained according to each assessment criterion (assessment direction), it can also be calculated with parameters such as time factor or amount factor, so that the result obtained after the calculation is used as the score corresponding to the assessment criterion (assessment direction). For example, the time factor represents the time of communication, and the amount factor represents the amount of the transaction. The score obtained according to each evaluation criterion (evaluation direction) can be weighted with parameters such as time factor or amount factor, and the weighted result is used as the corresponding Scoring of assessment criteria (assessment direction).
对于能够提供静态的原始信用数据和动态的原始信用数据的业务系统来说,在步骤S101中获得的原始信用数据可以是静态的原始信用数据与动态的原始信用数据之间经过运算后得到的结果,例如,假设静态的原始信用数据和动态的原始信用数据分别是一个数值,那么获得的原始信用数据就可以是这两个数值相加得到的数值。For business systems that can provide static original credit data and dynamic original credit data, the original credit data obtained in step S101 may be the result of calculation between the static original credit data and the dynamic original credit data , for example, assuming that the static original credit data and the dynamic original credit data are respectively a value, then the obtained original credit data may be the value obtained by adding these two values.
此外,在步骤S101中获得的原始信用数据既可以是一维数据,也可以是多维数据。例如,上述的代表静态的原始信用数据的数值与代表动态的原始信用数据的数值相加得到的数值就是一个一维数据,而如果获得的原始信用数据包括对应每个评定准则(评定方向)的评分,那么获得的原始信用数据就是多维数据,对应一个评定准则(评定方向)的评分就是多维数据中的一维数据。In addition, the original credit data obtained in step S101 can be either one-dimensional data or multi-dimensional data. For example, the numerical value obtained by adding the above-mentioned value representing the static original credit data and the value representing the dynamic original credit data is a one-dimensional data, and if the obtained original credit data includes Scoring, then the original credit data obtained is multidimensional data, and the scoring corresponding to an assessment criterion (assessment direction) is one-dimensional data in multidimensional data.
在实际应用中,可以有多种方式来实现获得所述业务系统提供的原始信用数据。例如,步骤S101、S102及S103的执行主体主动请求所述业务系统提供原始信用数据,所述业务系统根据请求向所述执行主体提供原始信用数据。再例如,所述业务系统主动向所述执行主体提供原始信用数据。再例如,所述执行主体可以定时或多次获得所述业务系统提供的原始信用数据,这样,所述执行主体在步骤S102中,可以综合多次获得的原始信用数据进行分析,得到分析结果。In practical applications, there are many ways to obtain the original credit data provided by the business system. For example, the executor of steps S101, S102 and S103 actively requests the business system to provide original credit data, and the business system provides the original credit data to the executor according to the request. For another example, the business system actively provides original credit data to the execution subject. For another example, the execution subject may obtain the original credit data provided by the business system at regular intervals or multiple times. In this way, in step S102, the execution subject may synthesize the original credit data obtained multiple times for analysis to obtain an analysis result.
在步骤S102中,分析所述原始信用数据时,可以使用预先指定的算法分析所述原始信用数据。In step S102, when analyzing the original credit data, a pre-specified algorithm may be used to analyze the original credit data.
分析所述原始信用数据时,可以过滤掉虚假的原始信用数据,保留真实的原始信用数据。When analyzing the original credit data, it is possible to filter out false original credit data and keep the real original credit data.
