CN101679155B - 使用多组分催化剂的石油基热中性重整 - Google Patents

使用多组分催化剂的石油基热中性重整 Download PDF

Info

Publication number
CN101679155B
CN101679155B CN2007800518057A CN200780051805A CN101679155B CN 101679155 B CN101679155 B CN 101679155B CN 2007800518057 A CN2007800518057 A CN 2007800518057A CN 200780051805 A CN200780051805 A CN 200780051805A CN 101679155 B CN101679155 B CN 101679155B
Authority
CN
China
Prior art keywords
method
catalyst
hydrogen
reforming
gas
Prior art date
Application number
CN2007800518057A
Other languages
English (en)
Other versions
CN101679155A (zh
Inventor
T·因努伊
B·O·达布西
S·艾哈迈德
F·I·阿尔-慕海什
M·A·B·西迪奎
Original Assignee
沙特阿拉伯石油公司
法赫德国王石油和矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/645,970 priority Critical
Priority to US11/645,970 priority patent/US7700005B2/en
Application filed by 沙特阿拉伯石油公司, 法赫德国王石油和矿业大学 filed Critical 沙特阿拉伯石油公司
Priority to PCT/US2007/026384 priority patent/WO2008082589A2/en
Publication of CN101679155A publication Critical patent/CN101679155A/zh
Application granted granted Critical
Publication of CN101679155B publication Critical patent/CN101679155B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/0445Selective methanation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals
    • Y02P20/52Improvements relating to the production of products other than chlorine, adipic acid, caprolactam, or chlorodifluoromethane, e.g. bulk or fine chemicals or pharmaceuticals using catalysts, e.g. selective catalysts

Abstract

本发明提供一种液态烃燃料的热中性重整方法,所述方法采用Ni、Ce2O3、La2O3、Pt、ZrO2、Rh和Re催化剂,具有既实现燃烧又实现蒸汽重整的双重功能。

Description

使用多组分催化剂的石油基热中性重整

技术领域

[0001] 本发明涉及一种石油基液态烃燃料的热中性重整方法,更具体而言,涉及多组分催化剂在所述热中性重整方法中的用途。

背景技术

[0002]目前全世界氢气年产量超过1/2万亿立方米/年。对于更大量氢气的需求仍是主要瓶颈,尤其是应新立法的要求及迫于其压力,需生产超低硫的燃料,而供给的油源却越来越重,硫及金属含量越来越高。

[0003] 炼油厂对额外的氢气的需求显著增长,目前的增长速率为6.3% /年,并且在可以预见的未来将持续高速增长。

[0004] 此外,氢燃料电池在汽车及固定场所的应用正在得到普及,原因有很多,包括其高效性及低排放性。但使用纯氢作为汽车及住宅用燃料面临很多障碍,并有很多局限性。传输氢的基础设施不足,气态氢的燃料补给缓慢,氢的储存成问题。制备及使用氢的备选方案的范围从未来派的基于太阳能的氢生成到更实际的氢重整。使用液态/气态烃燃料生成氢被认为是大规模氢气制备的直接解决方案。除了重整的经济性及易行性,该选项被视为比使用现有分布网络更为现实。

[0005] 从烃燃料到氢气的转化可通过几种工艺来进行,包括烃蒸汽重整(HSR),部分氧化重整(POR)及自动热重整(ATR)。烃蒸汽重整包括蒸汽与燃料在催化剂存在的条件下发生反应,生成氢气及CO,如式(I)及⑵所示。所述式以甲烷(CH4)及异辛烷(C8H18 (2,2,4-三甲基戊烷),为汽油的替代品)为例。因为蒸汽重整吸热,必须燃烧部分燃料,并将热量经换热器传递给重整炉。

[0006] CH4 + H2O ^ CO + 3¾, Δ H029 8 = +206.2kJ/mol (I)

[0007] C8H18+ 8H2O ^ 8CO + 17Η2, Δ H0298 = +1273.2kJ/mol (2)

[0008] 部分氧化包括氧气与燃料反应,生成氢气及CO,如式(3)及(4)所示,其中氧气-燃料比率低于完全燃烧(即完全转化为CO2和H2O)所需的比率。

[0009] CH4 + V2O2 S CO + 2Η2, Δ H0298 = -35.7kJ/mol (3)

[0010] CgHi8+ 4〇2 ^ 8CO + 9¾, Δ H0298 = -158.lkj/mol (4)