可以有多种方式过滤掉虚假的原始信用数据、保留真实的原始信用数据,其中的一种方式为:将所有的针对一个评价对象的原始信用数据分为两个集合,其中,任意一个集合中的任意一个原始信用数据与同集合中的其他原始信用数据之间的差异不大于所述任意一个集合中的任意一个原始信用数据与另一个集合中的原始信用数据之间的差异;根据预先设置的规则,过滤掉其中一个集合中的所有原始信用数据,保留另一个集合中的所有原始信用数据。其中,所有的针对一个评价对象的原始信用数据可以包括不同的用户对所述评价对象的评分,也可以是同一个用户在多次交往中对所述评价对象的多次评分。所有的针对一个评价对象的原始信用数据可以是步骤S101、S102及S103的执行主体一次获得的数据,也可以是所述执行主体多次获得的数据。所有的针对一个评价对象的原始信用数据还可以是指在某个时期的针对所述评价对象的所有原始信用数据。总之,所有的针对一个评价对象的原始信用数据一般来说是指针对所述评价对象的多个原始信用数据。另外,上面提到过,针对一个评价对象的一个原始信用数据可以是一维数据,也可以是多维数据。此外,上述的预先设置的规则可以根据实际应用而定,例如,可以规定,如果其中的一个集合中的所有原始信用数据或大部分原始信用数据都是在十分接近的时间内产生的,则说明这个集合中的所有原始信用数据或大部分原始信用数据都是虚假的信用数据,所以,当根据预先设置的这个规则处理上述两个集合时,过滤掉所有原始信用数据或大部分原始信用数据都是在十分接近的时间内产生的集合中的所有原始信用数据,保留另一个集合中的所有原始信用数据。There are many ways to filter out the false original credit data and keep the real original credit data. One of the ways is: divide all the original credit data for an evaluation object into two sets, among which, in any set The difference between any one of the original credit data in the same set and other original credit data in the same set is not greater than the difference between any one of the original credit data in the set and the original credit data in another set; according to the preset The rule of filtering out all the original credit data in one of the collections and keeping all the original credit data in the other collection. Wherein, all the original credit data for an evaluation object may include different users' ratings for the evaluation object, or may be multiple ratings for the evaluation object by the same user in multiple interactions. All the original credit data for one evaluation object may be the data obtained once by the execution subject of steps S101, S102 and S103, or the data obtained by the execution subject multiple times. All original credit data for an evaluation object may also refer to all original credit data for the evaluation object in a certain period. In short, all the original credit data for one evaluation object generally refers to multiple original credit data for the evaluation object. In addition, as mentioned above, an original credit data for an evaluation object can be one-dimensional data or multi-dimensional data. In addition, the above preset rules can be determined according to the actual application. For example, it can be stipulated that if all or most of the original credit data in one of the sets are generated within a very close time, then the All or most of the original credit data in this set are false credit data, so when the above two sets are processed according to the pre-set rule, all or most of the original credit data are filtered out It is all the original credit data in the set generated in very close time, and keep all the original credit data in the other set.
任意一个集合中的任意一个原始信用数据与同集合中的其他原始信用数据之间的差异不大于所述任意一个集合中的任意一个原始信用数据与另一个集合中的原始信用数据之间的差异的实现方式可以为:所述任意一个集合中的任意一个原始信用数据与同集合中的其他所有的原始信用数据之间的差异的平均值不大于所述任意一个集合中的任意一个原始信用数据与另一个集合中的所有原始信用数据之间的差异的平均值。The difference between any one original credit data in any one set and other original credit data in the same set is not greater than the difference between any one original credit data in said any one set and the original credit data in another set The implementation method may be: the average value of the difference between any original credit data in any one of the sets and all other original credit data in the same set is not greater than any one of the original credit data in any one of the sets The average of the differences from all raw credit data in another set.
上述的原始信用数据之间的差异可以是原始信用数据的数值之间的差值,也可以是原始信用数据的数值经过加权处理后得到的数值之间的差值,如果原始信用数据是多维数值组成的数据,则上述的原始信用数据之间的差异还可以是原始信用数据之间的矢量距离差异。The difference between the above-mentioned original credit data can be the difference between the values of the original credit data, or the difference between the values obtained after the original credit data has been weighted. If the original credit data is a multi-dimensional value The above-mentioned difference between the original credit data can also be the vector distance difference between the original credit data.
下面分别通过三种算法,对过滤掉虚假的原始信用数据、保留真实的原始信用数据的实现方式进行详细说明,其中,虚假的原始信用数据以信用炒作数据为例。The implementation of filtering out false original credit data and retaining real original credit data will be described in detail below through three algorithms respectively. The false original credit data is taken as an example of credit hype data.
1.第一种算法1. The first algorithm
首先假设正常的评分符合N(μ,σ)分布,信用炒作评分符合N(μ′,σ′)分布,其中,μ可以视为企业的真实信用度。为了达到信用炒作的效果,一般认为μ′≈100,σ′≈0。再假设,在所有的评分记录中,(1-δ)100%为真实评分,100δ%为信用炒作,那么在没有经过任何处理得到的信用度Rnofilter为:First, it is assumed that the normal score conforms to the N(μ, σ) distribution, and the credit hype score conforms to the N(μ′, σ′) distribution, where μ can be regarded as the real credit of the enterprise. In order to achieve the effect of credit hype, it is generally believed that μ′≈100 and σ′≈0. Assume again that in all scoring records, (1-δ) 100% is the real score, and 100δ% is credit hype, then the credit R nofilter obtained without any processing is:
Rnofilter≈(1-δ)μ+δμ′R nofilter ≈(1-δ)μ+δμ′
真实的信用度Rfair为:The real credit R fair is:
Rfair≈μR fair ≈ μ
Rnofilter与Rfair之差被称为信用度的偏移值(bias),偏移值B(μ,σ)为:The difference between R nofilter and R fair is called the credit offset value (bias), and the offset value B (μ, σ) is:
B(μ,σ)=Rnofilter-Rfair≈δ(100-μ)B(μ,σ)=R nofilter -R fair ≈δ(100-μ)
这个偏移值代表了信用炒作对信用度的影响,如果偏移值越大,则说明信用炒作的影响越严重。本发明的第一种算法的目的就是尽可能地减小B(μ,σ),从而减小信用炒作对信用度的影响。This offset value represents the impact of credit speculation on credit. If the offset value is larger, it means that the impact of credit speculation is more serious. The purpose of the first algorithm of the present invention is to reduce B(μ, σ) as much as possible, thereby reducing the influence of credit hype on credit.
基于以上假设条件,首先使用Macnaughton-Smith et a1.递归方法将全集N分为两个聚类,其中全集N中包括针对一个评价对象的多个信用数据:Based on the above assumptions, first use the Macnaughton-Smith et al. recursive method to divide the full set N into two clusters, where the full set N includes multiple credit data for one evaluation object:
步骤1:设两个集合A=N,在这个阶段,将A中的元素向B移动。对A中的每个元素i,首先计算i到A中其他元素的差异性D(i,A={i}):Step 1: Set two sets A=N, At this stage, elements in A are moved towards B. For each element i in A, first calculate the difference D(i, A={i}) from i to other elements in A:
其中,d是一个距离函数,首先将D值最大的元素从A移动到B。Among them, d is a distance function, and the element with the largest D value is moved from A to B first.
步骤2:如果A中还有1个以上元素,则对A中剩余的每一个元素i,计算i与A中其他元素的差异性和i与B中元素的差异性之间的差异D(i,A-{i})-D(i,B):Step 2: If there is more than one element in A, then for each remaining element i in A, calculate the difference D(i , A-{i})-D(i, B):
如果这个结果大于0,则说明i与A中其他元素的差异大于i与B中元素的差异,这样就需要将i从A移动到B;如果这个结果小于0,则说明i与A中其他元素的差异小于i与B中元素的差异,这样,i继续留在A中;如果这个结果等于0,则说明i与A中其他元素的差异和i与B中元素的差异相同,此时,可以将i继续留在A中,也可以将i从A移动到B。If the result is greater than 0, it means that the difference between i and other elements in A is greater than the difference between i and elements in B, so that i needs to be moved from A to B; if the result is less than 0, it means that i is different from other elements in A The difference between i and the elements in B is less than the difference between i and the elements in B, so that i continues to stay in A; if this result is equal to 0, it means that the difference between i and other elements in A is the same as the difference between i and the elements in B. At this time, you can Keeping i in A can also move i from A to B.