[0011] 部分氧化可在催化剂存在的条件下进行(催化部分氧化)或在无催化剂存在的条件下进行(非催化部分氧化)。部分氧化反应速率比蒸汽重整高得多,但燃料的单位碳的氢气产量则较低。非催化部分氧化要求反应温度高于100(TC,以取得高反应速率。虽然反应放热,但必须燃烧部分燃料,因为反应放出的热量不足以预热原料至达到优化反应速率。最近,催化部分氧化受到关注,因为其工作温度比非催化路径低。较低工作温度使反应过程较易控制,因此可使焦炭形成最小化,并可使构成反应器的材料有更多的选择。

[0012] 关于天然气催化部分氧化重整,正在进行天然气合成油(gas toliquid,GTL)工艺的中试。这些工艺的优点之一为有较低H2/C0摩尔比的合成气可直接用于连续催化转化器,生产合成液体(syntheticliquid)产品。虽然部分氧化的放热避免了天然气蒸汽重整的大量吸热,但是水(即廉价而丰富的氢源)中的氢原子并未作为氢源的一部分而被利用。因此,该方法不足以作为以生产氢气为目的的方法。并且,该方法不能避免原料气体及生成的气体的燃烧,导致H2和/或CO选择性的降低。

[0013]自动热重整包括氧气、蒸汽及燃料生成氢气及CO2的反应,并可被看为是部分氧化与蒸汽重整的组合,如式(5)及(6)所示。实质上,该方法可看为是POR与HSR的组合。

[0014] CH4 +V2O2 + H2O ^ CO2+ 3Η2, δ H0298 = -18.4kJ/mol (5)

[0015] CgHig+ 4〇2 + 8H2O ^ 8CO2 + 17¾, ΔH0298 = -236.7kJ/mol

[0016] (6)

[0017] 使用中重整(on-board reforming)用反应方法的选择取决于很多因素,包括应用的操作特性(如改变动力需求、快速起动及频繁停车)及燃料电池组的类型。HSR受热传递的限制,因此不能对动力需求的改变快速响应(即“负荷跟踪”)。当动力需求急速降低时,催化剂可能过热,造成烧结,并进而导致活性丧失。ATR能克服HSR的负荷跟踪的局限,因为吸热反应所需的热量在催化剂床内生成,这允许其对动力需求的改变作出更快的反应,及更快速起动。

[0018] 为了提供蒸汽重整所必需的大量热,自动热方法包括原料进入催化重整器之前的预先燃烧(priori combustion);然后将经加热的气体通入催化剂床。因此,热供应受反应物气体热容的限制,无法实现实质性改进。近来,部分烃原料的燃烧通过使用催化燃烧进行。然而,因为催化燃烧受催化剂床温度最高值(约1000-1100°C )的限制,其情况与现有技术的(priori)均质燃烧并无本质区别。

发明内容

·[0019] 本发明的一个实施方案采用多组分复合催化剂的热中性重整方法克服了前述问题,并能有效及可靠的处理液态烃燃料。本发明证明非常小量的钼族金属通过向催化剂表面提供氢溢出效应(hydrogen-spillover)而可增强基础金属载体的热中性重整催化剂的活性。

[0020] 氢溢出效应防止催化剂碳分解,延缓了催化剂的失活。使用多组分催化剂极大地增强了催化燃烧与蒸汽重整功能,并且防止了焦炭形成与硫中毒。催化燃烧产生的热诱发了同一催化剂表面的烃蒸汽的吸热重整,导致超快速的重整。

[0021] 在本发明的另一实施方案中,用于采用热中性重整工艺的富氢合成气生产方法的多组分催化剂已被成功地应用于轻质及重质石油基液态烃燃料(包括异辛烷、石脑油、煤油及柴油)的重整,并且在氢气及氧气溢出效应的显著催化功能作用下,未检测到由焦炭形成或硫化所造成的催化剂活性丧失。在高气体体积空速下,取得了超过97%的液态烃燃料转化率。

[0022] 本发明的催化剂组合物包括稀土金属氧化物,如镧和/或铈氧化物及其混合物;选自镍元素、镍的可还原化合物及其混合物中的一员;钼族金属的一员,如钼元素或钼化合物 '及IVB族的一员,如锆或锆化合物。可采用多于一种钼族金属,如二到三种金属,包括铑或铑化合物及其混合物。并且,元素周期表VIIB族的金属氧化物可用于增强液态烃原料热中性重整的效率。

[0023] 本发明另一实施方案提供了一种生产富氢合成气的方法,所述富氢合成气由氢气及一氧化碳组成,并含有少于1.5%体积的甲烷及二氧化碳。该方法包括将气化的液态烃、空气/氧气和蒸汽在多组分催化剂上接触。本发明的方法可在很宽泛的操作条件下进行。操作条件取决于所用原料及所要求的转化率。