这样,就将所有的评分结果分为两个互不相交的子集,将平均值较高的那个子集记作Nhigh,平均值较低的那个子集记作Nlow。在这里,将Nhigh中的评分视作信用炒作的评分,将Nlow中的评分作为真实信用的评分。之后,可以计算出过滤后的偏移值:In this way, all scoring results are divided into two mutually disjoint subsets, and the subset with a higher average value is recorded as N high , and the subset with a lower average value is recorded as N low . Here, the score in N high is regarded as the score of credit speculation, and the score in N low is regarded as the score of real credit. Afterwards, the filtered offset value can be calculated:
B′(μ,σ)=Rwithfilter-Rfair B'(μ, σ)=R with filter -R fair
如果B′的绝对值小于B,那么就说明本发明的第一种算法对于消除信用炒作的影响起到了积极的作用,所以,对于本发明的第一种算法的效果的研究可以主要着重于比较B′和B的大小。If the absolute value of B' is less than B, it means that the first algorithm of the present invention has played a positive role in eliminating the influence of credit speculation, so the research on the effect of the first algorithm of the present invention can mainly focus on comparison B' and the size of B.
2.第二种算法:2. The second algorithm:
如果使用时间因子或金额因子等修正参数对第一种算法中的元素i进行加权运算,且使用加权后的元素进行第一种算法中的几个公式的运算,则不会因为多了时间因子或金额因子等修正参数而对分析过程产生影响,实际上,使用时间因子或金额因子等修正参数一般只会对评分进行修正。所以,本发明的第二种算法使用时间因子或金额因子等修正参数对第一种算法中的元素i进行加权运算,且使用加权后的元素进行第一种算法中的几个公式的运算。如果使用时间因子,则时间因子可以采用其中,n是当前运行算法的时间,m是原始信用数据产生的时间,N是常量,一般是一个比较大的整数。If correction parameters such as time factor or amount factor are used to weight the element i in the first algorithm, and the weighted elements are used to perform operations of several formulas in the first algorithm, it will not be due to the additional time factor Correction parameters such as time factor or amount factor will affect the analysis process. In fact, using correction parameters such as time factor or amount factor will generally only modify the score. Therefore, the second algorithm of the present invention uses correction parameters such as time factor or amount factor to perform weighted operations on element i in the first algorithm, and uses the weighted elements to perform operations on several formulas in the first algorithm. If a time factor is used, the time factor can take Among them, n is the current running time of the algorithm, m is the time when the original credit data is generated, and N is a constant, generally a relatively large integer.
3.第三种算法3. The third algorithm
上面提到过,在步骤S101中获得的原始信用数据可能是多维数据,对此,在计算针对同一个评价对象的两个多维数据之间的差异性时,可以计算两个多维数据之间的矢量距离。这样,当某些真实的评分结果和某些炒作的评分结果很接近的时候,可以通过两个评分结果之间的矢量距离加以区分。As mentioned above, the original credit data obtained in step S101 may be multi-dimensional data. For this, when calculating the difference between two multi-dimensional data for the same evaluation object, the difference between the two multi-dimensional data can be calculated. Vector distance. In this way, when some real scoring results and some hyped scoring results are very close, they can be distinguished by the vector distance between the two scoring results.
例如,假设取5条评分准则,权重相同,矢量的每个分量代表这次交往在该条评分准则下的得分,再假设3次交往的评分在各条评分准则下的得分分别如下:For example, assume that 5 scoring criteria are taken with the same weight, and each component of the vector represents the score of this interaction under this scoring criterion, and then assume that the scores of the 3 interactions under each scoring criterion are as follows:
[10,10,8,10,7][10, 10, 8, 10, 7]
[10,10,7,10,8][10, 10, 7, 10, 8]
[8,8,10,10,10][8, 8, 10, 10, 10]
其中,第1条和第2条评分结果为真实评分,第3条评分结果为信用炒作的评分。Among them, the scoring results of Article 1 and Article 2 are real scores, and the scoring results of Article 3 are credit speculation scores.
使用评分结果的矢量距离作为两个评分结果之间的差异,则第1条评分结果和第3条评分结果的矢量距离为:Using the vector distance of the scoring result as the difference between the two scoring results, the vector distance between the first scoring result and the third scoring result is:
而第1条和第2条评分结果的矢量距离为:And the vector distance between the first and second scoring results is:
由于第1条评分结果和第2条评分结果的矢量距离较为接近,所以可以正确地将两条真实的评分结果聚合到一起。Since the vector distance between the first scoring result and the second scoring result is relatively close, the two real scoring results can be correctly aggregated together.