附图说明

[0024] 图1为本发明热中性重整方法的示意图;

[0025] 图2为常规重整方法与本发明重整方法的对比示意图;并且

[0026] 图3为各种重整方法的概念示意比较。

具体实施方式

[0027] 本发明的一个优选实施方案中,将多组分催化剂用于由较重的低硫液态石油组分制备富氢气体的方法中。

[0028] 本发明的催化剂包括稀土金属氧化物,如镧和/或铈氧化物及其混合物;选自镍元素、镍的可还原化合物及其混合物中的一员;钼族金属中的一员,如钼元素或钼化合物。可使用多于一种的钼族金属,如二到三种金属,包括铑或铑化合物及其混合物。并且,来自元素周期表VII B族的促进剂(如铼)可被用于增强液态烃原料热中性重整的效率。

[0029] 本发明催化剂的主要组成及每种组分的重量百分数范围如下所示:0.5-15% Ni,

0.5-10% Ce2O3,0.5-5% La2O3,0.1-2% Pt,0.5-3% ZrO2,0.1-2% Rh,及 0.1-2% Re。

[0030] 本发明催化剂的 剩余部分由耐火载体构成,所述耐火载体包含铝的氧化物,硅或其化合物中的一种或几种。优选的催化剂耐火载体材料为直径为约2到4毫米的氧化铝球。载体表面面积为约25至约125平方米/克。

[0031] 本发明催化剂可根据各种方法制得。优选制备方法为将预成型的耐火载体材料浸溃在前文所述的活性金属盐前体溶液中。优选的耐火载体为直径约2到约4毫米的氧化铝球。

[0032] 优选的浸溃顺序为先用钼族金属盐浸溃,然后用基础金属盐溶液(如硝酸盐)浸溃,后者会在随后的加热处理中分解形成相应的氧化物。浸溃后,复合材料在约120°C下以缓慢升温的速率加热干燥,优选速率为约0.5°C /分钟,然后在120°C下保温约一小时。之后将温度以同一升温速率升至约250°C,并在温度250°C下保温约一小时。干燥后材料在约450°C至约1160°C下煅烧。制备催化剂必须高温煅烧,以使其能承受液态烃热中性重整反应的高温。

[0033] 本发明证明引入非常小量的钼族金属便可通过向催化剂表面提供氢溢出效应而增强基础金属装载的热中性重整催化剂的活性。正如熟练技术人员所知,氢溢出效应防止了碳在催化剂上的沉积,延缓了催化剂活性的丧失。本发明催化剂的特殊优势在于其能同时展现以下性质:(I)它能消耗所有供给的氧气,并且产生大量的燃烧反应热,使烃原料完全氧化;(2)它对本质为吸热反应的蒸汽重整反应具有不非常高的活性,消耗氧化反应所产生的热,并产生真正的热中性重整;(3)它具有非常长的活性寿命,检测不到其活性丧失,以及(4)它能以非常高的速率将范围从异辛烷到柴油的液态烃转化成合成气。

[0034] 用于本发明方法的多组分催化剂,再加上高气体体积空速(GHSV =高达61032h—1),可使液态烃燃料的转化率超过97%。本发明方法用于从低硫中蒸馏石油馏分(如重石脑油,煤油,柴油)及轻石油馏分(如轻石脑油及LPG)生产富氢气体。采用多组分催化剂的方法如前文所述。

[0035] 本发明的催化剂配混物能够在从较重烃馏分生产富氢合成气中同时执行两种功能,即重整功能和催化燃烧功能。热中性重整在同一催化剂表面进行,其中燃烧与蒸汽重整的功能达到了很好的平衡。燃烧的热量被瞬时直接供给作为蒸汽和/或CO2重整所需热量,热损失最小。

[0036] 如前文所述,存在三种众所周知的常规氢气生产重整方法,即自动热重整,部分氧化重整及蒸汽重整。这些方法与本发明方法在工艺条件,反应方法,催化剂体系及工艺设计方面完全不同。

[0037] 在自动热重整中,即使是最先进的版本亦不过将两种催化剂床(即燃烧催化剂与蒸汽重整催化剂)串联使用。然而,催化剂载体的热阻抗及催化剂成分限制了催化燃烧,使其不能超过催化剂床温度最高值1000-1100°C ;其情况与现有技术的均质燃烧并无本质区别。

[0038] 相比之下,如图1可见,在本发明方法中,采用含七种组分催化剂的热中性重整在同一催化剂表面进行,其中燃烧功能与蒸汽重整功能达到了很好的平衡。燃烧的热量瞬时被直接应用为重整所需的热量,热损失最小。