由上述可知,矢量距离函数可以表示为:From the above, we can see that the vector distance function can be expressed as:
其中,和代表两次不同的交往评分结果的矢量化。in, and A vectorization representing the results of two different engagement scores.
当然,上述三种算法只是本发明给出的优选实施方式,在实际应用中,本领域技术人员还可以使用其他可行的算法,这里不再一一列举这样的算法。Of course, the above three algorithms are only preferred implementation modes given by the present invention. In practical applications, those skilled in the art may also use other feasible algorithms, and such algorithms will not be listed here one by one.
总之,包括上述三种算法的这一类算法的基本思想是,通过聚类机制将所有评分结果分为两个集合。在正常情况(假设恶意评价可以排除)下,平均分较高的那一个集合可以视为信用炒作的结果,所以在分析原始信用数据时,可以只保留低分的集合。在这里,将包括上述三种算法的这一类算法称为聚类过滤算法。In short, the basic idea of this class of algorithms including the above three algorithms is to divide all scoring results into two sets through a clustering mechanism. Under normal circumstances (assuming that malicious evaluations can be excluded), the set with a higher average score can be regarded as the result of credit speculation, so when analyzing the original credit data, only the set with low scores can be kept. Here, this type of algorithm including the above three algorithms is called clustering and filtering algorithm.
在步骤S103中,可以有多种方式展现信用情况,例如以整体信用概况、信用报告或信用走势等形式展现信用情况。当然,可以根据预先指定的展现方式展现信用情况。另外,根据分析结果、展现信用情况时,可以直接将分析结果展现给用户,也可以将分析结果对应于一个最后的信用状况后,再将最后的信用状况展现给用户。例如,分析结果是分数,最后的信用状况是等级,假设分析结果是0~20分之间,那么对应的等级是“差”,21~60分之间等级为“中”,61~80之间等级为“良”,而81分以上等级为“优”。In step S103, there may be multiple ways to present the credit situation, for example, presenting the credit situation in the form of an overall credit profile, a credit report, or a credit trend. Of course, the credit situation can be presented according to a pre-specified presentation manner. In addition, when presenting the credit status according to the analysis result, the analysis result can be directly displayed to the user, or the analysis result can be corresponding to a final credit status, and then the final credit status can be displayed to the user. For example, the analysis result is a score, and the final credit status is a grade. Suppose the analysis result is between 0 and 20 points, then the corresponding grade is "poor", between 21 and 60 is "medium", and between 61 and 80 The average grade is "good", while the grade above 81 points is "excellent".
另外,执行步骤S102之后,还可以共享分析结果,例如,其他业务系统可以获得共享的分析结果。In addition, after step S102 is performed, the analysis results can also be shared, for example, other business systems can obtain the shared analysis results.