[0039] 图2说明了与其他现有技术的重整技术相比,热中性重整的优势,所述现有技术包括烃蒸汽重整,部分氧化及自动热重整。

[0040] 图3概念性地示意描述了本发明热中性重整的优势所在,展示了四种不同反应器体系的热量释放与交换。

[0041] 传统重整器中蒸汽重整(HSR)的热量从反应器外部供给,因此只有非常少量的热量能够被引入催化剂床。需要一个巨大的反应器及 加热炉来提供热量。

[0042] 烃的部分氧化重整(POR)采用催化燃烧催化剂(如网状Pt-Rh线)在极短(m-sec)的接触时间内完成。部分烃亦发生燃烧,因此H2与CO选择性趋于降低。

[0043] 即使在最先进的自动热重整(ATR)方法中,本质上,由于受催化剂载体转化温度的限制,升温上限不得超过约1100°c,因此催化部分氧化速率受到限制。结果气体体积空速不能显著提升。所以催化剂体积不能显著减小。

[0044] 然而,在催化燃烧热中性重整(TNR)中,催化剂床温度可升至超过3000°C的假想(虚拟)温度,但实际上因为蒸汽重整反应的大量吸热,催化剂床温度被迫降低。因此,催化剂床温度保持在一个安全且实际的温度范围内。由于该特性,与传统蒸汽重整器相比,所述反应器在尺寸上可减少两个数量级。

[0045] 本发明方法能够在很宽泛的操作条件下进行,包括反应温度为约750 °C到1000°C,压力为约O到50psig,蒸汽与碳比率为约O到约3.5,氧与碳比率为约0.35到约

0.60,并且气体体积空速为约30,OOOtT1到约70,000h_7小时。所用原料及所需转化率决定

了采用的重整条件。通常,为了生产富氢气体,操作在高温、低压及最大空速下进行,以取得较高的氢气产率。

[0046] 在实施本发明的方法中,含氧气体可选自空气,氧气、蒸汽及其混合物。对液态烃的热中性重整,可使用空气和/或二氧化碳,优选气体为空气。烃原料可为单独的烃,如甲烷、乙烷、丙烷、丁烷或其混合物,包括天然气及其冷凝物,以及各种石油馏分,如轻石脑油、重石脑油、煤油及柴油。

[0047] 对本发明的热中性重整方法,蒸汽与烃反应物的相对量以蒸汽/碳比率表示,即进入反应器的烃中,每个碳原子对应的蒸汽摩尔数。基于得到较长的催化剂寿命及反应平衡考虑,优选蒸汽/碳比率为约2: I。

[0048] 采用本发明的多组分催化剂的本发明的热中性重整方法的部分优势如下所述。

[0049] 本发明催化剂具有在同一催化剂表面同时进行催化燃烧与蒸汽和/或CO2重整的功能。其活性略低于主要用于轻质烃燃料重整的原四组分催化剂,如参考文献PCT/US05/47220(提交日期2005年12月22日)中所述。本发明的催化剂使较重烃馏分的重整成为可能,并不会因高放热催化燃烧步骤中温度升高而造成活性丧失或形成焦炭。凭借特殊的氢气及氧气溢出效应,使得焦炭形成前体及含硫毒素前体瞬时被氧化和/或加氢,避免了催化活性丧失。

[0050] 在比传统蒸汽重整温度低的温度范围内,即从约410°C到约420°C下提供比率合适的燃料、空气和蒸汽,催化剂床的温度会在约10到约20秒的很短时间内升至约800°C至约900°C,在该温度下蒸汽重整反应顺利进行。

[0051] 燃料催化燃烧的放热自动被烃的蒸汽和/或CO2重整的吸热所中和及补偿。这避免了催化剂温度过度升高并且由此避免了催化剂金属的烧结及催化剂载体转化为非多孔状。这些功能增强了催化剂的稳定性。

[0052] 放热及吸热之间的热传递直接在同一催化剂床上进行。因此,本发明液态烃重整所需催化反应器体积比传统蒸汽重整反应器小1/20,并且比自动热重整器小1/10。此外,传统烃蒸汽重整所需的大体积加热炉可被省略。

[0053] 在稳态操作时,无需外部供热,因为蒸汽重整所需热量由催化燃烧反应原位提供。采用多组分催化剂的TNR方法非常迅速(大于35,OOOh—1),并且对含有少量硫及芳烃组分的液态烃的生产,亦检测不到焦炭的形成。多组分催化剂能够几乎完全氧化烃原料,消耗供给的氧气,产生大量的燃烧热。

[0054] 多组分催化剂对蒸汽重整反应(即吸热反应)具有高度活性,由此消耗氧化反应产生的热,提供真正的热中性重整。当用于较重馏分石油原料时,它具有检测不到活性丧失的非常长的活性寿命,并且能将范围从异辛烷到柴油的液态烃以非常高的转化率生成富氢合成气。

[0055] 多组分催化剂可被应用于范围广泛的燃料,从气态燃料(如天然气(NG)及液化石油气(LPG))到石油基液态烃(包括石脑油、汽油、煤油及柴油)。本发明催化剂也可用于如下燃料的生产,如甲醇、乙醇、生物柴油及合成燃料(synfuels)。它应用范围广泛,包括合成气(一氧化碳+氢气)的生产,以Fischer-Tropsch方法进行的烃至液体的转化(HTL),甲醇的生产,加氢操作中的氢气进料,用于各种用途的高纯度氢气的生产,精细化学品的生产,及用于燃料电池的液态烃燃料的重整,所述燃料电池容量从100W到数MW,包括质子交换膜燃料电池(PEMFC),固体氧化物燃料电池(SOFC),及熔融碳酸盐燃料电池(MCFC)。上述系统可用于小型日用品、家用联产系统,及车载燃料电池。

[0056] 该系统亦可用于以液态石油燃料生产富氢重整油,提高内燃机中的氢气含量,减少冷启动排放,扩宽废气循环利用范围。

[0057] 本发明催化剂可用于大型炼油厂氢气生产(高达200,OOONmVh)中液态石油原料的热中性重整。

[0058] 实施例

[0059] 所有实验均在固定床流动反应器体系中进行。该反应体系由气体及液体进料部分,预热部分,反应器部分及产品收集部分组成。气体由质量流量控制器进料,液体进料由精确HPLC泵抽入。反应管直径12.6臟,并由他711^230合金制得。采用三区电炉(其温度由温度控制器监测并控制)加热反应器体系。

[0060] 以热电偶测量反应器内部温度。水及烃在预热装置中蒸发,并在进入反应器前,与空气在静态混合器中混合。产品收集部分由控压阀,气液分离器,液面控制器及产品储罐构成。

[0061] 在此后的每次实验中,所采用的七组分催化剂均为8.0 %重量Ni,5.0 %重量Ce2O3, 2.5%重量 La2O3,0.5%重量 Pt,2%重量 ZrO2,0.5%重量 Rh 及 1.2%重量 Re。在每次实验中,所采用的现有技术催化剂均为10 %重量的Ni,6.0 %重量的Ce2O3,1 %重量的Pt及

0.2%重量的Rh。

[0062] 在下述每次实验中,将所采用的6ml催化剂装入如前文所述Haynes反应管中。催化剂床位于反应管中心,惰性碳化硅层中间。碳化硅层的上部亦用作预热区域。进料混合物在预热区域被加热至350°C。反应器在氮气流量201/h下被加热至起始温度410°C。在所有实验中,水均被泵入预热器并被蒸发,蒸汽按照蒸汽-烃原料(H20/C)摩尔比2: I的流速送出。在产品储罐收集到足量的水后,烃开始进料。采用各种02/C比率。反应器温度在几秒钟内升至约800-900°C。在达到稳态后,进行实验两小时。一个气体试样被采集并以两种气相色谱分析,一种装有TCD,另一种装有FID。按GC结果计算转化百分比及产品气体组成。

[0063] 表1.实验1,原料:重·石脑油

[0064]

Figure CN101679155BD00081
Figure CN101679155BD00091

[0065] 表I1.实验2,原料:煤油

[0066]

Figure CN101679155BD00092
Figure CN101679155BD00101

[0067] 表II1.实验3,原料:柴油

[0068]

Figure CN101679155BD00102

[0069] 本发明催化剂比现有技术催化剂明显改善之处有:[0070] 1.烃转化率;

[0071] 2.氢气产率;

[0072] 3.选择性(H2/(C0+C02));而且

[0073] 4.对较重原料的重整能力更高,并且没有检测到催化剂活性丧失。如,使用本发明催化剂的柴油转化率为99%,而使用4-组分现有技术催化剂为64%。

[0074] 尽管已具体描述了本发明的实施方案,应理解只要不背离本发明精神与范围,本领域技术人员显然可对本发明作出各种其它修改。因此,这并不意味着权利要求书的范围由说明书中实施例及描述所限定,而应解释为包含本发明中所有可专利新颖性的特征,亦包括本领域技术人员认为等效的所`有特征。