除上述信用评价方法外,本发明还提供了一种信用评价系统,这种信用评价系统可以适用于不同的业务系统。如图2所示,包括:征信单元201,用于通过与业务系统之间的接口,获得所述业务系统提供的原始信用数据;数据分析单元202,用于分析所述征信单元201获得的原始信用数据,得到分析结果;信用服务单元203,用于根据所述数据分析单元202得到的分析结果,展现信用情况。In addition to the above credit evaluation method, the present invention also provides a credit evaluation system, which can be applied to different business systems. As shown in Figure 2, it includes: a
具体的,征信单元201可以通过与任何一个业务系统之间的接口获得原始信用数据。Specifically, the
有关征信单元201获得的原始信用数据的介绍可以参照上述信用评价方法中对原始信用数据的描述,这里不再赘述。For the introduction of the original credit data obtained by the
在实际应用中,征信单元201可以有多种方式来实现获得所述业务系统提供的原始信用数据。例如,征信单元201主动请求所述业务系统提供原始信用数据,所述业务系统根据请求向征信单元201提供原始信用数据。再例如,所述业务系统主动向征信单元201提供原始信用数据。再例如,征信单元201可以定时或多次获得所述业务系统提供的原始信用数据,这样,数据分析单元202可以综合征信单元201多次获得的原始信用数据进行分析,得到分析结果。In practical applications, the
信用评价系统还可以包括配置单元204,用于在所述征信单元201获得所述业务系统提供的原始信用数据之前,指定所述征信单元201获得原始信用数据的类型是与所述业务系统相对应的类型。配置单元204也可以用于在所述数据分析单元202分析所述原始信用数据之前,指定所述数据分析单元202在分析原始信用数据时所使用的算法。配置单元204还可以用于在所述信用服务单元203展现信用情况之前,指定所述信用服务单元203展现信用情况时所使用的展现方式。The credit evaluation system may also include a
数据分析单元202在分析所述原始信用数据时,可以过滤掉虚假的原始信用数据,保留真实的原始信用数据。When analyzing the original credit data, the
数据分析单元202如图3所示,可以包括:数据分类单元2021,用于将所有的针对一个评价对象的原始信用数据分为两个集合,其中,任意一个集合中的任意一个原始信用数据与同集合中的其他原始信用数据之间的差异不大于所述任意一个集合中的任意一个原始信用数据与另一个集合中的原始信用数据之间的差异;数据处理单元2022,用于根据预先设置的规则,过滤掉所述数据分类单元2021划分的其中一个集合中的所有原始信用数据,保留另一个集合中的所有原始信用数据。其中,所有的针对一个评价对象的原始信用数据可以包括不同的用户对所述评价对象的评分,也可以是同一个用户在多次交往中对所述评价对象的多次评分。所有的针对一个评价对象的原始信用数据可以是征信单元201一次获得的数据,也可以是征信单元201多次获得的数据。所有的针对一个评价对象的原始信用数据还可以是指在某个时期的针对所述评价对象的所有原始信用数据。总之,所有的针对一个评价对象的原始信用数据一般来说是指针对所述评价对象的多个原始信用数据。另外,上面提到过,针对一个评价对象的一个原始信用数据可以是一维数据,也可以是多维数据。此外,上述的预先设置的规则可以根据实际应用而定,例如,可以规定,如果其中的一个集合中的所有原始信用数据或大部分原始信用数据都是在十分接近的时间内产生的,则说明这个集合中的所有原始信用数据或大部分原始信用数据都是虚假的信用数据,所以,数据分析单元202当根据预先设置的这个规则处理上述两个集合时,过滤掉所有原始信用数据或大部分原始信用数据都是在十分接近的时间内产生的集合中的所有原始信用数据,保留另一个集合中的所有原始信用数据。The
任意一个集合中的任意一个原始信用数据与同集合中的其他原始信用数据之间的差异不大于所述任意一个集合中的任意一个原始信用数据与另一个集合中的原始信用数据之间的差异的实现方式可以为:所述任意一个集合中的任意一个原始信用数据与同集合中的其他所有的原始信用数据之间的差异的平均值不大于所述任意一个集合中的任意一个原始信用数据与另一个集合中的所有原始信用数据之间的差异的平均值。The difference between any one original credit data in any one set and other original credit data in the same set is not greater than the difference between any one original credit data in said any one set and the original credit data in another set The implementation method may be: the average value of the difference between any original credit data in any one of the sets and all other original credit data in the same set is not greater than any one of the original credit data in any one of the sets The average of the differences from all raw credit data in another set.
上述的原始信用数据之间的差异可以是原始信用数据的数值之间的差值,也可以是原始信用数据的数值经过加权处理后得到的数值之间的差值,如果原始信用数据是多维数值组成的数据,则上述的原始信用数据之间的差异还可以是原始信用数据之间的矢量距离差异。The difference between the above-mentioned original credit data can be the difference between the values of the original credit data, or the difference between the values obtained after the original credit data has been weighted. If the original credit data is a multi-dimensional value The above-mentioned difference between the original credit data can also be the vector distance difference between the original credit data.