Claims (15)

1.一种用于由液态烃燃料制备富氢合成气的热中性重整方法,所述方法包括: a)提供液态烃燃料、富O2气及蒸汽的混合物给反应器的内区,所述内区包括催化剂床,该催化剂床由结合了燃烧及蒸汽和/或CO2重整的催化剂组成,所述催化剂由N1、La2O3,Ce2O3、Pt、ZrO2、Rh、Re和由包含铝的氧化物、硅或其化合物中的一种或几种的耐火载体构成的催化剂剩余部分组成,其中每一组分的重量百分数为0.5至15% Ni ;0.5至10% Ce2O3 ;0.5 至 5% La2O3 ;0.1 至 2% Pt ;0.5 至 3% ZrO2 ;0.1 至 2% Rh,和 0.1 至 2% Re ; b)预热该燃料、富O2气及蒸汽至温度范围为380°C到450°C ;并且 c)经预热的混合物与催化剂床接触,气体体积空速30,OOOtT1至70,OOOtT1,产生放热的燃烧反应,将反应温度升至800°C到900°C,同时引起吸热的蒸汽重整反应,该反应持续一段足以重整液体燃料以产生富氢合成气的时间。
2.权利要求1的方法,其中所述液态烃燃料为石油基燃料。
3.权利要求2的方法,其中所述石油基燃料选自异辛烷、轻石脑油、重石脑油、煤油和柴油。
4.权利要求1的方法,其中所述气体体积空速为35,OOOtT1至50,OOOh'
5.权利要求1的方法,其中预热温度为410°C至420°C。
6.权利要求1的方法,其中所述放热燃烧反应所产生的热量被同一催化剂床上的吸热反应所中和及补偿。
7.权利要求1的方法,其中所 述重整反应在没有外部供热下进行。
8.权利要求1的方法,其中避免了形成焦炭。
9.权利要求1的方法,其中所述催化剂可重整含少于200ppm硫的原料。
10.权利要求3的方法,其中超过97%的液态烃燃料原料被转化为合成气或&/0)/0)2/CH4。
11.权利要求1的方法,其中所述富氢合成气用作装有高温或低温燃料电池的车辆中的使用中重整炉的原料。
12.权利要求1的方法,其中所述富氢合成气用作内燃机氢富集的原料。
13.权利要求1的方法,其中所述富氢合成气应用于稳态功率产生设备。
14.一种产生氢的方法,所述方法包括权利要求1中的方法的步骤,其中所述方法制备的合成气经采用选自水煤气转换及优先氧化技术、甲烷化及膜技术以及PSA的氢纯化技术进一步纯化,产生氢。
15.一种用于热中性重整方法的催化剂,所述催化剂由N1、La2O3、Ce203、Pt、ZrO2、Rh、Re和由包含铝的氧化物、硅或其化合物中的一种或几种的耐火载体构成的催化剂剩余部分组成,其中每一组分的重量百分数为0.5至15% Ni ;0.5至10% Ce2O3 ;0.5至5% La2O3 ;0.1至 2% Pt ;0.5 至 3% ZrO2 ;0.1 至 2% Rh,和 0.1 至 2% Re。
CN2007800518057A 2006-12-26 2007-12-26 使用多组分催化剂的石油基热中性重整 CN101679155B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/645,970 2006-12-26
US11/645,970 US7700005B2 (en) 2006-12-26 2006-12-26 Oil-based thermo-neutral reforming with a multi-component catalyst
PCT/US2007/026384 WO2008082589A2 (en) 2006-12-26 2007-12-26 Oil-based thermo-neutral reforming with a multi-component catalyst

Publications (2)

Publication Number Publication Date
CN101679155A CN101679155A (zh) 2010-03-24
CN101679155B true CN101679155B (zh) 2013-11-06

Family

ID=39543084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800518057A CN101679155B (zh) 2006-12-26 2007-12-26 使用多组分催化剂的石油基热中性重整

Country Status (9)