数据分析单元202可以使用上述信用评价方法中提到的三种算法,过滤掉虚假的原始信用数据、保留真实的原始信用数据,具体描述可以参照上述信用评价方法中对三种算法的描述,这里不再赘述。The
信用服务单元203可以有多种方式展现信用情况,例如以整体信用概况、信用报告或信用走势等形式展现信用情况。当然,信用服务单元203可以根据配置单元204预先指定的展现方式展现信用情况。另外,信用服务单元203根据分析结果、展现信用情况时,可以直接将分析结果展现给用户,也可以将分析结果对应于一个最后的信用状况后,再将最后的信用状况展现给用户。The
另外,信用服务单元203还可以共享分析结果,例如,其他业务系统可以从信用服务单元203获得共享的分析结果。In addition, the
信用评价系统还可以包括数据库205,用于保存所述征信单元201获得的所述业务系统提供的原始信用数据,将所述业务系统提供的原始信用数据提供给所述数据分析单元202,保存所述数据分析单元202得到的分析结果,并将所述分析结果提供给所述信用服务单元203。The credit evaluation system may also include a
综上所述,本发明的信用评价方法和信用评价系统可以应用于不同的业务系统。在现有技术中,信用评价的算法都是固化在业务系统的代码中的。而在实际应用中,不同的行业一般都需要不同的征信策略和信用算法,例如,钢铁行业的业务系统和食品行业的业务系统就需要采用不同的征信策略,所以如果需要将信用评价的算法应用在这两个行业的业务系统中,必然需要修改这两个业务系统的程序代码。显然,这样势必会造成时间、人力等资源的浪费。而本发明的信用评价方法和信用评价系统如果需要应用于不同的行业,那么只需根据行业的特征进行简单的配置,就能够投入使用,极大的节省了资源。To sum up, the credit evaluation method and credit evaluation system of the present invention can be applied to different business systems. In the prior art, credit evaluation algorithms are all solidified in the code of the business system. In practical applications, different industries generally require different credit investigation strategies and credit algorithms. For example, the business system of the steel industry and the business system of the food industry need to adopt different credit investigation strategies. Algorithms are applied to the business systems of these two industries, and the program codes of these two business systems must be modified. Obviously, this will inevitably result in a waste of time, manpower and other resources. However, if the credit evaluation method and credit evaluation system of the present invention need to be applied to different industries, they can be put into use only after simple configuration according to the characteristics of the industry, which greatly saves resources.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications should also be It is regarded as the protection scope of the present invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810211455A CN101685519A (en) | 2008-09-22 | 2008-09-22 | Credit evaluation method and credit evaluation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810211455A CN101685519A (en) | 2008-09-22 | 2008-09-22 | Credit evaluation method and credit evaluation system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101685519A true CN101685519A (en) | 2010-03-31 |
Family
ID=42048672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200810211455A Pending CN101685519A (en) | 2008-09-22 | 2008-09-22 | Credit evaluation method and credit evaluation system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101685519A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102436622A (en) * | 2011-12-28 | 2012-05-02 | 浙江汇信科技有限公司 | Network market operator credit evaluation method |
CN102708451A (en) * | 2012-05-03 | 2012-10-03 | 上海世范软件技术有限公司 | Method and system for realizing travel agency credit authentication |
CN102831521A (en) * | 2011-06-14 | 2012-12-19 | 李安渝 | Enterprise dynamic credit rating method |
CN102903051A (en) * | 2012-10-11 | 2013-01-30 | 惠龙港国际钢铁物流股份有限公司 | Automotive/boat member credit evaluating method based on network |
CN102915501A (en) * | 2012-10-29 | 2013-02-06 | 江苏乐买到网络科技有限公司 | Method for optimizing online shopping evaluating information |
TWI464700B (en) * | 2011-10-31 | 2014-12-11 | Univ Ming Chuan | Credit default prediction method and device |
CN104680297A (en) * | 2013-12-03 | 2015-06-03 | 航天信息股份有限公司 | Evaluation system and evaluation method for credit rating |
CN104717244A (en) * | 2013-12-12 | 2015-06-17 | 中国科学院深圳先进技术研究院 | Multidimensional credibility management method based on distributed computation |
CN105303447A (en) * | 2015-08-17 | 2016-02-03 | 北京阿甘敦行信息科技有限公司 | Method and device for carrying out credit rating through network information |
CN106127570A (en) * | 2016-06-16 | 2016-11-16 | 腾讯科技(深圳)有限公司 | The stability indicator of credit investigation system generates method and device |
-
2008