Country Link
US (2) US7700005B2 (zh)
EP (1) EP2104657B1 (zh)
JP (1) JP5276010B2 (zh)
KR (1) KR101419567B1 (zh)
CN (1) CN101679155B (zh)
BR (1) BRPI0719620A2 (zh)
EA (1) EA015806B1 (zh)
NO (1) NO343573B1 (zh)
WO (1) WO2008082589A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930771B1 (fr) * 2008-04-30 2011-07-22 Inst Francais Du Petrole Procede de combustion en boucle chimique de fractions hydrocarbonees liquides lourdes.
KR101229751B1 (ko) * 2012-07-12 2013-02-06 한국전력공사 합성가스 내 증기포화장치
US9499403B2 (en) * 2013-07-10 2016-11-22 Saudi Arabian Oil Company Catalyst and process for thermo-neutral reforming of liquid hydrocarbons
BR112014020135A8 (pt) * 2013-10-17 2019-01-29 Petroleo Brasileiro Sa Petrobras catalisador para produção de gás de síntese e processo de obtenção do mesmo
US20190224653A1 (en) 2018-01-23 2019-07-25 Saudi Arabian Oil Company Modified usy-zeolite catalyst for reforming hydrocarbons

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929431A (en) 1972-09-08 1975-12-30 Exxon Research Engineering Co Catalytic reforming process

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473543A (en) 1982-04-26 1984-09-25 United Technologies Corporation Autothermal reforming catalyst and process
US4650651A (en) 1983-06-09 1987-03-17 Union Carbide Corporation Integrated process and apparatus for the primary and secondary catalytic steam reforming of hydrocarbons
US4666680A (en) 1984-01-30 1987-05-19 Fluor Corporation Autothermal production of synthesis gas
US5122299A (en) 1989-12-11 1992-06-16 The M. W. Kellogg Company Autothermal steam reforming process
US5248566A (en) 1991-11-25 1993-09-28 The United States Of America As Represented By The United States Department Of Energy Fuel cell system for transportation applications
JP3225078B2 (ja) 1992-03-24 2001-11-05 東洋エンジニアリング株式会社 合成ガス製造用触媒
JPH05270803A (ja) 1992-03-24 1993-10-19 Toyo Eng Corp メタンと二酸化炭素および水蒸気を原料とする合成ガスの製造方法
GB9412786D0 (en) 1994-06-24 1994-08-17 Johnson Matthey Plc Improved reformer
JP3589309B2 (ja) 1994-07-05 2004-11-17 智行 乾 メタンの改質による水素の製造法
US6293979B1 (en) 1994-12-19 2001-09-25 Council Of Scientific & Industrial Research Process for the catalytic conversion of methane or natural gas to syngas or a mixture of carbon monoxide and hydrogen
US6007699A (en) * 1996-08-21 1999-12-28 Energy And Environmental Research Corporation Autothermal methods and systems for fuels conversion
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
JP3345784B2 (ja) 1997-04-11 2002-11-18 千代田化工建設株式会社 オートサーマルリフォーミング法による合成ガスの製造方法
US6303098B1 (en) 1997-06-02 2001-10-16 University Of Chicago Steam reforming catalyst
EP1093852B1 (en) 1998-06-09 2005-08-31 Idemitsu Kosan Company Limited Process for the autothermal reforming of hydrocarbon feedstock
CA2282948A1 (en) 1998-09-16 2000-03-16 University Technologies International, Inc. Low temperature autothermal steam reformation of methane in a fluidized bed
DK173897B1 (da) 1998-09-25 2002-02-04 Topsoe Haldor As Fremgangsmåde til autotermisk reforming af et carbonhydridfødemateriale indeholdende højere carbonhydrider
EP0998976A1 (en) * 1998-11-04 2000-05-10 Engelhard Corporation Star shaped alumina extrudates and catalyst based thereon
US7122170B2 (en) * 2000-07-25 2006-10-17 Conocophillips Company Catalysts for SPOC™ enhanced synthesis gas production
WO2001025141A1 (en) 1999-10-05 2001-04-12 Ballard Power Systems Inc. Autothermal reformer
US6610196B1 (en) 1999-11-24 2003-08-26 Conocophillips Company Catalytic reforming process
US6458334B1 (en) * 2000-03-02 2002-10-01 The Boc Group, Inc. Catalytic partial oxidation of hydrocarbons
US6436363B1 (en) * 2000-08-31 2002-08-20 Engelhard Corporation Process for generating hydrogen-rich gas
CN1226093C (zh) * 2000-11-08 2005-11-09 出光兴产株式会社 烃重整用催化剂以及用该催化剂重整烃的方法
US6713040B2 (en) * 2001-03-23 2004-03-30 Argonne National Laboratory Method for generating hydrogen for fuel cells
US20020174603A1 (en) * 2001-03-23 2002-11-28 Shabbir Ahmed Method for generating hydrogen for fuel cells
JP4648567B2 (ja) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 オートサーマルリフォーミング触媒および燃料電池用燃料ガスの製造方法
US6967063B2 (en) 2001-05-18 2005-11-22 The University Of Chicago Autothermal hydrodesulfurizing reforming method and catalyst
US6884531B2 (en) 2001-05-21 2005-04-26 Saudi Arabian Oil Company Liquid hydrocarbon based fuels for fuel cell on-board reformers
US7179442B2 (en) * 2002-12-20 2007-02-20 Honda Giken Kogyo Kabushiki Kaisha Catalyst formulations containing Group 11 metals for hydrogen generation
JP2006511427A (ja) * 2002-12-20 2006-04-06 シミックス・テクノロジーズ・インコーポレイテッドSymyx Technologies,Inc. 白金およびロジウムおよび/または鉄を含有する水素生成用触媒配合物
US7829227B2 (en) * 2003-04-04 2010-11-09 Texaco Inc. Integrated fuel processor apparatus and enclosure and methods of using same
JP4267483B2 (ja) * 2003-05-28 2009-05-27 出光興産株式会社 硫黄化合物除去用吸着剤及び燃料電池用水素の製造方法
US20050096215A1 (en) * 2003-10-31 2005-05-05 Conocophillips Company Process for producing synthesis gas using stabilized composite catalyst
US7214331B2 (en) 2004-02-26 2007-05-08 The Boc Group, Inc. Catalyst configuration and methods for syngas production
US7435760B2 (en) * 2004-05-14 2008-10-14 Battelle Memorial Institute Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels
JP4864902B2 (ja) * 2004-12-23 2012-02-01 サウジ アラビアン オイル カンパニー 石油ベースの液体炭化水素を改良する熱中性法
US7438889B2 (en) * 2005-06-24 2008-10-21 University Of South Carolina Use of complex metal oxides in the autothermal generation of hydrogen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929431A (en) 1972-09-08 1975-12-30 Exxon Research Engineering Co Catalytic reforming process