- 2008-09-22 CN CN200810211455A patent/CN101685519A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102831521A (en) * | 2011-06-14 | 2012-12-19 | 李安渝 | Enterprise dynamic credit rating method |
TWI464700B (en) * | 2011-10-31 | 2014-12-11 | Univ Ming Chuan | Credit default prediction method and device |
CN102436622A (en) * | 2011-12-28 | 2012-05-02 | 浙江汇信科技有限公司 | Network market operator credit evaluation method |
CN102708451A (en) * | 2012-05-03 | 2012-10-03 | 上海世范软件技术有限公司 | Method and system for realizing travel agency credit authentication |
CN102903051A (en) * | 2012-10-11 | 2013-01-30 | 惠龙港国际钢铁物流股份有限公司 | Automotive/boat member credit evaluating method based on network |
CN102915501A (en) * | 2012-10-29 | 2013-02-06 | 江苏乐买到网络科技有限公司 | Method for optimizing online shopping evaluating information |
CN104680297A (en) * | 2013-12-03 | 2015-06-03 | 航天信息股份有限公司 | Evaluation system and evaluation method for credit rating |
CN104717244A (en) * | 2013-12-12 | 2015-06-17 | 中国科学院深圳先进技术研究院 | Multidimensional credibility management method based on distributed computation |
CN104717244B (en) * | 2013-12-12 | 2018-12-14 | 中国科学院深圳先进技术研究院 | A kind of various dimensions credit management method based on distributed computing |
CN105303447A (en) * | 2015-08-17 | 2016-02-03 | 北京阿甘敦行信息科技有限公司 | Method and device for carrying out credit rating through network information |
CN106127570A (en) * | 2016-06-16 | 2016-11-16 | 腾讯科技(深圳)有限公司 | The stability indicator of credit investigation system generates method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101685519A (en) | Credit evaluation method and credit evaluation system | |
JP7021289B2 (en) | How to display asset information | |
Sarma | Predictive modeling with SAS enterprise miner: Practical solutions for business applications | |
Shen et al. | A pricing model for big personal data | |
US8346661B2 (en) | Aggregation of customer transaction data | |
JP6679648B2 (en) | Information processing device, information processing method, information processing program, determination device, determination method, and determination program | |
JP2016192235A (en) | Method and system for displaying website traverse information | |
WO2018129392A1 (en) | System and method for aggregating and analyzing financial data | |
KR102378436B1 (en) | Evaluation score-based weight setting and incentive calculation system. | |
CN112581291B (en) | Risk assessment change detection method, apparatus, device and storage medium | |
CN107133862A (en) | Dynamic produces the method and system of the detailed transaction payment experience of enhancing credit evaluation | |
CN105303447A (en) | Method and device for carrying out credit rating through network information | |
CN101727633A (en) | Method and device for processing credit data | |
US20220164374A1 (en) | Method of scoring and valuing data for exchange | |
CN110348922B (en) | Method and apparatus for generating information | |
CN112949963A (en) | Employee service quality evaluation method and device, storage medium and intelligent equipment | |
US20220058658A1 (en) | Method of scoring and valuing data for exchange | |
CN119205305A (en) | A financial product intelligent matching and pre-credit method and system | |
CN101449284A (en) | Scoring traffic quality to network sites using cross-correlated traffic parameters | |
CN107305662A (en) | Recognize the method and device of violation account | |
CN108470307A (en) | A kind of online dynamic credit evaluating system method based on seller's credit score value | |
JP6764178B1 (en) | Rate calculation device, rate calculation method and rate calculation program | |
CN115237970A (en) | Data prediction method, device, equipment, storage medium and program product | |
Fernando et al. | Utilization of Big Data In E-Commerce Business | |
KR20210112974A (en) | System and method for creating brand index using concentration ratio and computer program for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20100331 |
|
RJ01 | Rejection of invention patent application after publication |