Also Published As

Publication number Publication date
CN101679155A (zh) 2010-03-24
EA015806B1 (ru) 2011-12-30
KR101419567B1 (ko) 2014-07-15
BRPI0719620A2 (pt) 2018-01-23
NO20092485L (no) 2009-09-22
US20080152572A1 (en) 2008-06-26
US8008226B2 (en) 2011-08-30
EA200900890A1 (ru) 2010-04-30
EP2104657A2 (en) 2009-09-30
JP2010514658A (ja) 2010-05-06
WO2008082589A9 (en) 2008-10-09
US7700005B2 (en) 2010-04-20
JP5276010B2 (ja) 2013-08-28
WO2008082589A2 (en) 2008-07-10
US20100216633A1 (en) 2010-08-26
KR20090123853A (ko) 2009-12-02
EP2104657A4 (en) 2016-03-09
NO343573B1 (no) 2019-04-08
WO2008082589A3 (en) 2008-08-28
EP2104657B1 (en) 2018-07-04
WO2008082589A8 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
Adhikari et al. Hydrogen production from glycerol: An update
Wang et al. A study of steam reforming of hydrocarbon fuels on Pd/ceria
Sánchez-Sánchez et al. Ethanol steam reforming over Ni/MxOy–Al2O3 (M= Ce, La, Zr and Mg) catalysts: influence of support on the hydrogen production
Adhikari et al. Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts
AU2002364703B2 (en) Low-temperature hydrogen production from oxygenated hydrocarbons
US6048472A (en) Production of synthesis gas by mixed conducting membranes
US4844837A (en) Catalytic partial oxidation process
Park et al. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts
Mattos et al. Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation
US20060183009A1 (en) Fuel cell fuel processor with hydrogen buffering
Trimm et al. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles
EP2586743A1 (en) Low-temperature hydrogen production from oxygenated hydrocarbons
KR101128168B1 (ko) 온도 스윙 개질 및 고체 산화물 연료 전지를 이용하여전기를 생산하는 방법
JP4335535B2 (ja) 単一チャンバーのコンパクトな燃料処理装置
EP1481729A1 (en) Process for the autothermal reforming of a hydrocarbon feedstock
Li et al. Methane reforming to synthesis gas over Ni catalysts modified with noble metals
US4927857A (en) Method of methanol production
US20090035192A1 (en) Catalytic EGR oxidizer for IC engines and gas turbines
Fierro et al. On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts
Pen et al. New catalytic routes for syngas and hydrogen production
Aramouni et al. Catalyst design for dry reforming of methane: analysis review
US7435760B2 (en) Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels
Polychronopoulou et al. The steam reforming of phenol reaction over supported-Rh catalysts
Fierro et al. Ethanol oxidative steam reforming over Ni-based catalysts
Fatsikostas et al. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model